用户名: 密码: 验证码:
岩土介质渗流以及输运从孔隙尺度到达西尺度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩土介质是一种遍及于自然界的非均质多孔材料。实体颗粒与孔隙空间的无序分布构成了岩土介质非均质特性的典型要素。与岩土介质相关的渗流以及输运现象是岩土工程学科研究的基础课题之一。目前针对这一课题的主要研究手段是基于唯象的方法论,而唯象研究方法的主要特点是放弃孔隙尺度上的非均质性,单考虑达西尺度上的均质特性。但是从认识事物的本质规律出发,非均质多孔材料在达西尺度上所表现出来的各种特性必定是孔隙尺度上的各种物理过程的本质反映。所以,针对岩土介质渗流以及输运的研究课题,从更为科学的角度出发,应该充分考虑孔隙尺度上的非均质性。这就要求,必须将孔隙的几何结构,以及孔隙空间内发生的物理过程,与达西尺度上的渗流以及输运的均质特性紧密的联系起来。
     源于上述研究动机,本文以岩土介质为研究对象,借助尺度扩展的数学方法,针对水力梯度驱动下的流体渗流,水力、浓度梯度驱动下的物质输运,以及粘土-水溶液体系的电动现象,展开了从孔隙到达西的尺度扩展的理论和计算工作。
     针对水力梯度驱动下的流体渗流问题:1)通过对渗流问题的尺度扩展,给出了渗透率的多尺度计算方法,并数值考察了渗透率的影响因素。结果表明,组构对于各向同性渗透率的影响并不显著,而颗粒大小以及孔隙比的影响却是显著的正相关。2)借助一个持有特征半径以及相关孔隙比定义的概念性单胞,同时结合反演优化技术,提出一个简单易于操作的岩土介质渗透率的多尺度计算方法,并将该计算方法应用于砂土以及粘土的各向同性(异性)渗透率的计算。
     针对水力、浓度梯度驱动下的物质输运问题:1)通过对扩散型和弥散型传输的尺度扩展,量化了两者界限的理论阀值标准。2)数值考察了有效扩散系数的影响因素。结果表明,颗粒大小对于有效扩散系数影响不显著,而组构以及孔隙比的影响显著。3)借助特征底角的概念来考虑组构的影响,给出了岩土介质有效扩散系数的多尺度计算方法,并将之应用于粘土的有效扩散系数的计算。
     针对粘土-水溶液体系的电动现象问题:1)通过对粘土-水溶液体系电动现象的尺度扩展,量化了流动电势梯度以及电粘效应的一般计算公式,从而揭示了粘土渗流的胶体科学本质。2)数值考察了电动直径,表面带电密度各自对于流动电势梯度以及电粘效应的影响,得到了一系列“直观朴素”或者“反直观朴素”的结果,并且借助流动电势梯度和电粘效应的协同分析,在物理上合理的解释了上述“直观朴素”以及“反直观朴素”的结果。3)借助持有颗粒宽度的一维概念性单胞,同样较好的应用于考虑双电层效应的粘土渗透率的计算。
Geo-materials (e.g., sands, clays, and rocks) are recognized as a typical heterogeneous porous material with its widespread all over the world. The disordered distribution between solid particle and pore space basically makes up this type of heterogeneity. Flow and transport in geo-materials is always one of fundamental topical areas in geotechnical engineering. At present, the main methodology to this topic is based on the so-called phenomenological approach, which is featured by only considering the homogeneous property at the Darcy-scale rather than the heterogeneous one at the pore-scale. Nevertheless, in principle, the numerous properties at the Darcy-scale are essentially determined by all kinds of physical phenomena occurring at the pore-scale. Thus, to more scientifically study those flow and transport properties in heterogeneous porous materials, a sufficient consideration with heterogeneities is required. More specially, the needed pore-scale information including geometry, and physical phenomenon is supposed to be fully incorporated in the flow and transport properties at the Darcy-scale.
     Motivated by the scientific sense above, this thesis mostly aims at an application of mathematical methodology of up-scaling in flow and transport in geo-materials. More specially, we focus on how to extend to the Darcy-scales for the three principal phenomena below:fluid flow in response to single hydraulic gradient, mass transport in response to hydraulic and concentration gradients, and electrokinetic phenomenon in a clayey soil-aqueous solution. To this end, some theoretical derivations as well as numerical computations are both carried out in this thesis.
     Fluid flow in response to single hydraulic gradient.1) Through the up-scaling process for fluid flow, the multi-scale computation of permeability for porous media is proposed, and the parametric analysis is numerically conducted to estimate the effects of fabric, particle size, and void ratio on the permeability. Through the parametric analysis, we can conclude that the effect of fabric on the isotropic permeability, to some extent, can be neglected with comparison to those of particle size and void ratio.2) An easy-to-implement multi-scale computation of permeability for geo-materials is proposed. In particular, a conceptual unit cell with characteristic radius is suggested to account for the complexity of the pore network; the determination of this unit cell is an inverse optimization process:to find the characteristic radius that yields a single laboratory permeability test data; using the determined characteristic radius, the permeability can be computed for various void ratios. Such an approach is applied to sands and clays. An agreement between the computed and measured values of the permeability is found.
     Mass transport in response to hydraulic and concentration gradients.1) Through the up-scaling processes for diffusion and dispersion transport patterns, the theoretical thresholds distinguishing them are quantified.2) Parametric analysis is numerically conducted to estimate the influences of fabric, particle size, and void ratio on the effective diffusivity. Through the parametric analysis, we can conclude that the influence of particle size, to some extent, can be neglected with comparison to those of fabric and void ratio.3) A multi-scale computation of effective diffusivity for geo-materials is proposed. In particular, a conceptual unit cell with characteristic triangle is suggested to account for the fabric factor in the pore network; the determination of this unit cell is an inverse optimization process:to find the characteristic triangle that yields a single laboratory effective diffusivity test data; using the determined characteristic triangle, the effective diffusivity can be computed for various void ratios. Such an approach is applied to clays. An agreement between the computed and measured values of the effective diffusivity is found.
     Electrokinetic phenomenon in a clayey soil-aqueous solution.1) Through the up-scaling processes for the electrokinetic phenomenon in a clayey soil-aqueous solution, the general formulas are derived to quantify streaming potential gradient and electroviscous effect, respectively, both of which are physically a key to understanding the essence of flow in a clayey soil-aqueous solution system.2) By the formulas, a parametric analysis is numerically conducted to estimate the possible effects of electrokinetic diameter and the surface charge density on streaming potential gradient and electroviscous effect, respectively. For the results obtained in the parametric analysis, some seem normal, which definitely conform to the general physical principle, but the others seem anomalous, which superficially do not conform to the general physical principle. However, with the aid of the so-called synchronous analysis between streaming potential gradient and electroviscous effect, all results including normal and anomalous ones, can be explained well in a physical sense.3) Use of a one-dimensional conceptual unit cell with characteristic particle width, a multi-scale computation of permeability that can account for the electric double layers effect is proposed and also can be successfully applied to clays.
引文
1. Smalley, I., The Teton Dam:rhyolite foundation+loess core=disaster. Geology Today 1992,8(1),19-22.
    2.李君纯,青海后沟水库溃坝原因分析.岩土工程学报1994,16(6),1-14.
    3.梁俊海;田隆海;杨双城,青海沟后水库混凝土面板砂砾石坝修复施工.水力发电2000,4,31-33.
    4.张新钰;辛宝东;王晓红;郭高轩;陆海燕;纪轶群;沈媛媛,我国地下水污染研究进展.地球与环境2011,39(3),415-422.
    5. Bear, J., Dynamics of fluids in porous media; Dover Publications:New York,1988.
    6.吉泽升;朱荣凯;李丹,传输原理;哈尔滨工业大学出版社:哈尔滨,2002.
    7.严宗毅,低雷诺数流理论,北京大学出版社:北京,2002.
    8. Batchelor, G. K., An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge,1967.
    9. Currie, I. G., Fundamental Mechanics of Fluids; McGraw-Hill:New York,1974.
    10.吴望一,流体力学;北京大学出版社:北京,1982-1983.
    11. Landau, L. D.; Lifshitz, E. M., Fluid Mechanics, Course of Theoretical Physics 6; Pergamon Press:New York,1987.
    12. Acheson, D. J., Elementary Fluid Dynamics, Oxford Applied Mathematics and Computing Science Series; Oxford University Press:USA,1990.
    13. Polyanin, A. D.; Kutepov, A. M.; Vyazmin, A. V.; Kazenin, D. A., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering; Taylor & Francis:London, 2002.
    14. Happel, J.; Brenner, H., Low Reynolds Number Hydrodynamics:with Special Applications to Particulate Media; Prentice Hall:Englewood Cliffs, New York, 1965.
    15. Ockendon, H.; Ockendon J. R., Viscous Flow; Cambridge University Press: Cambridge,1995.
    16. Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Transport Phenomena; John Wiley & Sons:New York.1960.
    17. Bejan, A., Convection Heat Transfer; John Wiley & Sons:New York,1984.
    18. Payne, L. E.; Pell, W. H., The Stokes flow problem for a class of axially symmetric bodies. The Journal of Fluid Mechanics 1960,7,529-549.
    19. Wang, C. Y., Exact solutions to the steady-state Navier-Stokes Equations. Annual Review of Fluid Mechanics 1991,23,159-177.
    20. Bear, J.; Irmay, S.; Zaslavsky, D., Physical Principles of Water Percolation and Seepage; UNESCO:Paris,1968.
    21. Dullien, F. A. L., Porous Media:Fluid Transport and Pore Structure; Academics Press Inc.:New York,1992.
    22. Bear, J.; Fel, L.G., A phenomenological approach to modeling transport in porous media. Transport in porous media 2012,92(3),649-665.
    23. Dupuit, J., Etudes theoriques et pratiques sur le mouvement des eaux dans les cannaux decouverts et a travers les terrains permeables; Dunod:Paris,1863.
    24. Forchheimer, P., Wasserbewegung durch boden. Z. Ver. Deutsch. Ing 1901,45, 1782-1788.
    25. Boussinesq, J., Recherches theoriques sur l'ecoulement des nappes d'eau infiltrees dans les sol, et sur le dabit des sources. Journal de Mathematiques Pures et Appliquees 1904,10,5-78.
    26. Boussinesq, J., Recherches theoriques sur l'ecoulement des nappes d'eau infiltrees dans les sol, et sur le dabit des sources. Journal de Mathematiques Pures et Appliquees 1904,10,363-394.
    27. Richards, L. A., Capillary conduction of liquids through porous medium. Physics 11931,318-333.
    28. Muskat, M., Physical Principles of Oil Production; McGraw-Hill:New York, 1949.
    29. Darcy, H., Rapport a Le Maire et au Conseil Municipal, de Dijon, sur les Moyens de Fournir L'Eau Necessaire a cette Ville; Douillier:Dijon,1834.
    30. Darcy, H., Rapport a M. le Ministre des Travaux Publics, sur le pavage et le macadamisage des chaussees de Londres et de Paris. Annales des Ponts et Chaussees Series 2 1850,10,1-264.
    31. Darcy, H., Les Fontaines Publiques de la Ville de Dijon; Dalmont:Paris,1856.
    32. Darcy, H., Recherches Experimentales Relatives au Mouvement de L'Eau dans les Tuyaux; Mallet-Bachelier:Paris,1857.
    33. Darcy, H., Relative a quelques modifications a introduire dans le tube de Pitot. Annales des Ponts el Chaussees Series 31858,15,351-359.
    34. Rowe, R. K.; Booker, J. R., The analysis of pollutant migration in a non-homogenous soil. Geotechnique 1984,34(4),601-612.
    35. Rowe, R. K.; Booker, J. R.,1-D pollutant migration in soils of finite depth. Journal of Geotechnical Engineering Division in Proceedings of the American Society of Civil Engineers 1985,111(4),479-499.
    36. Rowe, R. K.; Caers, C. J.; Crooks, V. E., Pollutant migration through clay soils. Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering 1985,1293-1298.
    37. Woods. R. D., Geotechnical Practice for Waste Disposal;American Society of Civil Engineers Special Publication:Washington, D.C.,1987.
    38. Rowe, R. K.; Caers, C. J.; Barone, F., Laboratory determination of diffusion and distribution coefficients of contaminants using undisturbed clayey soils. Canadian Geotechnical Journal 1988,25,108-18.
    39. Shackelford, C. D., Diffusion of Inorganic Chemical Wastes in Compacted Clay, Ph.D. Dissertation; Department of Civil Engineering, University of Texas:Austin, TX,1988.
    40. Shackelford, C. D., Diffusion as a transport process in fine-grained barrier materials. Geotechnical News 1988,6(2),24-27.
    41. Shackelford C. D.; Daniel. D. E., Diffusion in saturated soil. I. Background. Journal of Geotechnical Engineering Division in Proceedings of the American Society of Civil Engineers 1991,117(3),467-484.
    42. Shackelford C. D.; Daniel, D. E., Diffusion in saturated soil. Ⅱ. Results for compacted clay. Journal of Geotechnical Engineering Division in Proceedings of the American Society of Civil Engineers 1991,117(3),485-506.
    43. Shackelford C. D.; Daniel, D. E.; Liljestrand, H. M., Diffusion in inorganic chemical species in compacted clay soil. Journal of Contaminant Hydrology 1989, 4(3),441-473.
    44. Shackelford, C. D., Laboratory diffusion testing for waste disposal-A review. Journal of Contaminant Hydrology 1991,7(3),177-217.
    45. Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philosophical Transactions of the Royal Society 1883,174(0),935-982.
    46. Han, N.-W.; Bhakta, J.; Carbonell, R. G., Longitudinal and lateral dispersion in packed beds:effect of column length and particle size distribution. American Institute of Chemical Engineers Journal 1985,31(2),277-288.
    47. Bues, M. A.; Aachib M., Influence of the heterogeneity of the solutions on the parameters of miscible displacements in saturated porous medium. Part I. Stable displacement with density and viscosity contrasts. Experiments in Fluids 1991, 11(1),25-32.
    48. Gillham, R. W.; Robin, M. L. J.; Dytynyshyn, D. J.; Johnston, H. M., Diffusion of nonreactive and reactive solutes through fine-grained barrier materials. Canadian Geotechnical Journal 1984,21(3),541-550.
    49. U.S. Environmental Protection Agency, Solid Waste Disposal Facility Criteria. Technical Manual; EPA:Washington D.C.,1993.
    50. Kroner, E., Statistical modeling. In:Modeling Small Deformations of Polycrystals edited by Gittus, J.; Zarka, J.; Elsevier:London,1986.
    51. Zaoui. A., Approximate statistical modeling and applications. Homogenization techniques for composite media-Lecture Notes in Physics 272; Springer:Berlin, 1987.
    52. Quintard, M.; Whitaker, S., Single phase flow in porous media:the effect of local heterogeneities. In:Migration of Hydrocarbons in Sedimentary Basins edited by Doligez, B.; Editions Technip:Paris,1987.
    53. Keller, J. B., Effective behaviour of heterogeneous media. In:Statistical Mechanics and Statistical Methods in Theory and Application edited by Landman, U.; Plenum:New York,1977.
    54. Bensoussan, A.; Lions, J. L.; Papanicolaou, G., Asymptotic analysis for Periodic Structures; North-Holland:Amsterdam,1978.
    55. Sanchez-Palencia, E., Nonhomogeneous Media and Vibration Theory-Lecture Notes in Physics 127; Springer:Berlin,1980.
    56. Dasgupta, A.; Agarwal, R. K., Orthotropic thermal-conductivity of plain-wave fabric composites using a homogenization technique. Journal of Composite Materials 1992,26 (18),2736-2758.
    57. Nedanov, P. B.; Advani, S. G., A method to determine 3D permeability of fibrous reinforcements. Journal of Composite Materials 2002,36 (2),241-254.
    58. Nedanov, P. B.; Advani, S. G., Numerical computation of the fiber preform permeability tensor by the homogenization method. Polymer Composites 2002,23 (5),758-770.
    59. Berger, H.; Kari. S.; Gabbert, U.; Rodriguez-Ramos, R.; Bravo-Castillero, J.: Guinovart-Diaz, R., Calculation of effective coefficients for piezoelectric fiber composites based on a general numerical homogenization technique. In:5th International Conference on Composite Science and Technology; Sharjah:U ARAB EMIRATES,2005.
    60. DasGupta, D.; Basu, S.; Chakraborty, S., Effective property predictions in multi-scale solidification modeling using homogenization theory. Physics Letters A 2006,348 (3-6),386-396.
    61. Song, Y. S.; Youn, J. R., Asymptotic expansion homogenization of permeability tensor for plain woven fabrics. Composites Part a-Applied Science and Manufacturing 2006,37 (11),2080-2087.
    62. Rim, J. E.; Pinsky, P. M.; van Osdol, W. W., Using the method of homogenization to calculate the effective diffusivity of the stratum corneum. Journal of Membrane Science 2007,293 (1-2),174-182.
    63. Rim, J. E.; Pinsky, P. M.; van Osdol, W. W., Using the method of homogenization to calculate the effective diffusivity of the stratum corneum with permeable corneocytes. Journal of Biomechanics 2008,41 (4),788-796.
    64. Spanne, P.; Thovert, J. F.; Jacquin, C. J.; Lindquist, W. B.; Jones, K. W.; Adler, P. M., Synchrotron computed microtomography of porous-media-topology and transports. Physical Review Letters 1994,73 (14),2001-2004.
    65. Baldwin, C. A.; Sederman, A. J.; Mantle, M. D.; Alexander, P.; Gladden, L. F., Determination and characterization of the structure of a pore space from 3D volume images. Journal of Colloid and Interface Science 1996,181 (1),79-92.
    66. Auriault, J. L.; Strzelecki, T., On the electro-osmotic flow in a saturated porous medium. International Journal of Engineering Science 1981,19,915-928.
    67. Auriault, J. L.; Lewandowska, J., On the cross-effects of coupled macroscopic transport equations in porous media. Transport in Porous Media 1994,16,31-52.
    68. Moyne, C.; Murad, M., Macroscopic behavior of swelling porous media derived from micromechanical analysis. Transport in Porous Media 2003,50,127-151.
    69. Looker, J. R.; Carnie, S. L., Homogenization of the ionic transport equations in periodic porous media. Transport in Porous Media 2006,65,107-131.
    70. Edwards, D. A., Charge transport through a spatially periodic porous medium: electrokinetic and convection dispersion phenomena. Philosophical Transactions of the Royal Society of London A; 1995,353,205-242.
    71. Revil, A.; Leroy, P., Constitutive equations for ionic transport in porous shales. Journal of Geophysics Research 2004,109(B3), B03208.
    72. Nose, S., A molecular-dynamics method for simulations in the canonical ensemble. Molecular Physics 1984,52(2),255-268.
    73. Kresse, G.; Hafner, J., AB-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Physics Review B 1994,49(20),14251-14269.
    74. Asaro, R. J., Micromechanics of crystals and polycrystals. Advances in Applied Mechanics 1983,23,1-115.
    75. Budiansky, B., Micromechanics. Computers & Structures 1983,16(1-4),3-12.
    76. Christensen, R. M., A critical-evaluation for a class of micromechanical models. Journal of the Mechanics and physics of solids 1990,38(3),379-404.
    77. Nayfeh, A. H., Perturbation Methods; John Wiley & Sons:New York,2007.
    78. Beliaev, A. Y.; Kozlov, S. M., Darcy equation for random porous media. Communications on Pure and Applied Mathematics 1996,49,1-34.
    79. Espedal, M. S.; Fasano, A.; Mikelic, A., Filtration in porous media and industrial application. In:Lecture Notes in Mathematics; Springer-Verlag:Berlin,2000.
    80. Zienkiewicz O. C.; Taylor, R. L., The Finite Element Method-The Basis; Butterworth-Heinemann:New York,2000.
    81. Zienkiewicz O. C.; Taylor, R. L., The Finite Element Method-Solid Mechanics; Butterworth-Heinemann:New York,2000.
    82. Zienkiewicz O. C.; Taylor, R. L., The Finite Element Method-Fluid Dynamics; Butterworth-Heinemann:New York,2000.
    83. Doyen, P. M., Permeability, conductivity, and pore geometry of sandstone. Journal of Geophysical Research-Solid Earth and Planets 1988,93(B7),7729-7740.
    84. Moldrup, P.; Olesen, T.; Komatsu, T.; Schjonning, P.; Rolston, D. E., Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Science Society of America Journal 2001,65 (3),613-623.
    85. Sasloglou, S. A.; Petrou, J. K.; Kanellopoulos, N. K.; Androutsopoulos, G. P., Realistic random sphere pack model for the prediction of relative permeability curves. Microporous and Mesoporous Materials 2001,47 (1),97-103.
    86. Alam, P.; Byholm, T.; Kniivila, J.; Sinervo, L.; Toivakka, M., Calculating the permeability of model paper coating structures comprising incongruent particle shapes and sizes. Microporous and Mesoporous Materials 2009,117 (3),685-688.
    87. Sahimi, M., Flow phenomena in rocks-from continuum models to fractals, percolation, cellular-automata, and simulated annealing. Reviews of Modern Physics 1993,65 (4),1393-1534.
    88. Butt, S. D.; Frempong, P. K.; Mukherjee, C.; Upshall, J., Characterization of the permeability and acoustic properties of an outburst-prone sandstone. Journal of Applied Geophysics 2006,58 (1),1-12.
    89. Fellah, Z. E. A.; Fellah, M.; Mitri, F. G.; Sebaa, N.; Depollier, C.; Lauriks, W., Measuring permeability of porous materials at low frequency range via acoustic transmitted waves. Review of Scientific Instruments 2007,78 (11).
    90. Lin, L.; Peterson, M. L.; Greenberg, A. R.; McCool, B. A., In situ measurement of permeability. Journal of the Acoustical Society of America 2009,125 (4), EL123-EL128.
    91. Carman, P. C., Fluid flow through granular beds. Transactions of the Institute of Chemical Engineers 1937,15,150-166.
    92. Scheidegger, A. E., Statistical hydrodynamics in porous media. Journal of Applied Physics 1954,25 (8),994-1001.
    93. Quiblier, J. A., A new 3-dimensional modeling technique for studying porous-media. Journal of Colloid and Interface Science 1984,98 (1),84-102.
    94. Adler, P. M.; Jacquin, C. G.; Quiblier, J. A., Flow in simulated porous-media. International Journal of Multiphase Flow 1990,16 (4),691-712.
    95. Kainourgiakis, M. E.; Kikkinides, E. S.; Stubos, A. K.; Kanellopoulos, N. K., Simulation of self-diffusion of point-like and finite-size tracers in stochastically reconstructed Vycor porous glasses. Journal of Chemical Physics 1999,111 (6), 2735-2743.
    96. Politis, M. G.; Kikkinides, E. S.; Kainourgiakis, M. E.; Stubos, A. K., A hybrid process-based and stochastic reconstruction method of porous media. Microporous and Mesoporous Materials 2008,110(1),92-99.
    97. Kainourgiakis, M. E.; Kikkinides, E. S.; Steriotis, T. A.; Stubos, A. K.; Tzevelekos. K. P.; Kanellopoulos, N. K., Structural and transport properties of alumina porous membranes from process-based and statistical reconstruction techniques. Journal of Colloid and Interface Science 2000,231 (1),158-167.
    98. Capek, P.; Hejtmanek, V.; Brabec, L.; Zikanova, A.; Kocirik, M., Stochastic Reconstruction of Particulate Media Using Simulated Annealing:Improving Pore Connectivity. Transport in Porous Media 2009,76 (2),179-198.
    99. Bruschke, M. V.; Advani, S. G., Flow of generalized Newtonian fluids across a periodic array of cylinders. Journal ofRheology 1993,37,479-498.
    100. Happel, J., Viscous flow relative to arrays of cylinders. American Institute of Chemical Engineering Journal 1959,5,174-177.
    101. Kuwabara, S., The forces experienced by randomly distributed parallel circular cylinders or sphes in a viscous flow at small Reynolds numbers. Journal of the Physical Society of Japan 1959,14.527-532.
    102. Keller, J. B., Viscous flow through a grating or lattice of cylinders. The Journal of Fluid Mechanics 1964,18,94-96.
    103. ASTM D5084, In:ASTM Annual Book of Standards;American Society for Testing and Materials:Philadelphia, Pa,2002.
    104. ASTM D5856, In:ASTM Annual Book of Standards;American Society for Testing and Materials:Philadelphia, Pa,2002.
    105. Taylor, D. W., Fundamentals of Soil Mechanics; John Wiley & Sons:New York, 1948.
    106. Mesri, G.; Olson, R. E., Mechanisms controlling the permeability of clays. Clays and Clay Minerals 1971,19(3),151-158.
    107. Altabbaa, A.; Wood, D. M., Some measurements of the permeability of kaolin. Geotechnique 1987,37 (4),499-503.
    108. Tavenas, F.; Leblond, P.; Jean, P.; Leroueil, S., The permeability of natural soft clays.1. methods of laboratory measurement. Canadian Geotechnical Journal 1983,20(4),629-644.
    109. Tavenas, F.; Jean, P.; Leblond, P.; Leroueil, S., The permeability of natural soft clays.2. permeability characteristics. Canadian Geotechnical Journal 1983,20 (4),645-660.
    110. Terzaghi, C. Theoretical Soil Mechanics;John Wiley & Sons:New York,1943.
    111. Carman, P. C., Permeability of saturated sands, soils and clays. Journal of Agricultural Science 1939,29,262-273.
    112. Mattson, S., The laws of soil colloidal behavior:VIII. forms and functions of water. Soil Science 1932,33 (4),301-323.
    113. Witt, K.-J.; Brauns, J., Permeability-anisotropy due to particle shape. Journal of Geotechnical Engineering 1983,109(9),1181-1187.
    114. Currie, J. A., Gaseous diffusion in porous media. Part 2.-Dry granular materials. British Journal of Applied Physics 1960,11 (8),318-324.
    115. Montes, J. M.; Cuevas, F. G.; Cintas, J., Electrical and thermal tortuosity in powder compacts. Granular Matter 2007,9(6),401-406.
    116. Michaels, A. S.; Lin, C. S., Permeability of kaolinite. Industrial & Engineering Chemistry 1954,46(6),1239-1246.
    117. Rosenqvist, I. T., The influence of physico-chemical factors upon the mechanical properties of clays. Clays and Clay Minerals 1960,9(1),12-27.
    118. Olsen, H. W., Hydraulic flow through saturated clays. Clays and Clay Minerals 1960,9(1),131-161.
    119. Mckelvey, J. G.; Milne, I. H., The flow of salt solutions through compacted clay. Clays and Clay Minerals 1960,9(1),248-259.
    120. Arulanandan, K., Hydraulic and electrical flows in clays. Clays and Clay Minerals 1969,17(2),63-76.
    121. Sharma, M. M.; Lei, Z. M., A model for clay filter cake properties. Colloids and Surfaces 1991,56,357-381.
    122. Van Olphen, H., An Introduction to Clay Colloid Chemistry:For Clay Technologists, Geologists, and Soil Scientists; Wiley:New York,1977.
    123. Nemecz, E., Clay Minerals; Budapest:Akadimiai Kiado,1981.
    124. Newan, A. C. D., Chemistry of Clays and Clay Minerals;Wiley:London,1987.\
    125. Velde, B., Clay Minerals:A Physico-chemical Explanation of Their Occurrence; Elsevier:Amsterdam,1985.
    126. Lyklema, J., Fundamentals of Colloid and Interface Science; Academic Press: London,1993.
    127. Hunter, R., Introduction to Modern Colloid Science; Oxford University Press: Oxford,1994.
    128. Hunter, R., Zeta Potential in Colloid Science:Principles and Applications; Academic Press:New York,1981.
    129. Ren, L.; Li, D.; Qu, M., Electro-viscous effects on liquid flow in microchannels. Journal of Colloid and Interface Science 2001,233,12-22.
    130. Landau, L.; Lifshitz, E., Electrodynamics of Continuous Media; Pergamon Press: Oxford,1960.
    131. Samson, E.; Marchand, J.; Robert, J.; Bournazel, J., Modeling ion diffusion mechanisms in porous media. International Journal for Numerical Methods in Engineering 1999,46,2043-2060.
    132. Eringen, A.; Maugin, G., Electrodynamics of Continua; Springer-Verlag:New York,1989.
    133. de Groot, S. R.; Mazur, P., Non-Equilibrium Thermodynamics; North-Holland: Amsterdam,1969.
    134. Sasidhar, V.; Ruckenstein, E., Electrolyte osmosis through capillaries. Journal of Colloid and Interface Science 1981,82(2),439-457.
    135. Sasidhar, V.; Ruckenstein, E., Anomalous effects during electrolyte osmosis across charged porous membranes. Journal of Colloid and Interface Science 1982,85(2),332-361.
    136. Bike, S.; Prieve, C., Electrohydrodynamics of thin double layers:Amodel for the streaming potential profile. Journal of Colloid and Interface Science 1992, 154(1),87-96.
    137. Callen, H., Thermodynamics and An Introduction to Thermostatics; Wiley:New York,1985.
    138. Donnan, F., The theory of membrane equilibria. Chemical Reviews 1924,1, 73-90.
    139. Jackson, J. D., Classical Electrodynamics; John-Wiley & Sons:New York,2001.
    140. Gouy G., Sur la constitution de la charge electrique a la surface d'un electrolyte. Anniue Physique 1910,9,457-468.
    141. Chapman D. L., A contribution to the theory of electrocapillarity. Philosophical Magazine 1913,25(6),475-481.
    142. Sherwood, J. D., The primary electroviscous effect in a suspension of spheres. The Journal of Fluid Mechanics 1980,101(3),609-629.
    143. Prigogine, I., Thermodynamics of Irreversible Processes; Wiley:New York, 1967.
    144. Yang, C.; Li, D.-Q., Analysis of electrokinetic effects on the liquid flow in rectangular microchannels. Colloid and Surfaces A:Physicochemical and Engineering Aspects 1998,143,339-353.
    145. Quigley, R. M., Composition and Engineering Properties of Some Vermiculitic Products of Weathering, Ph.D. Dissertation; Department of Geology and Geophysics, Massachusetts Institute of Technology:Cambridge, Massachusetts, 1961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700