有机质生烃动力学及火山作用的热效应研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在火山岩油气藏研究中,储层岩性、岩相分类、孔渗变化、火山作用对烃源岩成熟度影响以及无机成因烃的形成机理等方面研究较多,对于火山作用的有机质成烃热效应几乎没有研究。研究火山作用的有机质成烃热效应可以为评价其对烃源岩生烃量的增减和油藏的热破坏程度提供技术手段,还有助于正确认识火山作用在油气成藏中的贡献和完善火山岩油气藏理论。这方面研究不仅需要建立火山岩体的热容模型、热传导模型,还需建立有机质成烃动力学模型。为此,建立了多个化学动力学模型及岩浆侵入体热传导模型,并建立了各模型参数优化求取方法。进一步在不同类型有机质的生烃(油、气)热模拟实验,获得产物产率与温度的关系数据基础上,对不同模型、不同实验体系结果、不同类型有机质生烃动力学特征的进行对比研究,并开展了动力学模型参数稳定性、烃源岩非均质性对动力学参数的影响以及岩浆侵入体规模、性质、与烃源岩时空匹配关系不同时对围岩成熟度、生烃热效应的影响研究。最后结合徐家围子、英台断陷烃源岩参数进行天然气资源量评价。本次研究对今后应用生烃动力学方法评价资源潜力以及定量评价火山热作用对烃源岩生烃量的增减有重要指导意义。取得以下成果和认识:
     (1)密闭体系下有机质、原油热裂解过程中总烃气质量产率下降的温度与重烃气质量产率的拐点温度并不相同,表明高温阶段甲烷的来源仍然存在有机质/原油的初次裂解贡献,不完全是重烃气(C2-5)裂解贡献,但对于组成相对简单的液态烃或纯化合物这两个温度比较接近。
     (2)TG-MS实验下煤岩生甲烷终止温度约为850℃,对应的Ro约为5.3%(10℃/min升温速率),密闭体系下煤岩在650℃时(Ro约为4.9%,升温速率2℃/hour)煤岩生气能力尚未结束,气态烃质量产率一直呈增长趋势,表明煤岩在高温阶段仍具有生甲烷能力。可能是密闭体系下低温阶段热解的正构烷烃(n-alkyl)产物通过环化和芳香化作用与沥青或者干酪根发生缩聚/再结合作用形成了具有较高热稳定性的产物,这一产物在高温阶段可以再次生成甲烷。而在开放体系下正构烷烃被载气携走,不具备这类反应发生条件。
     (3)热传导模型结合EasyRo%模型可以较好的拟合实测Ro数据,还可以方便地模拟计算二维、三维空间内温度场及成熟度史演化。岩浆侵入体的热作用范围是有限的,地质情况不同,影响范围广度也不同,对于相同厚度的侵入体,初始温度越高,作用范围越广,但一般X/D<3(X/D指接触面的距离与侵入体厚度的比值)。对于不同厚度侵入体而言,侵入体热作用影响范围X/D<2。
     (4)总包反应动力学方程简单,但不适合描述复杂有机质成烃过程,有机质生烃也不完全符合连串反应机理,可能结合连串反应和平行反应两种模型描述有机质生烃过程比较合适,但是这类模型参数标定比较复杂,实验室工作比较繁重。串联反应模型无论从动力学理论上还是标定动力学参数的结果上都不适合。从各模型在烃源岩潜力评价中应用情况及各模型参数的优化效果来看,活化能服从离散分布的平行一级反应模型描述有机质生烃过程最为合适。
     (5)随指前因子的增加,表观活化能逐渐增加,且不同类型干酪根的表观活化能按如下顺序排列E II2-III >E I >E II1。
     (6)以SFF模型描述有机质生烃特征,优化的动力学参数—指前因子由小到大变化,其优化效果也存在一个极值。随着指前因子的增加,活化能分布形态基本上不发生变化,但整体向活化能增高方向偏移,指前因子每增加10倍,平均活化能增加约12kJ/mol,以3.3℃/Ma的地质升温速率进行外推,TR0.5(成烃转化率为50%)对应的地质温度逐渐增加,但增加值逐渐减少。
     (7)采用SFF模型研究不同类型有机质成烃动力学参数特征表明湖相I型有机质样品化合物结构及化学键类型相对单一,以单个活化能分布形态为主,湖相II2及陆相III型有机质样品化合物结构的非均质性较强,活化能分布范围宽,且“优势活化能”所占反应的分数随其氢指数降低而降低。同时不同活化能分布间隔动力学模型地质外推结果显示,活化能分布间隔对成烃转化率的影响不大,可以采用适当个数的平行反应模型描述有机质成烃过程。地质外推表明,I型有机质生烃速率范围分布较窄,且曲线圆滑。II1型、II2—III型有机质生烃速率分布范围较宽,其中II2—III型有机质生烃速率存在多个局部高点,波动频繁。
     (8)采用MFF(Multiple Frequence Factor)模型可以避免采用SFF(Single Frequence Factors)模型出现的低估具有较低和较高活化能有机质的生烃潜力(反应分数)这一问题。
     (9)烃源岩非均质性对采用生烃动力学方法评价资源量有一定的影响,可以通过采用MFF模型和S2加权平均法获得的动力学参数进行资源评价。同时建议结合地质上其他数据(如S1、Tmax、S1+S2等)对动力学参数进行优选。
     (10)相同条件的侵入体对于具有不同初始Ro的有机质热成熟度和生烃的热效应并不相同,表现在Ro<0.9%(对应大量生烃前)时,热效应随着初始Ro的增加而逐渐增加,当初始Ro>0.9%(对应大量生烃后)之后,热效应随着初始Ro的增加而逐渐降低。因此,具有相同初始条件的侵入体可以导致不同的热影响范围。在烃源岩大量生烃前,岩浆侵位时间越晚对生烃的热效应也越大,反之,则越小。
     (11)对龙深1井侵入体附近泥岩有机质成熟度及地球化学参数进行了分析,表明随着与接触面距离的减小,围岩中有机质成熟度逐渐升高,由原来的1.6变化到2.1左右,岩石热解参数Tmax则逐渐增大,H/C和O/C值逐渐降低,围岩中TOC逐渐降低,氯仿沥青"A"先增加后降低。在两套侵入体之间,Tmax值变化呈现”V”字型特征,围岩中TOC出现先增大后降低的趋势。同样,围岩氢指数(HI)、热解烃S2也出现类似变化。
     (12)采用MFF模型结合龙深1井区埋藏史、热史对侵入体的生烃热效应进行了研究,表明在侵入体影响范围内,成气转化率迅速增长。侵入体不同距离处的生气史则表明在很短的时间内,生气转化率从0增加到80%以上。可见,将化学动力学模型、埋藏史模型、侵入体热传导模型和正常热史模型结合起来可以很好的研究有机质复杂的成烃过程。
     (13)评价结果显示英台断陷深层天然气生成总量为5.1×1012m3,资源量为1072×108~1608×108m3(运聚系数取1.6%~2.4%)。徐家围子断陷深层天然气总生成量为33.75×1012m3,资源量为5020×108~7530×108m3(运聚系数取1.6%~2.4%)。
During the past 40 years volcanic reservoir exploration in China, many researches have been carried out, such as reservoir lithology, facies classification, porosity-permeability characteristics, volcanism on the source rock maturity and the formation mechanism of inorganic hydrocarbon, however, the hydrocarbon generation thermal effect of volcanism has not been studied. It is not only hopeful to provide a technical means for quantitative evaluating the net quantity of hydrocabon generation and the destroyed degree of oil reservior, which is caused by volcanism, but also helpful to recognize the contribution of volcanism to the petroleum exploration and perfect the theory of volcanic petroleum exploration. To achieve this target, the heat capacity model of magmatic intrusion, the heat conduction model and the chemical kinetics model of hydrocarbon generation should be established. Therefore, some chemical kinetic models and thermal conduction models have been established, so do parameters calibation methods. Based on thermal simulation experiments for different types OMs (organic matters) and the relation data between products yields and heating temperatures, comparison researches on different kinetic models, the products yields from different experiments and the hydrocarbon generation kinetic characteristics of different types OMs have been completed, meantime, the stability of kinetic models, the effect of source rock heterogeneity on kinetic parameters and the effects of intrusion dimensions, nature and the time-space range of source rock on country rock maturity and hydrocarbon geneartion thermal effect have been investigated. At last, combined source rock parameters and the above mentioned models, the natural gas resource of Xujiaweizi depression and Yingtai depression have been estimated. The research method and conclusions of this dissertation have important guiding significance to oil-gas resource potential appraisement and quantitative evaluating the net quantity of hydrocabon generation caused by thermal effect of mamatic intrusion. In a summary, the main conclusions and achievements of the dissertation are listed bellow:
     1. The tempeartue corresponding to C1-5 mass yields decreasing and the inflection point temperature of C2-5 mass yields are different when OM and oil cracking under closed system in the lab, which indicates that there is also the contribution of primary cracking from OM and oil to the methane source, not only the contribution of C2-5 cracking. However, the above two temperature should be colse for pure compund or oil with simpler compositions.
     2. The termination temperature of methane generation from coal sample under TG-MS experiment is about 850℃(with 10℃/min heating rate), and the corresponding Ro is about 5.3% calculated by extended EasyRo% model. However, the C1-5 mass yields increase all the while even at the end experiment temperature under the closed system experiment (the corresponding Ro is about 4.9% and with 2℃/hour heating rate), which indicates coal sample has gas potential at higher maturity stage. It may be caused by the recombined reaction of C6+ liquid hydrocarbons with kerogen or bitumen under closed environment, which will be formed new products with high thermal stability and the new formed products will generate methane at higher maturity stage. For open system, such as TG-MS experiment and Rock-Eval experiment, this recombined reaction cannot take place because the C6+ liquids are swept off by the carried gas.
     3. The measured Ro can be fitted by combining the thermal conduction model and the EasyRo% model, and the combined of the two models can be easily used to simulate the temperature fields and maturity evolution history caused by magmatic intrusion in two or three dimensions. The thermal effect scope of the magmatic intrusion is limited and the scope changes with different geological situations. For intrusions with the same thickness, the higher the initial temperature of intrusion, the heavier of the metamorphism degree and the deeper of the scope, however, the X/D ratio is smaller than 3 generally (D corresponds to the intrusion thickness and X corresponds to the distance from the contact surface and to the simulated depth). For intrusions with different thickness, the thicker of the intrusion, the deeper of the scope, and the X/D ratio is smaller than 2 generally.
     4. The kinetic equation in the overall reaction model is simple but can’t well simulate the complicated hydrocarbon generation process. The hydrocarbon generation process may not be fully consistent with the mechanism of consecutive reaction model, but it is appropriate to combine the consecutive reaction model and parallel reaction model to describe the hydrocarbon generation process. However, due to the complexity of the model and thus heavy experiment work in the lab. The Friedman type model is inappropriate from the view of kinetic theory and kinetic parameters. In view of the model application in source rock potential appraisement and the kinetic parameters optimization effect, the parallel first-order reaction model with a discrete distribution of activation energies is the best model for describing the hydrocarbon generation process.
     5. Apparent activation energy increase gradually with the increasing pre-exponential factor and the order of apparent activation energy from high to low for different types OMs is EII2-III, EI and EII1.
     6. Based on hydrocarbon generation characteristic described by SFF model, the pre-exponential factors change from low to high, an extreme value for residual errors occurs. And with the increasing pre-exponential factor, the distribution shape of activation energies are nearly the same, but the values of activation energies move toward to higher integrally. The average activation energies increase about 12kJ/mol for ten times increasing of pre-exponential factor, and the temperature corresponding to TR0.5 is higher, but the net increasing value change to small when extrapolating using a simple geological heating rate (3.3℃/Ma).
     7. The TR ratios obtained from experiment and the relationship of reaction fraction vs. activation energy reveal that the types of compound structures and chemical bonds of lacustrine facies type I OM are relative homogeneous, which with one dominating activation energy. And types of chemical bonds of lacustrine facies type II1 OM and the terrestrial type III OM is relative complex, which with a broad activation energy distribution. And the reaction fraction of the preponderant activation energy drops with the decrease hydrogen index. The study of the impact of activation energy distribution spaces on the geological extrapolation shows that different spaces have little effect to the hydrocarbon transformation ratio. Therefore, the parallel first-order reaction model with proper number activation energies can be better used to describe the hydrocarbon generation process. The geological extrapolation results of 18 samples kinetic parameters show that, the distribution range of hydrocarbon generation rate for different types of organic matter have different distribution profiles, of which type I organic matter features a narrow and smooth generation curve and types II1 and II2-III span over a wide range whilst type II2- III has many peaks and fluctuates frequently. Distribution width of hydrocarbon generation rate has relationship with its kinetic parameters, namely, the narrower the activation energies distribution is, the narrower the hydrocarbon generation rate distribution is, the smoother the hydrocarbon generation curve is, and vice versa.
     8. The comparison and analysis between MFF model and SFF model shows that MFF model can avoid miscalculating the hydrocarbon generation potential (reaction ratio) in the low and high evolution stages, which appears in SFF model.
     9. The heterogeneity of source rock has influence on oil-gas resource appraisement when using the hydrocarbon generation kinetic method, however, it can be avoid by combining the MFF model and the weighted averaged kinetic parameters for more samples. Meantime, it is recommended to confine the kinetic parameters using geological data, such as S1, Tmax and S1+S2 et al.
     10. The thermal effect of maturity and hydrocarbon generation caused by magmatic intrusions are different for OMs with different initial maturities, though intrusions with the same conditions. For example, thermal effect increases with the increasing initial maturity of OM if the vitrinite reflectance is smaller than 0.9%, but the thermal effect decreases with the increasing initial maturity of OM if the vitrinite reflectance is bigger than 0.9%. Therefore, intrusions with the same initial conditions can cause different metamorphism degrees. Before the hydrocarbon generation, the later the emplacement of intrusion, the greater the thermal effect of hydrocarbon generation, and vice versa.
     11. Analyzing results of maturity and geochemical index for mudstone near intrusions of Longshen1 well indicates that with the decreasing distance from contact surface, the maturity increases from 1.6% to 2.1%, the Tmax increase gradually, the H/C, O/C and TOC values decrease gradually and the chloroform bitumen“A”increases firstly then decreases. Between two intrusions the Tmax values takes on“V”shape, and so do TOC values. The HI and S2 values change as above mentioned rule.
     12. The research results of thermal effect for intrusions of Longshen1 well show that the gas generation TR increases quickly in the metamorphism range, for example it can be increase from 0 to 80% during a short period. It also shows that combining the kinetic model, burial model, thermal conduction model and normal thermal model can be a useful tool to describing the hydrocarbon generation process.
     13. The natural gas generation amount is 5.1×1012m3,and resource quantity is 1072×108~1608×108m(3the corresponding range of migration and accumulation coefficient is from 1.6% to 2.4%)for Yingtai depression. And the natural gas generation amount is 33.75×1012m3,and resource quantity is 5020×108~7530×108m3for Xujiaweizi depression.
引文
1.赵文智,邹才能,李建忠,等.中国陆上东、西部地区火山岩成藏比较研究与意义[J].石油勘探与开发,2009,36(1):1-11.
    2.杨辉,张研,邹才能,等.松辽盆地深层火山岩天然气勘探方向[J].石油勘探与开发,2006, 33(3): 274-281.
    3. Araújo L. M., Trigüis J. A., Cerqueira J. R. et al. The atypical permian petroleum system of the ParanáBasin, Brazil[M]: AAPG Memoir, 2000: 377-402.
    4. Koning Tako. Oil and gas production from basement reservoirs: examples from Indonesia, USA and Venezuela[J]. Geological Society, London, Special Publications, 2003, 214: 83-92.
    5. Mitsuhata Yuji, Matsuo Koichi, Minegishi Masato. Magnetotelluric survey for exploration of a volcanic-rock reservoir in the Yurihara oil and gas field, Japan[J]. Geophysical Prospecting, 1999, 47(2): 195-218.
    6. Monreal F. Rodriguez, Villar H. J., Baudino R. et al. Modeling an atypical petroleum system: A case study of hydrocarbon generation, migration and accumulation related to igneous intrusions in the Neuquen Basin, Argentina[J]. Marine and Petroleum Geology, 2009, 26(4): 590-605.
    7. Potter J., Konnerup-Madsen J. A review of the occurrence and origin of abiogenic hydrocarbons in igneous rocks[J]. Geological Society, London, Special Publications, 2003, 214: 151-173.
    8. Schutter Stephen R. Occurrences of hydrocarbons in and around igneous rocks[J]. Geological Society, London, Special Publications, 2003, 214: 35-68.
    9.邹才能,赵文智,贾承造,等.中国沉积盆地火山岩油气藏形成与分布[J].石油勘探与开发,2008,35(3): 257-271.
    10. Feng Zhi-qiang. Volcanic rocks as prolific gas reservoir: A case study from the Qingshen gas field in the Songliao Basin, NE China[J]. Marine and Petroleum Geology, 2008, 35(2): 129-142.
    11. Galushkin Yu. I. Thermal effects of igneous intrusions on maturity of organic matter: A possible mechanism of intrusion[J]. Organic Geochemistry, 1997, 26(11-12): 645-658.
    12. Sruoga Patricia, Rubinstein Nora. Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquén basins, Argentina [J]. AAPG Bulletin, 2007, 91(1):115-129.
    13. Wu Changzhi, Gu Lianxing, Zhang Zunzhong et al. Formation mechanisms of hydrocarbon reservoirs associated with volcanic and subvolcanic intrusive rocks:Examples in Mesozoic–Cenozoic basins of eastern China[J]. AAPG Bulletin, 2006, 90(1): 137-147.
    14.王璞君,迟元林,刘万珠,等.松辽盆地火山岩相:类型、特征和储层意义[J].吉林大学学报(地球科学版), 2003,33(4): 449-456.
    15. Othman Rushdy, Arouri Khaled R., Ward Colin R. et al. Oil generation by igneous intrusions in the northern Gunnedah Basin, Australia[J]. Organic Geochemistry, 2001, 31(3): 177-202.
    16. Tissot B. P., Pelet R., Ungerer P. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation[J]. AAPG Bulletin, 1987, 71(12): 1445-1466.
    17. Ungerer Philippe, Behar Francoise, Villalba MarlHne et al. Kinetic modelling of oil cracking[J]. Organic Geochemistry, 1988, 13(4-6): 857-868.
    18.卢双舫.有机质成烃动力学理论及其应用[M].北京,石油工业出版社,1996:136.
    19. Burnham Alan K., Braun Robert L., Samoun Alain M. Further comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters[J]. Organic Geochemistry, 1988, 13(4-6): 839-845.
    20. Quigley T. M., Mackenzie A. S. The temperature of oil and gas formation in the sub-surface[J]. Nature, 1988, 333(9): 549-553.
    21. Ungerer P. State of the art of research in kinetic modelling of oil formation and expulsion[J]. Organic Geochemistry, 1990, 16(1-3): 1-25.
    22. Ungerer P., Pelet R. Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins[J]. Nature, 1987, 327(7): 52-54.
    23.黄第藩,李晋超,周翥红,等.陆相有机质的演化和成烃机理[M].北京,石油工业出版社,1984.
    24. Behar F., Kressmann S., Rudkiewicz J. L. et al. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J]. Organic Geochemistry, 1992, 19(1-3): 173-189.
    25. Braun Robert L., Burnham Alan K., Reynolds John G. Oil and gas evolution kinetics for oil shale and petroleum source rocks determined from pyrolysis-TQMS data at two heating rates[J]. Energy & Fuels, 1992, 6(4): 468-474.
    26. Pepper Andrew S., Corvi Peter J. Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen[J]. Marine and Petroleum Geology, 1995, 12(3): 291-319.
    27. Schaefer R. G., Schenk H. J., Hardelauf H. et al. Determination of gross kinetic parameters for petroleum formation from Jurassic source rocks of different maturity levels by means of laboratory experiments[J]. Organic Geochemistry, 1990, 16(1-3):115-120.
    28.卢双舫,王子文,黄第藩,等.煤岩显微组分的成烃动力学[J].中国科学(B辑),1995(01):101-107.
    29. Burnham Alan K., Schmidt Birthe J., Braun Robert L. A test of the parallel reaction model using kinetic measurements on hydrous pyrolysis residues[J]. Organic Geochemistry, 1995, 23(10): 931-939.
    30. Behar FranGoise, Lorant FranGois, Lewan Michael. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite[J]. Organic Geochemistry, 2008, 39(1): 1-22.
    31. Behar FranGoise, Lorant FranGois, Mazeas Laurent. Elaboration of a new compositional kinetic schema for oil cracking[J]. Organic Geochemistry, 2008, 39(6): 764-782.
    32. Dieckmann V., Fowler M., Horsfield B. Predicting the composition of natural gas generated by the Duvernay Formation(western Canada sedimentary basin) using a compositional kinetic approach[J]. Organic Geochemistry, 2004, 45(6): 387-388.
    33. Dieckmann V., Keym M. A new approach to bridge the effect of organofacies variations on kinetic modelling and geological extrapolations[J]. Organic Geochemistry, 2006, 37(6): 728-739.
    34. Min Wang, Shuangfang Lu, Haitao Xue et al. Comparative study of hydrocarbon generation kinetic characteristics from different types of organic matter[J]. Acta Geologica Sinica, 2010, 84.
    35. Dieckmann V. Modelling petroleum formation from heterogeneous source rocks: the influence of frequency factors on activation energy distribution and geological prediction[J]. Marine and Petroleum Geology, 2005, 22(3): 375-390.
    36. Burnham Alan K., Braun Robert L. Development of a detailed model of petroleum formation, destruction, and expulsion from lacustrine and marine source rocks[J]. Organic Geochemistry, 1990, 16(1-3): 27-39.
    37. Lewan M. D., Williams I. A. Evaluation of petroleum generation from resinites by hydrous pyrolysis[J]. AAPG Bulletin, 1987, 71(2): 207.
    38. Takeda Nobuyori, Sato Shunji, Machihara Tsutomu. Study of petroleum generation by compaction pyrolysis—I. Construction of a novel pyrolysis system with compaction and expulsion of pyrolyzate from source rock[J]. Organic Geochemistry, 1990, 16(1-3): 143-153.
    39. Tang Y., Perry J. K., Jenden P. D. et al. Mathematical modeling of stable carbon isotope ratios in natural gases[J]. Geochimica et Cosmochimica Acta, 2000, 64(15): 2673-2687.
    40.高刚,黄志龙.碳酸盐岩油气生成模拟方法[M].北京,石油工业出版社, 2000.
    41.卢双舫,赵锡嘏,黄第藩,等.煤成烃的生成和运移的模拟实验研究Ⅰ.气态和液态产物特征及其演化[J].石油实验地质,1994(03): 290-302.
    42.秦匡宗,石卫,郭绍辉.煤在水介质下热压模拟的实验研究[M].北京,石油工业出版社,1995:55-82.
    43.卢双舫,王民,王跃文,等.密闭体系与开放体系模拟实验结果的比较研究及其意义[J].沉积学报,2006,24(2):282-288.
    44. Hill Ronald J., Tang Yongchun, Kaplan Isaac R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34(12): 1651-1672.
    45.王剑秋,乌立言,钱家麟.应用岩石评价仪进行生油岩热解生烃动力学研究[J].华东石油学院学报,1984,8(1):1-9.
    46. Allred V. D. Kinetics of oil shale pyrolyis[J]. Chemical Engineering Progress, 1966, 62(8):55-60.
    47. Zhang Xiaojie, De Jong Wiebren, Preto Fernando. Estimating kinetic parameters in TGA using B-spline smoothing and the Friedman method[J]. Biomass and Bioenergy, 2009, 33(10): 1435-1441.
    48. Klomp U. C., Wright P. A. A new method for the measurement of kinetic parameters of hydrocarbon generation from source rocks[J]. Organic Geochemistry, 1990, 16(1-3): 49-60.
    49.金强,钱家麟,黄醒汉.生油岩干酪根热降解动力学研究及其在油气生成量计算中的应用[J].石油学报,1986,7(03):11-19.
    50. Pitt G. J. The Kinetics of the evolution of volatile products from coal[J]. Fuel, 1962, 41: 267-274.
    51.卢双舫,李娇娜,刘绍军,等.松辽盆地生油门限重新厘定及其意义[J].石油勘探与开发,2009,36(2):166-173.
    52. Jarvie Daniel M. Factors affecting Rock-Eval derived kinetic parameters[J]. Chemical Geology, 1991, 93(1-2): 79-99.
    53. Schenk H. J., Horsfield B. Kinetics of petroleum generation by programmed-temperature closed-versus open-system pyrolysis[J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 623-630.
    54. Braun Robert L., Burnham Alan K. PMOD: a flexible model of oil and gas generation, cracking, and expulsion[J]. Organic Geochemistry, 1992, 19(1-3): 161-172.
    55. Pepper Andrew S., Corvi Peter J. Simple kinetic models of petroleum formation. Part III: Modelling an open system[J]. Marine and Petroleum Geology, 1995, 12(4): 417-452.
    56. Pepper Andrew S., Dodd Timothy A. Simple kinetic models of petroleum formation. Part II: oil-gas cracking[J]. Marine and Petroleum Geology, 1995, 12(3): 321-340.
    57. Sweeney Jerry J., Braun Robert L., Burnham Alan K. et al. Chemical kinetic model of hydrocarbon generation, expulsion, and destruction applied to the Maracaibo Basin,Venezuela[J]. AAPG, 1995, 79(10): 1515-1532.
    58. Sweeney J. J., Burnham A. K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG, 1990, 74(10): 1559-1570.
    59.卢双舫,陈昕,付晓泰.台北凹陷煤中有机质的成烃动力学模型及其初步应用[J].沉积学报,1997(02):126-129.
    60.卢双舫,刘晓艳,付晓泰,等.未熟-低熟油生成机理的化学动力学研究及其初步应用[J].沉积学报,2001(01):130-135.
    61.王民,卢双舫,胡慧婷,等.有机质生成生物气的生化动力学模型及其应用[J].石油学报,2008,29(1):75-78.
    62.胡祥云,李思田,解习农.有机质成烃动力学模型研究综述[J].地质科技情报,2000,19(1): 65-68.
    63.卢双舫,钟宁宁,薛海涛,等.碳酸盐岩有机质二次生烃的化学动力学研究及其意义[J].中国科学(D辑:地球科学),2007(02):178-184.
    64. Peters Kenneth E., Walters Clifford C., Mankiewicz Paul J. Evaluation of kinetic uncertainty in numerical models of petroleum generation[J]. AAPG, 2006, 90(3): 387-403.
    65. Keym Matthias, Dieckmann Volker, Horsfield Brian et al. Source rock heterogeneity of the Upper Jurassic Draupne Formation, North Viking Graben, and its relevance to petroleum generation studies[J]. Organic Geochemistry, 2006, 37(2): 220-243.
    66. Schenk H. J., Dieckmann V. Prediction of petroleum formation: the influence of laboratory heating rates on kinetic parameters and geological extrapolations[J]. Marine and Petroleum Geology, 2004, 21(1): 79-95.
    67. Chen Zhenyan, Yan Huo, Li Junsheng et al. Relationship between Tertiary volcanic rocks and hydrocarbons in the Liaohe Basin, People’s Republic of China[J]. AAPG Bulletin, 1999, 83(6): 1004-1014.
    68. Fjeldskaar W., Helset H. M., Johansen H. et al. Thermal modelling of magmatic intrusions in the Gjallar Ridge, Norwegian Sea: implications for vitrinite reflectance and hydrocarbon maturation[J]. Basin Research, 2008, 20(1): 143-159.
    69. Robinson Neil, Parnell John, Brassell Simon. Hydrocarbon compositions of bitumens from mineralized Devonian lavas and Carboniferous sedimentary rocks, central Scotland[J].Marine and Petroleum Geology, 1989, 67(3): 251-267.
    70. Finkelman Robert B., Bostick Neely H., Dulong Frank T. et al. Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County, Colorado[J]. International Journal of Coal Geology, 1998, 36(3): 243-258.
    71. Thorpe A. N., Senftle F. E., Finkelman R. B. et al. Change in the magnetic properties of bituminous coal intruded by an igneous dike, Dutch Creek Mine, Pitkin County,Colorado[J]. International Journal of Coal Geology, 1998, 40(1): 223-241.
    72.周庆华,冯子辉,门广田.松辽盆地北部徐家围子断陷现今地温特征及其与天然气生成关系研究[J].中国科学(D辑),2007 (SⅡ):177-188.
    73.孙永革,傅家谟,刘德汉,等.火山活动对沉积有机质演化的影响及其油气地质意义-以辽河盆地东部凹陷为例[J].科学通报,1995, 40(11):1019-1022.
    74. Barker Charles E., Bone Yvonne, Lewan Michael D. Fluid inclusion and vitrinite-reflectance geothermometry compared to heat-flow models of maximum paleotemperature next to dikes, western onshore Gippsland Basin, Australia[J]. International Journal of Coal Geology, 1998, 92(1): 27-42.
    75. Dow Wallace G. Kerogen studies and geological interpretations[J]. Journal of Geochemical Exploration, 1977, 47(1): 435-510.
    76. George S. C. Effect of igneous intrusion on the organic geochemistry of a siltstone and an oil shale horizon in the Midland Valley of Scotland[J]. Organic Geochemistry, 1992, 14(1): 47-82.
    77. Gurba Lila W., Weber Carl R. Effects of igneous intrusions on coalbed methane potential, Gunnedah Basin, Australia[J]. International Journal of Coal Geology, 2001, 67(1): 127-137.
    78. Raymond Anne C., Murchison Duncan G. Development of organic maturation in the thermal aureoles of sills and its relation to sediment compaction[J]. Fuel, 1988, 68(3): 328-334.
    79. Simoneit Bernd R. T., Brenner Shmuel, Peters K. E. et al. Thermal alteration of Cretaceous black shale by basaltic intrusions in the Eastern Atlantic[J]. Nature, 1978, 273
    80. Jaeger J. C. The temperature in the neighborhood of a cooling intrusive sheet[J]. American Journal of Science, 1957, 255: 306-318.
    81.陈荣书,何生.岩浆活动对有机质成熟作用的影响初探:以冀中葛渔城-文安地区为例[J].石油勘探与开发,1989,16(1):29-37.
    82.张健,石耀霖.沉积盆地岩浆侵入的热模拟[J].地球物理学进展,1997,12(3):53-64.
    83.傅清平,Mclnnes BrentI. A., Davies PeterJ.岩浆成矿体系的热演化和剥露史的数字模拟[J].地球科学:中国地质大学学报,2000,29(5):555-562.
    84. Carslaw H. S., Jaeger J. C. Conduction of Heat in Solids[M]. New York,Oxford Univ. Press,1959, 510.
    85. Stagpoole V., Funnell R. Arc magmatism and hydrocarbon generation in the northern Taranaki Basin, New Zealand [J]. Petroleum Geoscience, 2001, 7(3): 255-267.
    86. Annen C., Sparks R. S. J. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust[J]. Earth and Planetary Science Letters, 2002, 457(3): 111-127.
    87. German C. R., Parson L. M. Distributions of hydrothermal activity along the Mid-Atlantic Ridge: interplay of magmatic and tectonic controls[J]. Earth and Planetary Science Letters, 1998, 121(3): 647-654.
    88. Hort Matthias, Spohn Tilman. Crystallization calculations for a binary melt cooling at constant rates of heat removal: implications for the crystallization of magma bodies[J]. Earth and Planetary Science Letters, 1991, 20(4): 291-301.
    89. Reverdatto V. V., Polyansky O. P. Modelling of the thermal history of metamorphic zoning in the Connemara region (western Ireland)[J]. Tectonophysics, 2004, 379(1): 77-91.
    90. Keating Gordon N., Geissman John W., Zyvoloski George A. Multiphase modeling of contact metamorphic systems and application to transitional geomagnetic fields[J]. Earth and Planetary Science Letters, 2002, 246(3): 217-230.
    91. Zhao Chongbin, Hobbs B. E., Ord A. et al. An equivalent algorithm for simulating thermal effects of magma intrusion problems in porous rocks[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 38(13): 2479-2488.
    92. Hurter SUZANNE J., Pollack HENRY N. Effect of the Cretaceous Serra Geral igneous event on the temperatures and heat flow of the Parana Basin, southern Brazil[J]. Basin Research, 1994, 6(4): 239-244.
    93. Jaeger J. C. Thermal Effects of Intrusions[J]. Reviews of Geophysics, 1964, 2(3): 443-466.
    94. Mongelli Francesco, Zito Gianmaria, de Lorenzo Salvatore. Thermal effects of long intrusions[J]. Geothermics, 2000, 26(11): 645-658.
    95. Wang X., Lerche I., Walters C. The effect of igneous intrusive bodies on sedimentary thermal maturity[J]. Organic Geochemistry, 1989, 36(3): 303-307.
    96.帅燕华,张水昌,陈建平,等.海相成熟干酪根生气潜力评价方法研究[J].地质学报,2008,82(8):1129-1134.
    97.陈永红,林玉祥,姜慧超.惠民凹陷含煤地层生气潜力分析[J].煤田地质与勘探,2003,31(3):26-29.
    98.陈建平,赵文智,王招明,等.海相干酪根天然气生成成熟度上限与生气潜力极限探讨[J].科学通报,2007,52(S1):95-100.
    99. Gaschnitz Roland, Krooss Bernhard M., Gerling Peter et al. On-line pyrolysis-GC-IRMS: isotope fractionation of thermally generated gases from coals[J]. Fuel, 2001, 64(15): 2673-2687.
    100.Cramer Bernhard, Faber Eckhard, Gerling Peter et al. Reaction kinetics of stable carbonisotopes in natural gassInsights from dry, open system pyrolysis experiments[J]. Energy & Fuels, 2001, 15: 517-532.
    101.卢双舫,李吉君,薛海涛,等.油成甲烷碳同位素分馏的化学动力学及其初步应用[J].吉林大学学报:地球科学版, 2006, 36(5):825-829.
    102.刘嘉麒,孟凡超,崔岩,等.试论火山岩油气藏成藏机理[J].岩石学报,2010,26(1):1-13.
    103.张大江,姚焕新,王培荣,等.褐煤中干酪根、腐殖酸、抽提物对成油的作用和贡献[M].北京:石油工业出版社,1995:1-32.
    104.Saxby J. D., Riley K. W. Petroleum generation by laboratory-scale pyrolysis over six years simualting conditions in a subsiding basin[J]. Nature, 1984, 308(8): 177-179.
    105.马中振,庞雄奇,付秀丽,等.松辽盆地北部嫩江组一段源岩排烃特征及潜力评价[J].石油天然气学报,2008,30(3):24-28.
    106.林铁锋,向才富,冯子辉,等.松辽盆地滨北地区油气运移输导体系分析[J].地质科技情报,2009,28(1):29-38.
    107.Schenk H. J., Horsfield B. Using natural maturation series to evaluate the utility of parallel reaction kinetics models: an investigation of Toarcian shales and Carboniferous coals, Germany[J]. Organic Geochemistry, 1998, 29(1-3): 137-154.
    108.Schenk H. J., Di Primio R., Horsfield B. The conversion of oil into gas in petroleum reservoirs. Part 1: Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J]. Organic Geochemistry, 1997, 26(7-8): 467-481.
    109.Horsfield B., Schenk H. J., Mills N. et al. An investigation of the in-reservoir conversion of oil to gas: compositional and kinetic findings from closed-system programmed-temperature pyrolysis[J]. Organic Geochemistry, 1992, 19(1-3): 191-204.
    110.Tian Hui, Xiao Xianming, T. Ronald W. et al. New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: Implications for the in-situ accumulation of gas cracked from oils[J]. AAPG Bulletin, 2008, 92(2): 181-200.
    111.Kossiakoff A., Rice F. O. Thermal decomposition of hydrocarbons,resonance stabilisation and isomerization of free radicals[J]. J. Am. Chem. Soc., 1943, 65: 590-595.
    112.Mahlstedt Nicolaj, Horsfield Brian, Dieckmann Volker. Second order reactions as a prelude to gas generation at high maturity[J]. Organic Geochemistry, 2008, 39(8): 1125-1129.
    113.Erdmann Michael, Horsfield Brian. Enhanced late gas generation potential of petroleum source rocks via recombination reactions: Evidence from the Norwegian North Sea[J]. Geochimica et Cosmochimica Acta, 2006, 70(15): 3943-3956.
    114.Dieckmann Volker, Ondrak Robert, Cramer Bernhard et al. Deep basin gas: New insights from kinetic modelling and isotopic fractionation in deep-formed gas precursors[J]. Marine and Petroleum Geology, 2006, 23(2): 183-199.
    115.Espitalie J., Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance[M]. 1st Inst. Fr. Pet. Explor. Res. Conf., 1986: 475-796.
    116.Burnham Alan K., Braun Robert L., Gregg Hugh R. et al. Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters[J]. Energy & Fuels, 1987, 1(6): 452-458.
    117.Burnham A. K. oil evolution from a self-purging reactor: kinetics and composition at 2℃/min and 2℃/h[J]. Energy Fuels, 1990(submitted)
    118.B. Horsfield A. G. Douglas. The influence of minerals on the pyrolysis of kerogens[J]. Geochimica et Cosmochimica Acta, 1980, 44: 1119-1131.
    119.Peters K. E. Guidelines for evaluating petroleum source rock using programmed pyrolysis[J]. AAPG Bull., 1986, 70(3): 318-329.
    120.Katz B. J. limitations of "Rock-Eval" pyrolysis for typing organic matter[J]. organic geochemistry, 1983, 4(3/4): 195-199.
    121.Shuai Yanhua, Peng Ping An, Zou Yan-Rong et al. Kinetic modeling of individual gaseous component formed from coal in a confined system[J]. Organic Geochemistry, 2006, 37(8): 932-943.
    122.Schimmelmann Arndt, Mastalerz Maria, Gao Ling et al. Dike intrusions into bituminous coal, Illinois Basin: H, C, N, O isotopic responses to rapid and brief heating[J]. Geochimica et Cosmochimica Acta, 2009, 73(20): 6264-6281.
    123.Cooper Jennifer R., Crelling John C., Rimmer Susan M. et al. Coal metamorphism by igneous intrusion in the Raton Basin, CO and NM: Implications for generation of volatiles[J]. International Journal of Coal Geology, 2007, 106(1): 59-77.
    124.张健,石耀霖.热泉地区岩浆侵入过程的热演化特征[J].中国科学院研究生院学报, 1998,15(2):171-176.
    125.匡立春,薛新克,邹才能,等.火山岩岩性地层油藏成藏条件与富集规律-以准噶尔盆地克-百断裂带上盘石炭系为例[J].石油勘探与开发,2007,34(3):285-290.
    126.谭丽娟,田世澄.南堡凹陷第三纪构造特征及火山作用[J].石油大学学报:自然科学版,2001,25(4):1-4.
    127.肖军,KamayeTourba,王华,等.渤海湾盆地南堡凹陷火山岩特征及其有利成藏条件分析[J].地质科技情报, 2004,23(1):52-56.
    128.张保民,王素娟,向华.盆地岩浆侵入的热演化及其对生油窗的影响[J].新疆石油地质,2008,29(6):696-698.
    129.Clayton J. L., Bostick N. H. Temperature effects on kerogen and on molecular and isotopic composition of organic matter in Pierre Shale near an igneous dike[J]. Organic Geochemistry, 1986, 212(3): 371-372.
    130.Goodarzi Fariborz, Murchison Duncan G. Petrography and anisotropy of carbonized preoxidized coals[J]. Fuel, 1976, 55(2): 141-147.
    131.Redding C. E., Schoell M., Monin J. C. et al. Hydrogen and carbon isotopic composition of coals and kerogens[J]. Physics and Chemistry of The Earth, 1980, 12: 711-723.
    132.Simoneit Bernd R. T., Brenner S., Peters K. E. et al. Thermal alteration of Cretaceous black shale by diabase intrusions in the Eastern Atlantic—II. Effects on bitumen and kerogen[J]. Geochimica et Cosmochimica Acta, 1981, 45(9): 1581-1602.
    133.Jenden P. D., Simoneit B. R. T., Philip R. P., Hydrothermal effects of protokerogens of unconsolidated sediments from Guaymas Basin, Gulf of California: elemental compositions, stable carbon isotope ratios and electron spin resonance spectra [M]. Washington, DC: US Government Printing Office, 1982: 905-912.
    134.Gr?cke Darren R., Rimmer Susan M., Yoksoulian Lois E. et al. No evidence for thermogenic methane release in coal from the Karoo-Ferrar large igneous province[J]. Earth and Planetary Science Letters, 2009, 277(1-2): 204-212.
    135.Meyers Philip A., Simoneit Bernd R. T. Effects of extreme heating on the elemental and isotopic compositions of an Upper Cretaceous coal*1[J]. Organic Geochemistry, 1999, 30(5): 299-305.
    136.Perregaard J., Schiener E. J. Thermal alteration of sedimentary organic matter by a basalt intrusive (Kimmeridgian Shales, Milne Land, east Greenland)[J]. Chemical Geology, 1979, 17(2): 75-84.
    137.Kontorovich A. E., Surkov V. C., Trofimuk A. A. et al. Oil and gas geology of West Siberian Platform[J]. Moscow, Nedra, 1981: 550.
    138.Rodnova E. N. Change in collector attributes of sediments in contact zone of traps in central part of nosty Tungusskoy sineklize[J]. Trudy VSEGEI, Leningard, 1978, 308: 18-133.
    139.Kazarinov V. V., Homenko A. V. Effect of traps on oil and gas bearing Paleozoic rocks of Lena-Tungussian region.In Litologiya I geohimiya neftegasonosnyh tolsch Sibirskoy platformy[J]. Moscow,Nauka, 1981: 113-117.
    140.Mastalerz M., Drobniak A., Schimmelmann A. Changes in optical properties, chemistry, and micropore and mesopore characteristics of bituminous coal at the contact with dikes in the Illinois Basin[J]. International Journal of Coal Geology, 2009, 77(3-4): 310-319.
    141.Raymond Anne C., Murchison Duncan G. Organic maturation and its timing in a Carboniferous sequence in the central Midland Valley of Scotland: comparisons with northern England[J]. Fuel, 1989, 67(12): 1599-1608.
    142.Lopatin N. V. temperature and geologic time as factors in coalification.[J]. Izvastiya Akademii Nauk USSR, Seriya Geologicheskaya, 1971(3): 95-106.
    143.Waples Douglas W. Time and temperature in petroleum formation; application of Lopatin's method to petroleum exploration[J]. AAPG Bulletin, 1980, 64(6): 916-926.
    144.Freeman Eli S., Carroll Benjamin. The Application of Thermoanalytical Techniques to Reaction Kinetics: The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate[J]. The Journal of Physical Chemistry, 1958, 62(4): 394-397.
    145.李术元,钱家麟,秦匡宗,等.油页岩热解本征动力学的研究-平行反应模型中表观活化能的分布及其与视频率因子的关[J].石油学报(石油加工),1986,2(2): 1-12.
    146.李术元,钱家麟,秦匡宗,等.油页岩热解本征动力学的研究-不同数学模型的计算结果[J].石油学报(石油加工),1986,2(3):1-10.
    147.李执,林宗南,周萱密,等.干酪根热降解反应动力学参数测定的研究[J].石油实验地质,1982,4(3):177-190.
    148.王道钰,王德进,钱家麟.油页岩和生油岩热解平行和连续反应模型的研究和数值计算[J].华东石油学院学报(自然科学版),1985(03): 92-99.
    149.王剑秋,邬立言,钱家麟.应用岩石评价仪进行生油岩热解生烃动力学的研究[J].华东石油学院学报, 1984(01):56-64.
    150.吴肇亮,王剑秋,钱家麟.最大反应速率法在生油岩生烃率计算中的应用[J].石油学报,1990,11(01):32-39.
    151.杨国华,吴肇亮,徐伟民,等.不同类型干酪根热解生烃动力学研究(二)[J].石油大学学报:自然科学版,1990,14(2):74-84.
    152.Friedman H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry:application to a phenolic plastic[J]. Journal of polymer science, Part:C, 1963, 116(1-3): 49-60.
    153.Burnham A. K., Braun R. L. Development of a detailed model of petroleum formation, destruction, and expulsion from lacustrine and marine source rocks[J]. Org. Geochem., 1990, 16(1-3): 27-39.
    154.Dieckmann V., Horsfield B., Schenk H. J. Heating rate dependency of petroleum-forming reactions: implications for compositional kinetic predictions[J]. Organic Geochemistry, 2000, 31(12): 1333-1348.
    155.Lewan M. D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3691-3723.
    156.Michels Raymond, Landais Patrick. Artificial coalification: Comparison of confined pyrolysis and hydrous pyrolysis[J]. Fuel, 1994, 73(11): 1691-1696.
    157.Monthioux Marc, Landais Patrick, Monin Jean-Claude. Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia[J]. Organic Geochemistry, 1985, 8(4): 275-292.
    158.Serio Michael A., Hamblen David G., Markham James R. et al. Kinetics of volatile product evolution in coal pyrolysis: experiment and theory[J]. Energy & Fuels, 1987, 1(2): 138-152.
    159.Tegelaar Erik W., Noble Rohinton A. Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography[J]. Organic Geochemistry, 1994, 22(3-5): 543-574.
    160.Tissot B., Espitalie J. L’e′volution de la matie`re organique des se′diments: application d’une simulation mathe′matique[J]. Institut Francias du Pétrole,. Revue, 1975, 30: 743-777.
    161.Lewan M. D. Laboratory simulation of petroleum formation: hydrous pyrolysis[M]. New York: Plenum, 1993: 419-442.
    162.Lewan M. D. Evaluation of petroleum generation by hydrous pyrolysis experimentation[J]. Philosophical Transactions of the Royal Society, London, Series A, 1985(315): 123-134.
    163.Tissot B. Premie`res donne′es sur les me′canismes et la cine′tique de la formation du pe′trole dans les bassins sedimentaires Simulation d’un sche′ma re′actionnel surordinateur[J]. Oil and Gas Science and Technology, 1969, 24: 470-501.
    164.Fitzgerald D., Van Krevelen D. W. Chemical structure and properties of coal: the kinetics of coal carbonization[J]. Fuel, 1959, 38: 17-37.
    165.Ishiwatari R., Ishiwatari M., Rohrback B. G. et al. Thermal alteration experiments on organic matter from recent marine sediments in relation to petroleum genesis[J]. Geochimica et Cosmochimica Acta, 1977, 41(6): 815-828.
    166.李维铮,等.运筹学[M].北京,清华大学出版社,1982.
    167.卢双舫,黄振凯,刘绍军,等.吐哈盆地生物气-低熟气评价的元素平衡法及其应用[J].沉积学报, 2008(06):1063-1070.
    168.卢双舫,郭春萍,申家年,等.化学动力学法在黄骅坳陷未熟-低熟油资源评价中的应用[J].中国石油勘探,2005(06):18-23.
    169.王民,卢双舫,胡慧婷,等.生物气生成的化学动力学模型及其应用-以柴达木盆地为例[J].地质学报,2007,81(3):428-431.
    170.卢双舫,郭春萍,申家年,等.化学动力学法在黄骅坳陷未熟-低熟油资源评价中的应用[J].中国石油勘探,2005,10(6):18-23.
    171.Sweeney Jerry, Talukdar Suhas, Burnham Alan K. et al. Pyrolysis kinetics appfied to prediction of oil generation in the Maracaibo Basin, Venezuela[J]. Org. Geochem., 1990, 16(1-3):189-196.
    172.柳忠泉,韩立国,徐佑德,等.济阳坳陷新生代热演化特征研究[J].地质学报,2008,82 (5):663-668.
    173.Jarvie Daniel M., Hill Ronald J., Ruble Tim E. et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG, 2007, 91(4): 475-499.
    174.Peters Kenneth E., Walters Clifford C., Moldowan J. Michael. The biomaker guide, Volume 1:biomarkers and isotopes in the environment and human history [J]. Cambridge, United Kingdom, 2005, Cambridge University Press: 471.
    175.霍秋立.松辽盆地徐家围子断陷深层天然气来源于成藏研究[D].大庆石油学院,2007.
    176.卢双舫,付晓泰,陈昕,等.原油族组分成气的化学动力学模型及其标定[J].地质学报,1997(04):367-373.
    177.卢双舫,付晓泰,刘晓艳,等.油成气的动力学模型及其标定[J].天然气工业,1996(06): 6-8.
    178.卢双舫,李占东,李吉君,等.吐哈盆地低熟气评价的化学动力学方法及其应用[J].地球化学,2009(1):68-74.
    179.卢双舫,付晓泰.煤岩有机质成油,成气热模拟动力学模型及其标定[J].地质科学,1996, 31(1):15-21.
    180.王民,卢双舫,李吉君.不同类型有机质成烃动力学特征对比及应用研究[R].北京, 2009.
    181.曹学伟,胡文暄,金之钧,等.临盘油田夏38井区辉绿岩热效应对成烃作用的影响[J].石油与天然气地质, 2005, 26(3):317-322.
    182.刘佑荣.岩体力学[M].北京:中国地质大学出版社,2005:32-44.
    183.田辉,肖贤明,杨立国,等.原油高温裂解生气潜力与气体特征[J].科学通报,2009,54 (6):781-786.
    184.朱东亚,金之钧,胡文瑄,等.异常热作用对油藏中原油的影响-以塔里木盆地中18井为例[J].中国科学(D辑:地球科学),2008(03):294-306.
    185.闫相宾,金晓辉,李丽娜,等.松辽盆地长岭断陷火山活动与烃源岩成烃史分析[J].地质论评, 2009,55(2):225-230.
    186.黄第藩,我国陆相烃源岩有机质丰度评价标准[M].北京:石油工业出版社,1990.
    187.庞雄奇,方祖康.地史过程中的岩石有机质含量变化及其计算[J].石油学报,1988,9(1):17-24.
    188.王子文,赵锡嘏,卢双舫,等.原始有机质丰度的恢复及其意义[J].大庆石油地质与开发,1991(04):20-26.
    189.郝石生.对碳酸盐岩有机质丰度及其演化特征的讨论[J].石油实验地质,1984,6(1): 67-71.
    190.李景坤.松辽盆地北部深层烃源岩生烃条件研究[R],2007.
    191.李景坤.松辽盆地北部深层天然气及外围盆地油气资源评价[R],2005.
    192.任战利.中国北方沉积盆地热演化史的对比[J].石油与天然气地质,2000,21(1):33-37.
    193.李世荣.松辽盆地大庆探区第三次资源评价[R], 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700