脐带血干细胞体外培养条件优化与共培养研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造血干细胞(Hematopoietic stem cells,HSCs)已被用于基因治疗、肿瘤净化和造血重建等方面,然而由于HSCs资源匮乏,严重限制了其临床应用。虽然前人对HSCs的体外扩增已经做了大量的实验研究,但由于培养条件对HSCs体外扩增的影响非常复杂,在不同的培养条件下,扩增效果差别很大,至今尚未有HSCs体外扩增条件优化方面的报道。因此,如果能够找到一种适宜的数学方法来建立HSCs体外培养条件与扩增效果之间的定量关系,对于优化HSCs体外培养条件以及解决临床应用上所面临的HSCs数量不足的难题无疑具有重大意义。
     本文首先采用神经网络技术对HSCs的体外扩增能力建立了评价及预测模型。从文献上总结前人的实验结果,共获得341组数据。选取细胞接种密度、细胞因子组合、细胞来源、血清、基质细胞、反应器类型和培养时间等7个影响因子作为网络输入特征参数,分别对有核细胞(Nuclear cells,NCs)、CD34~+细胞和成集落细胞(Colony-formingunits,CFU-Cs)进行体外扩增能力的评价及预测。选取124、90及86组实验数据分别用于NCs、CFU-Cs和CD34~+细胞为评价指标的神经网络训练;而17、10及14组实验数据分别用于NCs、CFU-Cs和CD34~+细胞为评价指标的神经网络预测。结果表明,对NCs、CFU-Cs和CD34~+细胞的区间训练准确率分别为85.5%、86.1%和86.7%;区间预测准确率分别为82.4%、71.4%和70.0%。由此可知,人工神经网络的非线性模拟使定量描述HSCs体外扩增效果与培养条件间的关系及预测HSCs的最佳体外扩增条件成为可能。
     除了对文献上已有的实验数据进行评价与预测外,本文还应用所建立的神经网络模型对文献报道之外的培养条件进行优化并对其扩增结果进行了预测。将影响HSCs体外扩增的7个主要影响因素的取值进行定义并对各取值进行组合,共得到18480组培养条件。这其中只有少部分培养条件的实验结果得到实验数据的验证,但绝大部分培养条件的预测结果尚未验证。为了安全可靠地使用神经网络模型所预测的优化培养条件,必须对神经网络的外推预测能力进行实验验证。
     因此,本研究从18480组培养条件中共筛选出6组具有代表性的培养条件进行了验证实验。由于其中多组实验都需要采用海藻酸钙-壳聚糖(Alginate chitosan,AC)胶珠包埋基质细胞再与HSCs共培养,为此,首先通过正交实验筛选,确定了AC胶珠的最佳制备工艺为:海藻酸钠的浓度为1%(w/v)、氯化钙的浓度为3%(w/v)、壳聚糖的浓度为1%(w/v)、第一步和第二步反应时间均为8分钟。在确定了AC胶珠最佳制备工艺的基础上,进一步通过正交实验的方法确定了AC胶珠包埋兔骨髓间充质干细胞(Mesenchymal stem cells,MSCs)支持脐带血(Umbilical cord blood,UCB)HSCs扩增的最佳条件为:兔骨髓MSCs在海藻酸钠内的接种密度为2×10~5cells·mL~(-1),高低粘度壳聚糖的混合质量比为3:1及单核细胞(Mononuclear cells,MNCs)与兔骨髓MSCs的接种比例为5:1。该结果为验证实验及后续的反应器内共培养UCB-HSCs和UCB-MSCs两种干细胞确定了AC胶珠包埋基质细胞的最佳条件。
     6组验证实验结果显示,对于CD34~+细胞、NCs及CFU-Cs和的体外扩增,分别有4、5及6组验证实验结果与预测结果相吻合,准确率分别为67.7%、83.3%及100%。该结果充分证明了本论文所建立的神经网络模型在HSCs体外扩增的模拟分析与预测上的可靠性与适用性。
     脐带血中所含的另一种干细胞UCB-MSCs,不仅可以作为滋养层细胞支持HSCs在体外的大规模扩增,在造血移植过程中还能够降低并发症的发生率以及加速造血重建功能的恢复。但是目前UCB-MSCs的原代优化培养成功率(Probability)一般只有50%~60%,为了进一步提高培养成功率,本文利用正交实验方法对UCB-MSCs体外培养的主要影响因素:细胞的接种密度、细胞因子的组合及用量、是否添加血清和滋养层细胞,进行正交实验筛选:并对培养出的UCB-MSCs进行了细胞免疫表型分析和多向诱导分化检测,以期获得UCB-MSCs培养的最佳方法。实验结果表明,MSCs在以高细胞密度接种的基础上添加15ng·mL~(-1)IL-3和5ng·mL~(-1)GM-CSF,可大大提高UCB-MSCs的原代培养成功率,从50%~60%提高到90%以上。细胞免疫表型分析结果显示,所分离培养的细胞表达间质细胞的相关表面标志CD13、CD29、CD44及CD105,不表达造血细胞的相关表面标志CD34、CD45及HLA-DR;并能够向骨、软骨及脂肪细胞分化,这与骨髓来源的MSCs相一致。利用本文所建立的培养方法,能够为UCB-MSCs的临床应用提供大量优质的种子细胞。
     最后,对脐带血中所含有的HSCs和MSCs两种干细胞进行共培养研究,无疑具有重要的临床应用价值。本文在不添加血清、只添加细胞因子组合(SCF 15 ng·mL~(-1),FL 5ng·mL~(-1),TPO 6 ng·mL~(-1),IL-3 15 ng·mL~(-1),G-CSF 1 ng·mL~(-1),GM-CSF 5 ng·mL~(-1))及AC胶珠包被基质细胞支持的条件下,采用微载体与生物反应器相结合的策略,考察了UCB-HSCs与UCB-MSCs在转瓶及旋转壁式生物反应器(Rotating wall vessel bioreactor,RWVB)内的共培养。结果表明,在RWVB中的扩增效果最佳,12天内NCs扩增了3.7±0.3倍;CFU-Cs扩增了5.1±1.2倍;CD34~+CD45~+CD105~-(HSCs)细胞扩增了5.2±0.4倍;CD34~-CD45~-CD105~+(MSCs)细胞扩增了13.9±1.2倍。培养结束后,通过自由沉降的方法分离UCB-HSCs和粘附在玻璃包被的苯乙烯聚合物(Glass coated styrenecopolymer,GCSC)微载体表面的UCB-MSCs。同时,细胞多向诱导分化及免疫表型分析结果显示,粘附在GCSC微载体表面上的细胞能够向骨、软骨及脂肪细胞分化;并能够表达间质细胞相关表面标志CD13,CD44,CD73和CD105,而不表达造血细胞的相关表面标志CD34,CD45及HLA-DR,与骨髓MSCs相一致。该结果说明,采用RWVB并在添加细胞因子、基质细胞及微载体支持的条件下,能够实现UCB-HSCs和UCB-MSCs的联合共培养。
Hematopoietic stem cells (HSCs) have been used for gene therapy, tumor depollution and hematopoiesis reconstitution. But the shortage of HSCs greatly limits their widespread clinical applications. Though a great deal of research work about ex-vivo expansion of HSCs has been done, expansion results varied in a considerably wide range under different culture conditions because of the complicated relationship between them. Till now, there is no report about optimization for HSCs ex-vivo expansion. Hence, it is important to build up the quantitative relationship between culture conditions and expansion results for HSCs through a suitable mathematic method for optimizing the HSCs ex-vivo expansion culture conditions and solving shortage of HSCs in clinical applications undoubtedly.
     An evaluating and predictive model for the ex-vivo expansion of HSCs was firstly built up in this study with artifical neural network (ANN) technology. 341 groups of data were summarized from literatures, in which 124, 86 and 90 data were employed to train the network and 17, 14 and 10 data were applied to predict respectively. Expansion folds of nuclear cells (NCs), CD34~+ cells and Colony-forming units (CFU-Cs) were chosen as evaluation objectives and inoculated density, cytokines, cell resources, serum, stromal cells, culture time and bioreactor types were chosen as network inputs. The calculated results show that for the training of network, the interval accuracy of the expansion folds for the different cells is 85.5%, 86.1% and 86.7% respectively. While for the prediction of network, the interval accuracy can be up to 82.4%, 71.4% and 70.0% respectively. Therefore this nonlinear modeling makes it possible to describe quantitatively the effects of the culture conditions on the HSCs expansion and to predict the optimal culture conditions for higher ex-vivo expansion of HSCs.
     Besides the evaluation and prediction for the existing literature data, more optimizations for culture condition and predictions for the HSC expansion were carried out with the founded ANN model. The quantification of all the 7 factors influencing the ex-vivo expansion of HSCs was defined and the case combination of the values taken by these influencing factors could result in 18480 groups of possible culture conditions. Only quite few predictive results of these conditions have been verified with experiments, most of them were still not. In order to use the optimized culture conditions with ANN model safely and reliably, the extrapolated predictive reliability of the network need to be confirmed with more verification experiments.
     Therefore, 6 groups of representative culture conditions were selected as verification experiments from all these 18480 cases. Since alginate chitosan (AC) beads would be applied in the encapsulation of stromal cells to coculture HSCs in most verification experiments, the optimized preparation parameters for AC beads were firstly determined by fractional factorial experiments, which were 1% (wt%) alginate, 3% (wt%) CaCl_2, 1% (wt%) chitosan, 8 minutes for both the first and the second step reaction. Based on this, the optimized operation conditions for stromal cells (Rabbit mesenchymal stem cells, Rabbit-MSCs) encapsulated in AC beads to support the ex-vivo expansion of UCB-HSCs were also determined by fractional factorial tests, which were 2×l0~5cells·mL~(-1) inoculate density for Rabbit-MSCs in alginate, 3:1 for the weight ratio of high and low molecular weight of chitosan and 5:1 for cell inoculate density ratio of UCB-MNCs and Rabbit-MSCs. Thus the optimized protocol was determined to encapsulate stromal cells in AC beads for the next verification experiments and subsequent coculture of UCB-HSCs and UCB-MSCs in bioreactors.
     The results of 6 groups of verification experiments showed that there were 4, 5 and 6 experimental results in agreement with the predictive results for the ex-vivo expansion of CD34~+ cells, NCs and CFU-Cs respectively, which meaned that the predictive accuracy of this ANN was 67.7%, 83.3% and 100%. Therefore the ANN model was reliable and suitable.
     UCB-MSC is another type of stem cells in UCB, which can not only support the expansion of HSCs in vitro as stromal cells but also alleviate complications and accelerate recovery of hematopoiesis during hematopoietic stem cell transplantation. However it proved challenging to culture MSCs from UCB with a low probability of 50%~60% even after optimized study. In this work, in order to improve the probability of separating and obtaining UCB-MSCs, three fractional factorial experiments were designed and performed to investigate the main influencing factors for the primary culture, the key cytokines and the dose of the suitable cytokines used. The cultured UCB-MSC-like cells were characterized by immunophenotypic and multi-lineage induced differentiation analysis. The experimental results showed that the probability of culture UCB-MSCs could be improved from 50%~60% to 90% with adding 18ng·ml~(-1) IL-3 and 5ng·ml~(-1) GM-CSF based on high cell inoculated density. Moreover, the UCB-MSC-like cells expressed MSCs-related surface markers of CD13, CD29, CD44 and CD105, but not hematopoietic cells-related surface markers of CD34, CD45 and HLA-DR. Meanwhile, these cells could differentiate into osteoblasts, chondrocytes and adipocytes similarly to MSCs derived from bone marrow. Therefore, it is possible to provide enough UCB-MSCs for clinical application with this opitimized culture method.
     Lastly, the feasibility of coculture autologous UCB-HSCs and UCB-MSCs was investigated because of the great importance of clinical application. Spinner flasks and rotating wall vessel bioreactor (RWVB) together with glass coated styrene copolymer (GCSC) microcarriers were applied in the study. IMDM medium without serum but supported with the combination of cytokines, including SCF 15ng·mL~(-1), FL 5ng·mL~(-1), TPO 6ng·mL~(-1), IL-3 15ng·mL~(-1), G-CSF 1ng·mL~(-1) and GM-CSF 5ng·mL~(-1), was adopted. And allogeneic adipose derived stem cells encapsulated in AC beads were used for the coculture with UCB-HSCs and UCB-MSCs. Meanwhile diluted-feeding protocol was applied during the culture process. The results indicated that the expansions of total cell number, CFU-Cs, CD34~+CD45~+CD105~-(HSCs) cells and CD34~-CD45~-CD105~+ (MSCs) cells in RWVB were 3.7+0.3-fold, 5.1 + 1.2-fold, 5.2+0.4-fold and 13.9+1.2-fold respectively in RWVB, better than those in spinner flasks. After coculture, UCB-HSCs and UCB-MSCs can be easily separated by gravity sedimentation since UCB-MSCs are adhered on microcarriers. At the same time, the fibroblast-like cells appeared on the surface of GCSC microcarriers can be induced and differentiate into osteoblasts, chondrocytes and adipocytes and expressed MSCs-related surface markers of CD13, CD44, CD73 and CD105, while not hematpopietic cells-related surface markers of CD34, CD45 and HLA-DR, which is similarly to MSCs derived from bone marrow. In conclusion we have developed a feasible culture system to cocultivate UCB-HSCs and UCB-MSCs by adding cytokines and stromal cells together with GCSC microcarriers in RWVB.
引文
[1] Mukhopadhyay A, Madhusudhan T, Kumar R. Hematopoietic stem cells: clinical requirements and developments in ex-vivo culture. Advances in Biochemical Engineering/Biotechnology, 2004, 86:215-253.
    
    [2] Amos T A S, Gordon M Y. Sources of Human Hematopoietic Stem-Cells for Transplantation - A Review. Cell Transplantation, 1995, 4(6):547-569.
    [3] Deans R J, Moseley A B. Mesenchymal stem cells: Biology and potential clinical uses. Experimental Hematology, 2000, 28(8):875-884.
    [4] Jang Y K, Jung D H, Jung M H et al. Mesenchymal stem cells feeder layer from human umbilical cord blood for ex vivo expanded growth and proliferation of hematopoietic progenitor cells. Annals of Hematology, 2006, 85(4):212-225.
    [5] Le Blanc K, Ringden O. Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Current Opinion in Immunology, 2006, 18(5):586-591.
    [6] Majumdar M K, Thiede M A, Haynesworth S E et al. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. Journal of Hematotherapy & Stem Cell Research, 2000, 9(6):841-848.
    [7] Cabrita G J M, Ferreira B S, da Silva C L et al. Hematopoietic stem cells: from the bone to the bioreactor. Trends in Biotechnology, 2003, 21(5):233-240.
    [8] Bellantuono I. Haemopoietic stem cells. The International Journal of Biochemstry & Cell Biology, 2004, 36 (4):607-620.
    [9] Masson S, Harrison D J, Plevris J N et al. Potential of hematopoietic stem cell therapy in hepatology: a critical review. Stem Cells, 2004, 22(6):897-907.
    [10] Gilmore G L, DePasquale D K, Lister J et al. Ex vivo expansion of human umbilical cord blood and peripheral blood CD34(+) hematopoietic stem cells. Experimental Hematology, 2000, 28(11):1297-1305.
    
    [11] Madlambayan G J, Rogers I, Kirouac D C et al. Dynamic changes in cellular and microenvironmental composition can be controlled to elicit in vitro human hematopoietic stem cell expansion. Experimental Hematology, 2005, 33(10): 1229-1239.
    
    [12] Yamaguchi M, Hirayama F, Kanai M et al. Serum-free coculture system for ex vivo expansion of human cord blood primitive progenitors and SCID mouse-reconstituting cells using human bone marrow primary stromal cells. Experimental Hematology, 2001, 29(2): 174-182.
    
    
    
    [13] Collins P C, Miller W M, Papoutsakis E T. Stirred culture of peripheral and cord blood heraatopoietic cells offers advantages over traditional static systems for clinically relevant applications. Biotechnology and Bioengineering, 1998, 59(5):534-543.
    
    [14] Roller M R, Emerson S G, Palsson B O. Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood, 1993, 82(2):378-384.
    
    [15] 丛爽著.神经网络、模糊系统及其在运动控制中的应用.合肥:中国科学技术大学出版社, 2001.
    
    [16] 多巴.神经网络及其在化学中的应用.合肥:中国科技大学出版社,2000.
    
    [17] 谭章禄.人工神经网络在矿业工程中的应用.北京:煤炭工业出版社,1998.
    
    [18] 吴义虎.汽车发动机技术中的神经网络方法.北京:人民交通出版社,2000.
    
    [19] Abhijit S Pandaya.神经网络模式识别及其实现.北京:电子工业出版社,1999.
    
    [20] 杨铭震.人工神经网络及其在石油勘探中的应用.北京:兵器工业出版社,1993.
    
    [21] 杨振宁.光学信号处理计算和神经网络.北京:新时代出版社,1997.
    
    [22] Esnoz A, Periago P M, Conesa R et al. Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus. International Journal of Food Microbiology, 2006, 106(2):153-158.
    
    [23] Geeraerd A H, Herremans C H, Cenens C et al. Application of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products. International Journal of Food Microbiology, 1998, 44(1-2):49-68.
    
    [24] 陈明.神经网络模型.大连:大连理工大学出版社,1995.
    
    [25] 朱大奇.人工神经网络研究现状及其展望.江南大学学报,2004,3:103-111.
    
    [26] 施阳,李俊.matlab语言工具箱.西安:西北工业大学出版社,1999.
    
    [27] 陈永锋,祝彼得.造血干细胞的研究进展.四川解剖学杂志,2005,13(3):26-30.
    
    [28] Nielsen L K. Bioreactors for hematopoietic cell culture. Annual Review of BiomedicalEngineering, 1999, 1:129-152.
    
    [29] Majka M, Janowska-Wieczorek A, Ratajczak J et al. Numerous growth factors, cytokines,and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, andmegakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner.Blood, 2001, 97(10):3075-3085.
    
    [30] Su Ruijun. Ex vivo expansion of hematopoietic stem and progenitor cells from umbilicalcord blood: cytokine combinations, platelet-derived growth factor and stromal cellsupport. [Dissertation].Hongkong: The Chinese University of Hong Kong, 2002.
    
    [31] Morita S, Tsuchiya S, Fujie H et al. Cell surface c-kit receptors in human leukemiacell lines and pediatric leukemia: selective preservation of c-kit expression on megakaryoblastic cell lines during adaptation to in vitro culture. Leukemia, 1996, 10(1):102-105.
    [32] Flanagan J G, Leder P. The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. Cell, 1990, 63(1):185-194.
    [33] Williams S F, Lee W J, Bender J G et al. Selection and expansion of peripheral blood CD34(+) cells in autologous stem cell transplantation for breast cancer. Blood, 1996, 87(5): 1687-1691.
    [34] Lyman S D, Jacobsen S E W. c-kit ligand and flt3 ligand: Stem/progenitor cell factors with overlapping yet distinct activities. Blood, 1998, 91(4):1101-1134.
    [35] Piacibello W, Sanavio F, Severino A et al. Engraftment in nonobese diabetic severe combined immunodef icient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood, 1999, 93(11):3736-3749.
    [36] Ballen K, Becker P S, Greiner D et al. Effect of ex vivo cytokine treatment on human cord blood engraftment in NOD-scid mice. British Journal of Haematology, 2000, 108(3): 629-640.
    [37] Roth P, Stanley E R. The biology of CSF-1 and its receptor. Current Topics in Microbiology and Immunology Journals, 1992, 181:141-167.
    [38] Ohishi K, Katayama N, Itoh R et al. Accelerated cell-cycling of hematopoietic progenitors by the flt3 ligand that is modulated by transforming growth factor-beta. Blood, 1996, 87(5):1718-1727.
    [39] Drouet M, Mathieu J, Grenier N et al. The reduction of in vitro radiation-induced Fas-related apoptosis in CD34+ progenitor cells by SCF, FLT-3 ligand, TPO, and IL-3 in combination resulted in CD34+ cell proliferation and differentiation. Stem Cells, 1999, 17(5):273-285.
    [40] Kaushansky K. The Mpl Ligand - Molecular and Cellular Biology of the Critical Regulator of Megakaryocyte Development. Stem Cells, 1994, 12:91-97.
    [41] Barnett M J, Eaves C J, Phillips G L et al. Autografting with cultured marrow in chronic myeloid leukemia: results of a pilot study. Blood, 1994, 84(3):724-732.
    [42] Ku H, Yonemura Y, Kaushansky K et al. Thrombopoietin, the ligand for the Mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopoietic progenitors of mice. Blood, 1996, 87(11):4544-4551.
    [43] Kaushansky K. Thrombopoietin: More than a lineage-specific megakaryocyte growth factor. Stem Cells, 1997, 15:97-102.
    [44] Shih C C, Hu M C, Hu J et al. A secreted and LIF-mediated stromal cell-derived activity that promotes ex vivo expansion of human hematopoietic stem cells. Blood, 2000, 95(6):1957-1966.
    [45] Ramsfjell V, Bryder D, Bjorgvinsdottir H et al. Distinct requirements for optimal growth and in vitro expansion of human CD34(+)CD38(-) bone marrow long-term culture-initiating cells (LTC-IC), extended LTC-IC, and murine in vivo long-term reconstituting stem cells. Blood, 1999, 94(12):4093-4102.
    [46] Borge O J, Ramsfjell V, Cui L et al. Ability of early acting cytokines to directly promote survival and suppress apoptosis of human primitive CD34(+)CD38(-) bone marrow cells with multilineage potential at the single-cell level: Key role of thrombopoietin. Blood, 1997, 90(6):2282-2292.
    [47] Lyman S D, James L, Vanden B T et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell, 1993, 75(6):1157-1167.
    [48] Brasel K, Escobar S, Anderberg R et al. Expression of the Flt3 Receptor and Its Ligand on Hematopoietic-Cells. Leukemia, 1995, 9(7):1212-1218.
    [49] Brasel K, McKenna H J, Morrissey P J et al. Hematologic effects of flt3 ligand in vivo in mice. Blood, 1996, 88(6):2004-2012.
    [50] Broxmeyer H E, Lu L, Cooper S et al. Flt3 Ligand Stimulates Costimulates the Growth of Myeloid Stem Progenitor Cells. Experimental Hematology, 1995, 23(10):1121-1129.
    [51] Su R J, Li K, Yang M et al. Platelet-derived growth factor enhances ex vivo expansion of megakaryocytic progenitors from human cord blood. Bone Marrow Transplantation, 2001, 27(10):1075-1080.
    [52] Li K, Yang M, Lam A C et al. Effects of flt-3 ligand in combination with TPO on the expansion of megakaryocytic progenitors. Cell Transplantation, 2000, 9(1):125-131.
    [53] Mangi M H, Newland A C. Interleukin-3 in hematology and oncology: current state of knowledge and future directions. Cytokines, Cellular & Molecular Therapy, 1999, 5(2): 87-95.
    [54] Conneally E, Cashman J, Petzer A et al. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(18):9836-9841.
    [55] Bhatia M, Bonnet D, Murdoch B et al. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nature Medicine, 1998, 4(9):1038-1045.
    [56] Lieschke G J, Grail D, Hodgson G et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood, 1994, 84(6):1737-1746.
    [57] Fujita T, Yamada T, Hashiguchi A et al. Augmentation of megakaryocytopoiesis within the hematopoietic microenvironment of human granulocyte colony-stimulating factor transgenic mice. Expermental Hematology, 2001, 29(8):1010-1018.
    [58] Li K, Wong A, Li C K et al. Granulocyte colony-stimulating factor-mobilized peripheral blood stem cells in beta-thalassemia patients: kinetics of mobilization and composition of apheresis product. Experimental Hematology, 1999, 27(3):526-532.
    [59] McNiece I, Jones R, Cagnoni P et al. Ex-vivo expansion of hematopoietic progenitor cells: preliminary results in breast cancer. Hematology and Cell Therapy, 1999, 41(2): 82-86.
    [60] Paquette R L, Dergham S T, Karpf E et al. Ex vivo expanded unselected peripheral blood: progenitor cells reduce posttransplantation neutropenia, thrombocytopenia, and anemia in patients with breast cancer. Blood, 2000, 96(7):2385-2390.
    [61] Noll T, Jelinek N, Schmid S et al. Cultivation of hematopoietic stem and progenitor cells: biochemical engineering aspects. Advances in Biochemical Engineering/Biotechnology, 2002, 74:111-128.
    [62] Yao C L, Liu C H, Chu I M et al. Factorial designs combined with the steepest ascent method to optimize serum-free media for ex vivo expansion of human hematopoietic progenitor cells. Enzyme and Microbial Technology, 2003, 33(4):343-352.
    [63] Nishikawa M, Tahara T, Hinohara A et al. Role of the microenvironment of the embryonic aorta-gonad-mesonephros region in hematopoiesis. Annals of the New York Academy of Sciences, 2001, 938:109-116.
    [64] Dorshkind K. Regulation of hemopoiesis by bone marrow stromal cells and their products. Annual Review of Immunology, 1990, 8:111-137.
    [65] Deryugina E I, Muller-Sieburg C E. Stromal cells in long-term cultures: keys to the elucidation of hematopoietic development? Critical Reviews in Immunology, 1993, 13(2): 115-150.
    [66] Dexter T M, Wright E G, Krizsa F et al. Regulation of haemopoietic stem cell proliferation in long term bone marrow cultures. Biomedicines, 1977, 27(9-10):344-349.
    [67] naceur-Griscelli A, Tourino C, Izac B et al. Murine stromal cells counteract the loss of long-term culture-initiating cell potential induced by cytokines in CD34(+)CD38(low/neg) human bone marrow cells. Blood, 1999, 94(2):529-538.
    [68] Cancelas J A, Koevoet W L, de Koning A E et al. Connexin-43 gap junctions are involved in multiconnexin-expressing stromal support of hemopoietic progenitors and stem cells. Blood, 2000, 96(2):498-505.
    [69] Roller M R, Palsson M A, Manchel I et al. Tissue culture surface characteristics influence the expansion of human bone marrow cells. Biomaterials, 1998, 19(21):1963-1972.
    [70] Abboud S L. A bone marrow stromal cell line is a source and target for platelet-derived growth factor. Blood, 1993, 81(10):2547-2553.
    [71] Dormady S P, Bashayan O, Dougherty R et al. Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment. Journal of Hematotherapy and Stem Cell Research, 2001, 10(1):125-140.
    [72] Deans R J, Moseley A B. Mesenchymal stem cells: biology and potential clinical uses. Expermental Hematology, 2000, 28(8):875-884.
    [73] Brunner G, Nguyen H, Gabrilove J et al. Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells. Blood, 1993, 81(3):631-638.
    [74] Edelman G M, Crossin K L. Cell adhesion molecules: implications for a molecular histology. Annual review of biochemistry, 1991, 60:155-190.
    [75] Hynes R O. Specificity of cell adhesion in development: the cadherin superfamily. Current Opinion in Genetics & Development, 1992, 2(4) :621-624.
    [76] Montecino-Rodriguez E, Leathers H, Dorshkind K. Expression of Connexin 43 (Cx43) is critical for normal hematopoiesis. Blood, 2000, 96(3):917-924.
    [77] Cabral J M S. Ex vivo expansion of hematopoietic stem cells in bioreactors. Biotechnology Letters, 2001, 23(10):741-751.
    [78] Meissner P, Schroder B, Herfurth C et al. Development of a fixed bed bioreactor for the expansion of human hematopoietic progenitor cells. Cytotechnology, 1999, 30(1-3):227-234.
    [79] Hammond T G, Hammond J M. Optimized suspension culture: the rotating-wall vessel. American Journal of Physiology-Renal Physiology, 2001, 281(1):F12-F25.
    [80] Rice A M, Wood J A, Milross C G et al. Prolonged ex vivo culture of cord blood CD34(+) cells facilitates myeloid and megakaryocytic engraftment in the non-obese diabetic severe combined immunodeficient mouse model. Brtish Journal of Haematology, 2001, 114(2): 433-443.
    [81] Bhatia M, Bonnet D, Kapp U et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. Journal of Experimental Medicine, 1997, 186(4):619-624.
    [82] McAdams T A, Miller W M, Papoutsakis E T. Hematopoietic cell culture therapies . 2 Cell culture considerations. Trends in Biotechnology, 1996, 14(9):341-349.
    [83] Kim D H, Yoo K H, Yim Y S et al. Cotransplanted bone marrow derived mesenchymal stem cells (MSC) enhanced engraftment of hematopoietic stem cells in a MSC-dose dependent manner in NOD/SCID mice. Journal of Korean Medical Science, 2006, 21(6):1000-1004.
    
    
    
    [84] Le B K, Rasmusson I, Gotherstrom C et al. Mesenchymal stem cells inhibit the expressionof CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activatedlymphocytes. Scandinavian Journal of Immunology, 2004, 60(3):307-315.
    
    [85] Frank M H, Sayegh M H. Immunomodulatory functions of mesenchymal stem cells. Lancet,2004, 363(9419):1411-1412.
    
    [86] Yang S E, Ha C W, Jung M et al. Mesenchymal stem/progenitor cells developed in culturesfrom UC blood. Cytotherapy, 2004, 6(5):476-486.
    
    [87] Both S K, Van der Muijsenberg A J C, Van Blitterswijk C A et al. A rapid and efficientmethod for expansion of human mesenchymal stem cells. Tissue Engineering, 2007,13(1):3-9.
    
    [88] Bieback K, Kern S, Kluter H et al. Critical parameters for the isolation of mesenchymalstem cells from umbilical cord blood. Stem Cells, 2004, 22(4):625-634.
    
    [89] 迟作华,张洹,何冬梅,陆琰.脐血间充质干细胞培养条件的优化.中国实用内科杂志,2006, 26(5):372-376.
    
    [90] Chen H M, Ouyang W, Lawuyi R et al. A new method for microcapsule characterizationUse of fluorogenic genipin to characterize polymeric microcapsule membranes. AppliedBiochemistry and Biotechnology, 2006, 134(3):207-221.
    
    [91] Bellantuono I. Haemopoietic stem cells. The International Journal of Biochemistry &Cell Biology, 2004, 36(4):607-620.
    
    [92] Koc O N, Gerson S. L, Cooper B W et al. Rapid hematopoietic recovery after coinfusionof autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells inadvanced breast cancer patients receiving high-dose chemotherapy. Journal of ClinicalOncology, 2000, 18(2):307-316.
    
    [93] Chen X, Xu H, Wan C et al. Bioreactor expansion of human adult bone marrow-derivedmesenchymal stem cells. Stem Cells, 2006, 24(9):2052-2059.
    
    [94] Su R J, Li K, Zhang X B et al. Platelet-derived growth factor enhances expansion ofumbilical cord blood CD34(+) cells in contact with hematopoietic stroma. Stem Cellsand Development, 2005, 14(2):223-230.
    
    [95] Li N, Feugier P, Serrurrier B et al. Human mesenchymal stem cells improve ex vivoexpansion of adult human CD34(+) peripheral blood progenitor cells and decrease theirallostimulatory capacity. Experimental Hematology, 2007, 35(3):507-515.
    
    [96] Chen X, Xu H, Wan C et al. Bioreactor expansion of human adult bone marrow-derivedmesenchymal stem cells. Stem Cells, 2006, 24(9):2052-2059.
    
    [97] Fan X, Liu T, Li X et al. Neural netwok analysis of ex-vivo expansion of hematopieticstem cells. Annals of Biomedical Engineering, 2007, 35(8):1404-1413.
    
    [98] Fang S, Qiu Y D, Mao L et al. Differentiation of embryoid-body cells derived fromembryonic stem cells into hepatocytes in alginate microbeads in vitro. ActaPharmacologica Sinica, 2007, 28(12):1924-1930.
    
    [99] Jing W, Lin Y F, Wu L et al. Ectopic adipogenesis of preconditioned adipose-derivedstromal cells in an alginate system. Cell and Tissue Research, 2007, 330:567-572.
    
    [100]Ma H L, Hung S C, Lin S Y et al. Chondrogenesis of human mesenchymal stem cellsencapsulated in alginate beads. Journal of Biomedical Materials Research part A, 2003,64(2): 273-281.
    
    [101]Levee MGLGMPSHea. Microencapsulated Human Bone Marrow Cultures: A PotentialCulture System for the Clonal Outgrowth of Hematopoietic Progenitor Cells.Biotechnology and Bioengineering, 1994, 43:734-739.
    
    [102]Bouhadir K H, Lee K Y, Alsberg E et al. Degradation of partially oxidized alginateand its potential application for tissue engineering. Biotechnology Progress, 2001,17(5):945-950.
    
    [103]Chen H M, Ouyang W, Lawuyi B et al. Genipin cross-linked alginate-chitosanmicrocapsules: Membrane characterization and optimization of cross-linking reaction.Biomacromolecules, 2006, 7(7):2091-2098.
    
    [104]Lopez-Perez P M, Da Silva R M P, Pashkuleva I et al. Improved adhesion ofosteoblast-like cells on chitosan membranes surface modified via introduction ofphosphonic groups. Tissue Engineering, 2007, 13(7):1710-1710.
    
    [105]Elcin YM, Dixit V, GitnickG. Hepatocyte attachment on biodegradable modified chitosanmembranes: In vitro evaluation for the development of liver organoids. ArtificialOrgans, 1998, 22(10):837-846.
    
    [106]Bienaime C, Barbotin J N , Nava-Saucedo J E. How to build an adapted and bioactivecell microenvironment? A chemical interaction study of the structure of Ca-alginatematrices and their repercussion on confined cells. Journal of Biomedical MaterialsResearch Part A, 2003, 67A(2):376-388.
    
    [107]姚立松,刘天庆,李香琴,葛丹,崔占峰,马学虎.海藻酸钙胶珠传质模型的研究.高校化学 工程学报,2006,20(3):345-341.
    
    [108]Bellantuono I. Haemopoietic stem cells. International Journal of Biochemistry and CellBiology, 2004, 36(4):607-620.
    
    [109]Geeraerd A H, Herremans C H, Cenens C et al. Application of artificial neural networksas a non-linear modular modeling technique to describe bacterial growth in chilledfood products. International Journal of Food Microbiology, 1998, 44(1-2):49-68.
    
    [110]Yang Z R, Thomson R. Bio-basis function neural network for prediction of proteasecleavage sites in proteins. IEEE Transactions on Neural Network, 2005, 16(1):263-274.
    [111] Monirul I M, Murase K. Chaotic dynamics of a behavior-based miniature mobile robot: effects of environment and control structure. Neural Network, 2005, 18(2):123-144.
    [112]Esnoz A, Periago P M, Conesa R et al. Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus. International Journal of Food Microbiology, 2006, 106 (2):153-158.
    [113]Banu N, Rosenzweig M, Kim H et al. Cytokine-augmented culture of haematopoietic progenitor cells in a novel three-dimensional cell growth matrix. Cytokine, 2001, 13(6): 349-358.
    [114]Dravid G, Rao S G A. Ex vivo expansion of stem cells from umbilical cord blood: Expression of cell adhesion molecules. Stem Cells, 2002, 20(2):183-189.
    [115]DE Angeli S, Del Pup L, Febas E et al. Adrenomedullin and endothelin-1 stimulate in vitro expansion of cord blood hematopoietic stem cells. International Journal of Molecular Medicine, 2004, 14(6):1083-1086.
    [116]Flores-Guzman P, Gutierrez-Rodriguez M, Mayani H. In vitro proliferation, expansion, and differentiation of a CD34(+) cell-enriched hematopoietic cell population from human umbilical cord blood in response to recombinant cytokines. Archives of Medical Research, 2002, 33(2):107-114.
    [117]Feng Q, Chai C, Jiang X S et al. Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface-immobilized fibronectin. Journal of Biomedical Materials Research Part A, 2006, 78A(4):781-791.
    [118]HuLS, Cheng LM, Wang Jet al. Effects of human yolk sac endothelial cells on supporting expansion of hematopoietic stem/progenitor cells from cord blood. Cell Biology International, 2006, 30(11):879-884.
    [119]Jang Y K, Jung D H, Jung M H et al. Mesenchymal stem cells feeder layer from human umbilical cord blood for ex vivo expanded growth and proliferation of hematopoietic progenitor cells. Annals of Hematology, 2006, 85(4):212-225.
    [120]Li N, Eljaafari A, Bensoussan D et al. Human umbilical vein endothelial cells increase ex vivo expansion of human CD34(+) PBPC through IL-6 secretion. Cytotherapy, 2006, 8(4): 335-342.
    [121]Liu Y, Liu T Q, Fan X B et al. Ex vivo expansion of hematopoietic stem cells derived from umbilical cord blood in rotating wall vessel. Journal of Biotechnology, 2006, 124(3): 592-601.
    [122]Nakamura Y, Ando K, Chargui J et al. Ex vivo generation of CD34(+) cells from CD34(-) hematopoietic cells. Blood, 1999, 94(12):4053-4059.
    [123]Plett PA, AbonourR, Frankovitz S M et al. Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells. Experimental Hematology, 2004, 32(8):773-781.
    [124]Plett R A, Frankovitz S M, Abonour R et al. Proliferation of human hematopoietic bone marrow cells in simulated microgravity. In Vitro Cellular & Developmental Biology-Animal, 2001, 37(2):73-78.
    [125]Rosler E, Brandt J, Chute J et al. Cocultivation of umbilical cord blood cells with endothelial cells leads to extensive amplification of competent CD34(+)CD38(-) cells. Experimental Hematology, 2000, 28(7):841-852.
    [126]Xie C G, Jia B B, Xiang Y et al. Support of hMSCs transduced with TPO/FL genes to expansion of umbilical cord CD34(+) cells in indirect co-culture. Cell and Tissue Research, 2006, 326(1):101-110.
    [127]Xie C G, Wang J F, Xiang Y et al. Marrow mesenchymal stem cells transduced with TPO/FL genes as support for ex vivo expansion of hematopoietic stem/progenitor cells. Cellular and Molecular Life Sciences, 2005, 62(21):2495-2507.
    [128]Zandstra P W, Conneally E, Petzer A L et al. Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9):4698-4703.
    [129]Da Silva C L, Goncalves R, Crapnell K B et al. A human stromal-based serum-free culture system supports the ex vivo expansion/maintenance of bone marrow and cord blood hematopoietic stem/progenitor cells. Experimental Hematology, 2005, 33(7):828-835.
    [130]Astori G, Larghero J, Bonfini T et al. Ex vivo expansion of umbilical cord blood CD34(+) cells in a closed system: a multicentric study. Vox Sanguinis, 2006, 90(3):183-190.
    [131]Martinez-Jaramillo G, Flores-Guzman P, Montesinos J J et al. In vitro proliferation and expansion of hematopoietic progenitors present in mobilized peripheral blood from normal subjects and cancer patients. Stem Cells and Development, 2004, 13 (4):382-389.
    
    [132]Mobest D, Mertelsmann R, Henschler R. Serum-free ex vivo expansion of CD34(+) hematopoietic progenitor cells. Biotechnology and Bioengineering, 1998, 60(3): 341-347.
    [133]Yao C L, Chu I M, Hsieh T B et al. A systematic strategy to optimize ex vivo expansion medium for human hematopoietic stem cells derived from umbilical cord blood mononuclear cells. Experimental Hematology, 2004, 32(8):720-727.
    [134]Yildirim S, Boehmler A M, Kanz L et al. Expansion of cord blood CD34+hematopoietic progenitor cells in coculture with autologous umbilical vein endothelial cells (HUVEC) is superior to cytokine-supplemented liquid culture. Bone Marrow Transplantation, 2005, 36(1):71-79.
    [135]Collins P C, Nielsen L K, Patel S D et al. Characterization of hematopoietic cell expansion, oxygen uptake, and glycolysis in a controlled, stirred-tank bioreactor system. Biotechnology Progress, 1998, 14(3):466-472.
    [136]Kawada H, Ando K, Tsuji T et al. Rapid ex vivo expansion of human umbilical cord hematopoietic progenitors using a novel culture system. Experimental Hematology, 1999, 27(5): 904-915.
    [137]Kawano Y, Kobune M, Yamaguchi M et al. Ex vivo expansion of human umbilical cord hematopoietic progenitor cells using a coculture system with human telomerase catalytic subunit (hTERT)-transfected human stromal cells. Blood, 2003, 101(2): 532-540.
    [138]Sandstrom C E, Bender J G, Miller W M et al. Development of novel perfusion chamber to retain nonadherent cells and its use for comparison of human "mobilized" peripheral blood mononuclear cell cultures with and without irradiated bone marrow stroma. Biotechnology and Bioengineering, 1996, 50(5):493-504.
    [139]Sardonini C A, Wu Y J. Expansion and differentiation of human hematopoietic cells from static cultures through small-scale bioreactors. Biotechnology Progress, 1993, 9(2): 131-137.
    [140]Goncalves R, da Silva C L, Cabral J M S et al. A Stro-1(+) human universal stromal feeder layer to expand/maintain human bone marrow hematopoietic stem/progenitor cells in a serum-free culture system. Experimental Hematology, 2006, 34(10):1353-1359.
    [141]Jong-Chen C, Guo-Xun L. Data differentiation and parameter analysis on the weight changes of premature babies with an artificial neuromolecular system. Expert Systems With Applications, 2008, 2896-2904.
    [142]Polat K, Latifoglu F, Kara S et al. Usage of a novel, similarity-based weighting method to diagnose atherosclerosis from carotid artery Doppler signals. Medical & Biological Engineering & Computing, 2008, 46(4):353-362.
    [143]Ercelebi E, Subasi A. Classification of EEG for epilepsy diagnosis in wavelet domain using artifical neural network and multi linear regression. 2006 IEEE 14th Signal Processing and Communications Applications, 2006.
    [144]Marcos J V, Hornero R, Alvarez D et al. Radial basis function classifiers to help in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry. Medical & Biological Engineering & Computing, 2008, 46(4):323-332.
    [145]Brasel K, McKenna H J, Charrier K et al. Flt3 ligand synergizes with granulocyte-macrophage colony-stimulating factor or granulocyte colony-stimulating factor to mobilize hematopoietic progenitor cells into the peripheral blood of mice. Blood, 1997, 90(9):3781-3788.
    
    
    
    
    [146]Ramsfjell V, Borge O J, Veiby O P et al. Thrombopoietin, but not erythropoietin,directly stimulates multilineage growth of primitive murine bone marrow progenitorcells in synergy with early acting cytokines: Distinct interactions with the ligandsfor c-kit and FLT3. Blood, 1996, 88(12):4481-4492.
    
    [147]Ikebuchi K, Wong G G, Clark S C et al. Interleukin 6 enhancement of interleukin3-dependent proliferation of multipotential hemopoietic progenitors. Proceedings ofthe National Academy of Sciences, 1987, 84(24):9035-9039.
    
    [148]Peters S O, Vergilis K L, Habibian H K et al. Culture of murine hematopoietic progenitorcells cultured with IL-3, IL-6, IL-11 and SCF for 48 hours leads to expansion of shortterm repopulating cells but impairs long term engraftment. Blood, 1996,88(10):2367-2367.
    
    [149]Ikebuchi K, Clark S C, Ihle J N et al. Granulocyte colony-stimulating factor enhancesinterleukin 3-dependent proliferation of multipotential hemopoietic progenitors.Proceedings of the National Academy of Sciences, 1988, 85(10):3445-3449.
    
    [150]刘洋.旋转壁式生物反应器中造血干/祖细胞体外扩增的研究(博士学位论文).大连:大连 理工大学,2007.
    
    [151]He Q L, Wan C, Li G. Concise review: Multipotent mesenchymal stromal cells in blood. Stem Cells, 2007, 25(1) :69-77.
    
    [152]马小军;何洋;雄鹰;刘群;刘袖洞;付颖丽;薛毅珑.组织细胞移植用生物微胶囊技术介 绍.中华整形外科杂志,2000,16(5):267-270.
    
    [153]Liu C H, Wu M L, Hwang S M. Optimization of serum free medium for cord blood mesenchymalstem cells. Biochemical Engineering Journal, 2007, 33(1):1-9.
    
    [154]Pittenger M F, Mackay A M, Beck S C et al. Multilineage potential of adult humanmesenchymal stem cells. Science, 1999, 284(5411):143-147.
    
    [155]Jiang X S, Chai C, Zhang Y et al. Surface-immobilization of adhesion peptides onsubstrate for ex vivo expansion of cryopreserved umbilical cord blood CD34(+) cells.Biomaterials, 2006, 27(13):2723-2732.
    
    [156]Bruder S P, Fink D J , Caplan A I. Mesenchymal Stem-Cells in in Bone-Development, BoneRepair, and Skeletal Regeneration Therapy. Journal of Cellular Biochemistry, 1994,56(3): 283-294.
    
    [157]Kawano Y, Kobune M, Chiba H et al. Ex vivo expansion of G-CSF-mobilized peripheralblood CD133(+) progenitor cells on coculture with human stromal cells. ExperimentalHematology, 2006, 34(2):150-158.
    
    [158]Moezzi L, Pourfathollah A A, Alimoghaddam K et al. The effect of cryopreservation onclonogenic capacity and in vitro expansion potential of umbilical cord bloodprogenitor cells. Transplantation Proceedings, 2005, 37(10):4500-4503.
    
    [159]Chivu M, Diaconu C C, Bleotu C et al. The comparison of different protocols forexpansion of umbilical-cord blood hematopoietic stem cells. Journal of Cellular andMolecular Medicine, 2004,8(2):223-231.
    
    [160]Kashiwakura I, Takahashi T A. Fibroblast growth factor and ex vivo expansion ofhematopoietic progenitor cells. Leukemia & Lymphoma, 2004, 46(3):329-333.
    
    [161]Bachier CR, Gokmen E, Teale J et al. Ex-vivo expansion of bone marrow progenitor cellsfor hematopoietic reconstitution following high-dose chemotherapy for breast cancer.Experimental Hematology, 1999, 27(4):615-623.
    
    [162]Broxmeyer H E, Lu L, Cooper S et al. Flt3 Ligand Stimulates Costimulates the Growthof Myeloid Stem Progenitor Cells. Experimental Hematology, 1995, 23(10):1121-1129.
    
    [163]Gammaitoni L, Bruno S, Sanavio F et al. Ex vivo expansion of human adult stem cellscapable of primary and secondary hemopoietic reconstitution. Experimental Hematology,2003, 31(3): 261-270.
    
    [164]Meyer C, Drexler H G. FLT3 ligand inhibits apoptosis and promotes survival of myeloidleukemia cell lines. Leukemia & Lymphoma, 1999, 32(5-6):577-581.
    
    [165]Kim M J, Park S H, Opella S J et al. NMR structural studies of interactions of a small,nonpeptidyl Tpo mimic with the thrombopoietin receptor extracellular juxtamembraneand transmembrane domains. Journal of Biological Chemistry, 2007,282(19):14253-14261.
    
    [166]Lee R H, Seo M J, Reger R L et al. Multipotent stromal cells from human marrow hometo and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scidmice. Proceedings of the National Academy of Sciences, 2006, 103(46):17438-17443.
    
    [167]Bellantuono I. Haemopoietic stem cells. The International Journal of Biochemistry &Cell Biology, 2004, 36(4):607-620.
    
    [168]Laughlin M J, Barker J, Bambach B et al. Hematopoietic engraftment and survival inadult recipients of umbilical-cord blood from unrelated donors. New England Journalof Medicine, 2001, 344(24):1815-1822.
    
    [169]Bensidhoum M, Chapel A, Francois S et al. Homing of in vitro expanded Stro-1-or Stro-1+human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting humanCD34 cell engraftment. Blood, 2004, 103(9):3313-3319.
    
    [170]Yanxia Zhu, Tianqing Liu, Kedong Song et al. Adipose-derived stem cell: a better stemcell than BMSC. Cell Biochemistry and Function, 2008.
    
    [171]蔡琼霞,熊华锋,胡葵葵,张继平,李洁,李蜀光,贺文风.脐血间充质干细胞分离培养的 理论研究与应用.中国组织工程研究与临床康复,2007,11(28):5630-5633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700