钒的神经行为毒性效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒是化石燃料的主要元素之一,在石油、煤中含量较为丰富。随着近年来我国经济快速增长,能源产品消耗量也迅速增加,钒随着大量石油、煤燃烧产生的气体进入大气,由此带来的后果是人群接触机会增加以及接触人群的范围扩大,并且演化成了环境问题。同时钒作为一种重要元素广泛用于石油化工、钢铁冶炼、焊接、催化剂等领域,因此钒化合物的职业接触人群也数量巨大。
     神经系统对有毒有害因素最为敏感,在受到侵袭时往往首先受累,早期仅引起机体行为的变化。已有的关于钒化合物毒性的研究较少涉及这方面,尤其是缺乏人群流行病学的调查研究。本研究目的是评价钒化合物是否具有神经行为毒性及阐述其效应。论文分为三个部分,分别为人群神经行为功能测试、大鼠神经行为功能评价、病理学诊断。以下是这三个部分的结果。
     1.钒化合物对接触工人神经行为功能的影响
     采用世界卫生组织推荐的NCTB测试组合测试了193名接钒工人(接钒组)和273名非接钒工人(对照组)。接钒组和对照组调查对象性别构成没有差异,对照组文化程度高于接钒组(P<0.05),年龄分别为35.0±6.7岁和34.5±5.6岁、工龄分别为16.6±6.8年和14.3±6.2年。接钒组工人生产车间钒烟尘浓度总体上超过国家标准近20倍,各车间有不同,对照组工人生产车间没有检测到钒烟尘。血钒浓度测定结果显示接钒工人血钒浓度几乎都超过正常值范围,平均超标倍数在10~20倍之间。
     在调整了混杂因素后,NCTB情感测试结果发现接钒工人的“紧张-焦虑”、“抑郁-沮丧”、“愤怒-敌意”、“疲劳-惰性”、“困惑-迷茫”得分均高于对照组,“有力-好动”得分低于对照组,差异都具有统计学意义(P<0.05)。说明钒化合物能增加接钒工人的消极情绪(包括紧张、抑郁、愤怒、疲劳、困惑),降低积极情绪(有力)。以性别分类,发现钒化合物增加男性接钒工人的消极情绪,降低积极情绪;对女性只表现为降低积极情绪。以工龄分类,发现工龄<10年,差异没有统计学意义(P>0.05);10年~工龄段,接钒组积极情感状态得分低于对照组,消极情感状态得分高于对照组,差异均有统计学意义(P<0.05);20年~工龄段,接钒组积极情感状态得分低于对照组,差异有统计学意义(P<0.05),消极情感状态得分差异没有统计学意义。
     神经行为方面,接钒组和对照组最快反应时和平均反应时差异没有统计学意义(P>0.05);数字广度上,顺序得分要高于对照组,差异有显著性(P<0.05),倒序低于对照组,差异没有显著性(P>0.05);圣地安娜提转敏捷度方面,无论是习惯手或非习惯手,接钒组的得分均低于对照组,且差异有统计学意义(P<0.05);接钒组数字译码和视觉保留得分均低于对照组,差异有统计学意义(P<0.05);目标追踪方面,接钒组正确点数低于对照组,错误点数高于对照组,准确率也低于对照组,差异均具有统计学意义(P<0.05)。分性别比较,男性较女性敏感,表现在圣地安娜提转敏捷度、数字译码、视觉保留、目标追踪等指标,均是男性接钒组和对照组比较,差异有统计学意义,而女性没有统计学意义。分工龄比较,多数指标在10~年工龄段表现出差异。说明不同的神经行为功能效应对钒化合物的敏感程度不一样,而且,受调查对象的年龄影响。对钒化合物越敏感的指标,出现时间越早,而随着年龄的增长,钒化合物的损伤效应受年龄增长的退化效应干扰而变得不明显。
     采用因子分析方法,提取了7个公因子。其分析结果与神经行为功能的多元分析结果是一致的。
     2.偏钒酸钠对大鼠神经行为功能的影响
     将受试大鼠分为偏钒酸钠高、中、低剂量组,同时设阳性对照组(氯化锰)和空白对照组(蒸馏水),采用灌胃染毒的方式染毒30天。所有大鼠均做开阔场实验、转棒实验和水迷宫实验,主要反应大鼠认知能力、运动活力和运动协调能力。一共测试4次,分别为第0天(灌胃前)、第30天(灌胃结束)、第40天(灌胃停止后10天)、第50天(灌胃停止后20天)。
     实验表明偏钒酸钠具有胃肠道毒性和呼吸道毒性,表现为:①灌胃结束时只存活65只大鼠,另外25只大鼠死亡,其原因主要为上述两种毒性反应;②偏钒酸钠染毒组(尤其是高剂量组)大鼠体重较空白对照组低。
     神经行为功能评价结果发现:①偏钒酸钠染毒致使大鼠行走格子数下降,有随偏钒酸钠浓度升高而格子数减少的趋势,但直立次数变化不显著;②在棒上的停留时间,低剂量组与空白对照组时间差异不大,中剂量组与阳性对照组时间接近,说明偏钒酸钠可导致大鼠运动协调能力下降;③记忆力方面,偏钒酸钠各剂量组到达终点的时间与对照组比较没有表现出显著差异,错误次数方面,偏钒酸钠各剂量组次数较对照组高,而且中剂量组的大鼠错误次数与氯化锰组较接近。
     3.偏钒酸钠染毒大鼠脑组织病理学检查
     在灌胃结束后的第30天,分别从中剂量组、低剂量组、阳性对照组、空白对照组随机抽取10只大鼠做病理切片,高剂量组只剩下4只,全部处死做病理切片。切片位置为大鼠脑组织正中矢状面,包括脑干、小脑和海马,重点观察这三个部位有无病理学改变。
     病理切片结果显示,所有大鼠的脑干、小脑及脑干均未见明显病变。尽管切片中可见脑膜灶性或小片状出血、脑膜增厚、室管膜下胶质细胞增生、大脑皮质星形胶质细胞增生、胶质囊肿等病变类型,但病变周围均无炎性反应,且不同剂量组之间没有表现出明显差异,故认为偏钒酸钠灌胃30天还不能引起海马、小脑及脑干部位出现病理性改变。
     综上,在日常生活环境中钒负荷越来越高,以及接触钒化合物的职业人群数量庞大的背景下,评价钒化合物是否具有神经行为功能及其效应有较强的实际意义。本文全面系统地研究了钒化合物的神经毒性,探讨了职业人群神经行为的变化,积累了人群流行病学调查资料。通过对钒化合物的神经行为毒性进行了综合性评价(即人群神经行为功能变化、大鼠行为改变和大鼠脑组织病理学诊断),认为钒化合物具有神经行为毒性,损害神经系统后表现出的效应跟接触者的性别和接触时间有关。具体的效应为:①钒化合物可增加接钒工人的消极情绪(包括紧张、抑郁、愤怒、疲劳和困惑),降低接钒工人的积极情绪(有力);②动物实验和人群流行病学调查均表明钒化合物可降低运动协调性:③钒化合物对短期记忆能力的影响还不明确,需做进一步的研究。
Vanadium is one of the main chemical elements of fossil fuel and is abundant in petroleum and coal. In recent years along with China's fast growing economy, consumption of energy products increases quickly. Vanadium enters into the atmosphere with gas produced by the burning of much petroleum and coal, thus renders all people exposed in increasing vanadium burden. At the same time, vanadium is widely used in petroleum chemical engineering, steel smelting, welding and catalyst...etc. as an important chemical element. Therefore the number of occupational people who are exposed to vanadium compound is quite huge.
     The nervous system is the most sensitive to poisonous or hazardous factors and usually is the first organ to be injured when one is exposed to those factors, causing the body's behavior change in early days. Many researches concerning the toxicity of vanadium compound have no involved this aspect, and there is especially lack of epidemiological study. This research aims to evaluate whether vanadium compound has toxicity to neurobehavioral effect and elaborate its effect characteristic. The thesis is divided into three parts: test on neurobehavioral function among people; evaluation on neurobehavioral function among rats; pathological diagnosis. The following is the results of these three parts.
     1. Vanadium compound's influence on neurobehavioral function among workers exposed to vanadium
     We adopted the NCTB (Neurobehavioral Core Test Battery) recommended by the World Health Organization and tested 193 workers exposed to vanadium (exposed group) and 273 workers unexposed (control group). There was no statistically significant difference between two groups in gender distribution. Educational background in the control group was higher than that in the exposed group (P<0.05). For the average age, there is no significant differences between two groups, respectively 35.9 + 6.7 in exposed group and 34.5 + 5.6 in control group. Also there is no significant differences for work duation, respectively 16.6 + 6.8 in exposed group and 14.3 + 6.2 in control group. Vanadium dust density in the exposed group's workshops exceeded the occupational exposure limit for nearly 20 times in general, with some differences among each workshop. There was no vanadium dust tested in the control group's workshops. Blood vanadium density test showed that almost all blood vanadium densities of exposed workers exceeded occupational exposure limit about 10-20 times averagely.
     After adjusting mixing factors, the NCTB emotion test results showed that workers exposed to vanadium got higher scores than control group workers in "Tension-anxiety", "Depress-dejection", "Anger-hostility", "Fatigue-inertia", "Confusion-bewilderment", while they got lower scores in "Vigor-activity", with all differences statistically significant (P<0.05). The results indicated that the vanadium compound increased the negative motion (including anxiety, depression, anger, fatigue, confusion) in workers exposed to vanadium, and decreased the positive motion (activity). After splitting the data according to gender, the results displayed that vanadium compound increased negative motion and decreased positive motion in male workers exposed to vanadium, while in female it only decreased positive motion. After splitting the data according to work duration, the results displayed that among workers less than 10 years, there was no statistically significant difference; among those between 10 and 20 years, vanadium compound increased negative motion and decreased positive motion in exposed group and the differences were statistically significant (P<0.05); among those over 20 years, vanadium compound increased negative motion in exposed group and the difference was statistically significant (P<0.05) while there was no statistically significant difference in scores of negative emotion between two groups.
     As to neurobehavioral, there were no statistically significant differences in simple reaction time between two groups (P>0.05); As to digit span, the exposed group got a higher scores in forward and a lower scores in backword with no statistically significant differences (P>0.05); As to Santa Ana, the exposed group got a lower scores either with habitual or non-habitual hand and the difference was statistically significant (P<0.05); as for digit symbol and Benton visual retention, the exposed group got lower scores and the differences were statistically significant (P<0.05); as to pursuit aiming, the exposed group got less right points , more wrong points as well as a lower exactness rate than the control group and the differences were statistically significant (P<0.05). After splitting the data according to gender, we found that male workers were more sensitive than females, as the differences were statistically significant (P<0.05) in indexes of Santa Ana, digit symbol, Benton visual retention, pursuit aiming etc. in male workers from two groups, while there was no statistically significant differences in female workers. After splitting the data according to work duration, we found that most indexes had statistically significant differences in workers between 10 and 19 years. The results indicated that the sensitivity of different nerve behavior functions to vanadium compound varied, and was influenced by workers' age. The more sensitive indexes were, the earlier these functions change appeared. Yet along with the growth of age, the harm effect of vanadium compound decreased because of the aging effect interference.
     We extracted 7 main compositions using the Main Composition Analysis method. Its analytical results were in accordance with the multivariate analysis results of nerve behavior function.
     2. Sodium metavanadate's influence upon the neurobehavioral function of rats
     The exposed rats were divided into three dose groups: high dose, medium dose and low dose. At the same time we adopted a positive control group (manganese chloride) and blank control group (distilled water). All rats were made by intragastric administration for 30 days. Then all rats finished three tests, including Open Field Test, Rotarod and Maze experiment, mainly reflecting cognition ability, sport vitality and sport coordinate ability. Totally we did tests for 4 times, respectively on the 0 days (before stomach infusion), 30 days (just after stomach infusion), 40 days (10 days after stomach infusion) and 50 days (0 days after stomach infusion).
     Experiments indicated that sodium metavanadate showed a toxicity to gastrointestinal and respiratory, which was reflected as follows:①Only 65 rats survived, and 25 rats died. The main reasons for death might the two kinds of toxicity mentioned above;②Rats in sodium metavanadate group (especially in the high dose group) had lower weight than those in blank control group.
     Results of the neurobehavioral function evaluation showed:①As to the rats exposed to sodium metavanadate, the higher dose they were exposed to, the less lattices they could walk through. But there were not so much differences in the times for straighten;②There were not too many differences between results of rats in the low dose group and that of rats in the blank control group, while results of rats in the high dose group was similar to that of rats in the positive control group. This results indicted that sodium metavanadate could decrease the rats's coordinate ability ?When it came to memory, there was not much difference in the time it took rats to arrive at the end between each exposed group and their corresponding control group. As to times of mistakes, it was higher in each exposed group than that in their corresponding control group. The times of mistakes in medium and high dose groups were close to that in manganese chloride groups.
     3. Pathology test to rat brain tissue exposed to sodium metavanadate
     On the 30th days after intragastric administration, 30 rats were chosed randomly with each 10 from medium dose group, low dose group, positive control group and blank control group respectively as samples for pathologic section. All the 4 rats survived in the high dose group were killed for pathologic section. The position is median sagittal plane of brain, including cerebrum, cerebellum and hippocampus. We mainly concerned whether there were any pathologic changes in these three parts.
     The pathologic section results showed that there were no significant pathological changes in the cerebrum, cerebellum, hippocampus and brain stem in all rats. Though there are some changes found in section, such as hemorrhage and thickening in meninges, proliferation of gliocyte cell in hypoependyma, proliferation of horizontal cell in brain mantle, cyst, etc. No inflammation was found nearby pathologic parts, and the difference wasn't statistically significant in groups. As a result, we thought sodium metavanadate wouldn't cause pathological changes in the brain, cerebellums and brain stems.
     In general, as the vanadium burden keeps rising in our daily environment and the number of occupational workers exposed to vanadium is quite huge, it is practically meaningful to evaluate whether vanadium compound has toxicity to neurobehavioral function and its effect characteristics. This thesis studied the nerve toxicity comprehensively and systematically. It explored the neurobehavioral changes in occupational group and accumulated epidemiological data. After a comprehensive evaluation on vanadium compound's neurobehavioral toxicity (including neurobehavioral changes among people, behavior changes of rats and brain pathology test of rat), we concluded that vanadium compound had neurobehavioral toxicity, and the effect characteristics were relative with gender and time of exposure. The specific effect characteristics included:①vanadium compound can increase the negative motion (including anxiety, depression, anger, fatigue, confusion) and decrease the positive motion (activity) in workers exposed to vanadium.②both animal experiment and epidemiological investigation indicated that vanadium compound can lower the coordination ability;③it is not sure that vanadium compound might decrease short-term memory and further research is needed.
引文
1 Kitani S, Silva N R, Morita Y, et al. Global environmental pollutant substance vanadium activates mast cells and basophiles at the late phase in the presence of hydrogen peroxide. Environmental Toxicology and Pharmacology, 1998, 6: 1-12
    2 邹宝方,何增耀.钒的环境化学.环境污染与防治,1993,(2):26-31
    3 Nadal M, Schuhmacher M, Domingo JL. Metal pollution of soils and vegetation in an area withpetrochemical industry. Science of the Total Environment, 2004, 321: 59-69
    4 Liu Y, Woodin MA, Smith TJ, et al. Exposure to fuel-oil ash and welding emissions during the overhaul of an oil-fired boiler. J Occup Environ Hyg. 2005, 2 (9): 435-443
    5 Gummow B, Botha CJ, Noordhuizen JP, et al. The public health implications of farming cattle in areas with high background concentrations of vanadium. Preventive VeterinaryMedicine, 2005, 12, 72 (3): 281-290
    6 S'anchez I, Lopez P, Mussali P, et al. Vanadium concentrations in lung, liver, kidney, testes and brain alter the inhalation of 0.02M of V2O5, An experimental model in mice. Toxicol Sci, 2003, 72:1453
    7 Sabbioni E, Kueera J, Pietra R, et al. A critical review on normal concentrations of vanadium in human blood, serum, and urine. The Science of the Total Environment, 1996, 188:49-58
    8 Riveros-Rosas H. Personal exposure to elements in Mexico city air. The science of the Total Environment, 1997, 198:79-96
    9 Mclnnes G.. Multi-element and sulphate in particulate surveys: summary of fourth year's results. Stevenage: Warren Spring Laboratory, 1981, 1: 9-16
    10 Nepi B S, Sadasivan S, Mishra U C. Aerosol composition and sources in urban areas in India. Atoms Environ, 1987, 21:1259-1266
    11 李顺品,温沙洛,周兰萍.攀枝花市学龄前儿童血铅钒钛水平的调查分析.中国妇幼保健,2005,20(1):117-118
    12 Catty J, Kloog N, Cohen Y, et al. The effect of air pollution on the integrity of chlorophyll, spectral reflectance response, and on concentrations of nickel, vanadium, and sulfur in the Lichen Ramlina durisaei. Environmental Research, 1997, 74: 174-187
    13 袁中文,林杰.五氧化二钒作业工人的健康调查.职业卫生与救援,1998,16(1):11-12
    14 周清.钒化合物对工人肺功能影响的研究.职业医学,1990,17(2):79-81
    15 Roshchih A V. Toxicologyof vanadium compounds used in modern industry. Hyg Sanit, 1967, 32: 345-352
    16 Worle-Knirsch JM, Kern K, Schleh C, et al. Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells. Environ Sci Technol, 2007, 41 (1): 331-336
    17 Woodin MA, Liu Y, Neuberg D, et al. Acute respiratory symptoms in workers exposed to vanadium-rich fuel-oil ash. Am J Ind Med, 2000, 37(4): 353-363
    18 Riley MR, Boesewetter DE, Kim AM, et al. Effects of metals Cu, Fe, Ni, V, and Zn on rat lung epithelial cells. Neurochem Res, 2004, 29 (7): 1365-1369
    19 Roshchin AV, et al. Vanadium-toxicity, metabolism, carrier state. Hyg Epidemiol Microbiol Immunol, 1980, 24(4): 377
    20 Thompson HJ, et al. Dietary vanadyl(Ⅳ) sulfate inhibits chemically induced mammary carcinogenesis. Carcinogenicity, 1984, 5: 849
    21 Ress NB, Chou BJ, Renne RA, et al. Carcinogenicity of inhaled vanadium pentoxide in F344/N rats and B6C3F1 mice. Toxicol Sci, 2003, 74 (2): 287-296
    22 张天宝.钒在大鼠妊娠期间经胎盘转运的研究.华西医学大学学报,1991,22(3):299
    23 张天宝,孙棉龄,李勇.五氧化二钒对大鼠胚胎中脑细胞增殖和分化的影响.癌变·畸变·突变,1998,10(2):81-84
    24 张天宝,孙棉龄.五氧化二钒对体外小鼠胚胎发育的影响.癌变·畸变·突变,1996,8(4):205-207
    25 Sanchez D J, Colomina M T, Domingo J L. Effects of vanadium on activity and learning in rats. Physiology & Behavior, 1998, 63(3): 345-350
    26 Poggioli R, Arlerri R, Bertolini A, et al. Behavioral and developmental outcomes of prenatal and postnatal vanadium exposure in the rat. Pharmacological Research, 2001, 43(4): 341-347
    27 Avila-Costa MR, Montiel FE, Colin-Barenque L, et al. Nigrostriatal modifications after vanadium inhalation: an immunocytochemical and cytological approach. Neurochem Res, 2004, 29 (7): 1365-1369
    28 Conri C, Simonoff M, Fleury B. Variations in serum vanadium levels during the treatment of mental depression. Biol Psychiat, 1986, 21:1335-1339
    29 Naylor G J. Vanadium and affective disorders. Biol Psychiat. 1983, 18: 103-112
    30 Naylor G J, Smith A H, Bryce-Smith D, et al. Tissue vanadium levels in manic-depressive psychosis. Psychol Med, 1984, 14: 767-772
    31 Sabbioni E, Marafante E. Relations between iron and vanadium metabolism. The exchage of vanadium between transferin and ferritin. Toxicol Environ Health, 1981, 8: 419-429
    32 Degamo H, Gohin M, Karlish S, et al. Electron paramagnetic studies and insulin like effects of vanadium in rat adiposities. Biochemistry, 1981, 20:5759-5799
    33 Hansen TV, Saseth J, Alexander J. The effects of chelating agents on vanadium distribution in the rat body and uptake by human erythrocytes. Arch Toxicol, 1982, 50:195-202
    34 Hamel FG, Duckworth WC. The relationship between insulin and vanadium metabolism in insulin target tissues. Mol Cell Biochem, 1995, 153: 95-102
    35 Barceloux DG. Vanadium. Toxicol Clin Toxicol, 1999, 37, 265-278
    36 陈自强,于继慧.世界卫生组织行为功能核心测试方法、指标评价及评判标准.中华预防医学杂志,1988,22(1),271-275
    37 梁友信.介绍WHO推荐的神经行为核心测验组合.工业卫生与职业病,1987,13(5):331-339
    38 北京医学院第三附属医院职业病科,等.钒对生产工人健康影响的研究,中华劳动卫生职业病杂志,1983,4:199
    39 黄瑞田,等.钒作业工人临床X线观察.中华预防医学杂志,1989,23(5):283
    40 满一晓,等.五氧化二钒对作业者健康的影响.中华劳动卫生职业病杂志,1987,5(2):117
    41 李正山,等.五氧化二钒车间劳动卫生学调查.中华劳动卫生职业病杂志,1987,5(5):279
    42 袁中文,等.钒作业工人肺功能的研究.中华劳动卫生职业病杂志,1987,5(4):186
    43 Zena G, et al. Acute vanadium pentoxide intoxication. Arch Environ Health. 1962, 9:202
    44 Matantseva.E. The state of the respiratory organs in workers coming into contract with vanadium pentoxide. Gig Tr Prof Zabo, 1964, 8: 3
    45 Roshchin. Vanadium metallurgy in the light of industrial hygine and question concerned with the prevention of occupational diseases and intoxication. Gig Tr Prof Zabol, 1964, 8: 36
    46 周清,等.炼钒工人的皮炎调查及其病因.中华劳动卫生职业病杂志,1987,8(2):75
    47 梁友信,陈自强.行为神经毒理学方法的回顾与展望.中华劳动卫生职业杂志,1999,17(2):66-68
    48 Anger WK. Neurobehavioral testing of chemicals impact on recommended standards. Neurobehavioral Toxicology and Teratology, 1984, 6: 147
    49 Baker EL, et al. Monitoring neurotoxins in industry: Development of a neurobehavioral test batter. OccupMed, 1983, 25: 125
    50 Chia SE, Foo SL, Gan SL, et al. Neurobehavioral function among workers exposed to manganese ore. Scand J Work Environ Health, 1993, 19: 264-270
    51 Lucchini R, Selis L, Folli D, et al. Neurobehavioral effects of manganese in workers from a ferroalloy plant after temporary cessation of exposure. Scand J Work Environ Health, 1995, 21: 143-149
    52 林洁,陈自强,梁友信.锰致神经行为改变的因子分析.中华劳动卫生职业病杂志,1999,17(2):98-99
    53 陈自强,于继彗,梁友信,等.世界卫生组织神经行为核心测试方法的研究及现场应用.中国行为医学杂志,1992,1(2):2-5
    54 曾庆立,陈玉兰,王咸洲,等.喷漆作业对工人神经行为功能的影响.中华劳动卫生职业病杂志,1993,11(2):94-95
    55 陈自强,等.职业性汞接触对机体行为功能影响的研究.工业卫生与职业病,1990,16:269
    56 魏进军,魏守才,阎莉,等.锰对作业工人神经行为功能影响的研究.中国工业医学杂志,1994,7(3):147-148
    57 冯会民,武文方,董志伟.铆焊作业对工人神经行为功能影响.中国临床康复,2002,19(6):2914-2915
    58 胡传来,杨永坚,钟灵云,等.铝电解作业工人神经行为功能研究.中国工业医学杂志,1999,12(4):206-208
    59 王秀玲,金锡鹏,傅华,等.接触二甲苯的职业人群神经行为变化.劳动医学,1998,15(4):196-200
    60 武文方,冯会民、董志伟,等.噪声对人体神经行为功能影响及其性别差异的研究.河南预防医学杂志,2000,11(3):132-135
    61 刘书乾,刘爱军,刘景芳,等.噪声对纺织女工神经行为功能的影响.中国公共卫生学报,1993,12(4):205-207
    62 高志祥,吴丽娥,程世华.铅对作业工人神经行为功能的影响.包头医学院学报,2000,21(4):363-364
    63 夏洁,宋秀丽,陈茂勋.装配作业对女工神经行为功能的影响.医药论坛杂志,2004,25(13):6-7
    64 陈自强,梁友信,时胜利,等.影响WHO神经行为核心测试组合的主要因素.中华劳动卫生职业杂志,1999,17(2):69-73
    65 郑玉新,梁友信.行为毒理学现场研究中的混杂因素及其控制.工业卫生与职业病,1993,19(3):152-155
    66 Bast-Pettersen R, Drablos PA, Goffeng LO, et al. Neuropsychological deficit among elderly workers in Aluminum production. Am J Ind Med, 1994, 25: 649
    67 Dudek B, Gralewicz K, Jakubow S, et al. Neurobehavioral effects of experimental exposure to toluene, xylene and their mixture. Pol J Occup Med, 1990, 3: 109
    68 Olson BA, Gamberale F, Iregren A. Co-exposure to toluene and p-xylene in man: central nervous fuctions. Br J Ind Med, 1985, 42: 117
    69 陆荣柱,陈自强,金复生,等.丙稀腈作业人群的神经行为特征研究.中华劳动卫生职业病杂志,2001,19(6):408-411
    70 Johnson BL, et. al. Prevention of Neurotoxic Illness in Working Population, Published on Behalf of the World Health Organization. John Wiley and Sons, 1987
    71 Barceloux DG. Vanadium. Toxicol ClinToxicol, 1999, 37:265-278
    72 王世俊.金属中毒(第二版).北京,人民卫生出版社,1987:425-431
    73 LEWIS CE. The biological effects of vanadium. Ⅱ. The signs and symptoms of occupational vanadium exposure. Am Med Assoc Arch Ind Health, 1959, 19: 497-503
    74 桂宝康主编.职业卫生与安全百科全书(上卷).中国大百科全书出版社,1987:490-491
    75 Johnson BL. Prevention of neurotoxic illness in working populations. John Wiley Sons, 1987:278-285
    76 任引津主编.职业病进展(第二卷).人民卫生出版社,1986:151-186
    77 王洪林,等.汞作业工人的行为心理测验.劳动医学,1988,5(3):8-10
    78 郭笃发.环境中铅和镉的来源及其对人和动物的危害.环境科学进展,1994,104:341-350
    79 陈贤雄,金雅娟.铅对儿童生长发育智力行为的影响.广东微量元素科学,2001,8(10):6-9
    80 丁训诚.铅与脑脂质过氧化作用.中国药理学与毒理学杂志,1998,2(4):293-296
    81 Chandra SV, et al. Behavioral and Neurochemical Changes in Rats Simwltaneously Exposedto Manganese and Lead. Arch Toxicol, 1981, 49: 49-56
    82 Chandra SV. Psychiatric Illness due to Manganese Poisoning. Acta Psychiat Scand. 1983, 303:49-54
    83 Schuler P, et al. Manganese Poisoning. Industrial Medicine and Surgery, 1957, 4: 167-173
    84 黄旭培.重金属的行为毒理学.国外医学卫生学分册,1985;6:321-324
    85 葛利辉,姜岳明,纪淑琴,等.对氨基水杨酸钠对染锰大鼠行为的影响.卫生毒理学杂志,1991,5(3):186-187,210
    86 林洁,陈自强,梁友信,等.染锰大鼠神经行为功能改变与单胺类递质的关系.中华劳动卫生职业病杂志,1999,17(2):81-84
    87 张德兴,贺新江,张文光,等.锰对大鼠子代锥体外系发育的影响.卫生研究,1999,28(4):214-217
    88 Chandra SV, et al. Manganese induced behavioral dysfunction and its neurochemiacl mechanism in growing mice. J Neurochem, 1979, 33(6): 1217
    89 Wennberg. Manganese exposure in steel smelters: A health hazard to the nervous system. Scand J Work Environ Health, 1991, 17: 255
    90 Newland MC, Weiss B. Persistent effects of manganese on effortful responding and their relationship to manganese accumulation in the primate globus pallidus. Toxicol Appl Pharmacol, 1992, 113: 87-97
    91 郑玉新,等.点焊作业对工人神经行为功能影响的研究.中国工业医学杂志,1994:7(3):145-146
    92 Chia SE, et al. Neurobehavioral functions among workers exposed to manganese ore. Scand J Work Environ Health, 1993, 19: 264-270
    93 陈自强,于继慧,陆胜利,等.锰对机体神经行为功能影响的研究.中国工业医学杂志,1993,6(1):2-5
    94 杨伯宁,张德兴,檀进发,等.孕期锰染毒对子鼠神经行为的影响.广 西医科大学学报,1998,15(2):5-7
    95 董宣.锰对作业工人记忆力损害的调查.中国公共卫生,1994,10(3):123-124
    96 Oner G, Senturk UK. Reversibility of manganese induced learning defect in rats. Food Chem Toxicol, 1995, 33: 559-563
    97 Nechay R, Saunders JP. Inhibition by vanadium of sodium and potassium dependent adenosinetriphosphatase derived from animal and human tissues. J environ Pathol Toxicol, 1978, 2: 247-262
    98 Svoboda P, Teisinger J, Pilar J, et al. Vanadyl (VO~(2+)) and vanadate (VO~(3-)) ions inhibit the brain microsomal. Na, K-AtPase with similar affinities Protection by transferrin and noradrenaline. Biochem Pharmacol, 1984, 33: 2485- 2491
    99 Montero MR, Guerri C, Ribelies M, et al. Inhibition of protein synthesis in cell cultures by vanadate and in brain homogenates of rats fed vanadate. Physiol Chem Physics, 1981, 13: 281-287
    100 Witkowska D, Brzezinski J. Alteration of brain noradrenaline, dopamine, and 5-hydroxytryptamine levels during vanadium poisoning. Pol J Pharmacol Pharm, 1979, 31: 393-398
    101 Seljankina KP. Data for determining the maximum permissible content of vanadiumin water basins. Gig J Sanit, 1961, 26(10): 6-12
    102 Pazhynich VM. Maximum permissible concentration of vanadium pentoxide in the atmosphere. Hyg Sanit, 1966, 31:6-11
    1 Poucheret P, Verma S, Grynpas MD, et al. Vanadium and diabetes. Molecular CellBiochemi, 1998, 188: 73-80
    2 Tsiani E, Fantus IG. Vanadium compounds, Biological actions and potential as pharmacological agents. Trends Endocrinol Metab, 1997, 8:51-58
    3 Goldwasser I, Gefel D, Gershonov E, et al. Insulin-like effects of vanadium, Basic and clinical implications. Inorg Biochem, 2000, 80: 21-25
    4 Rhonda MB, Frederick GH. Transdermally delivered peroxovanadium Can lower blood glucose levels in diabetic rats. International Journal of Pharmaceutics, 1999, 183: 117-123
    5 Namikawa K, Kinsoku A, Minami T, et al. Relationship between age and nephrotoxicity following single low-dose cisplatin (CDDP) injections in rats. BioPharm Bull, 1995, 18: 957-960
    6 Shustov G.金属与代谢.北京:科学普及出版社,1983,422-424
    7 Kitani S, Silva NR, Morita Y, et al. Global environmental pollutant substance vanadium activates mast cells and basophiles at the late phase in the presence of hydrogen peroxide. Environmental Toxicology and Pharmacology, 1998, 6: 1-12
    8 邹宝方,何增耀.钒的环境化学.环境污染与防治,1993,(2):26-31
    9 Sabbioni E, Kueera J, Pietra R, et al. A critical review on normal concentrations of Vanadium in human blood, serum, and urine. The Science of the Total Environment, 1996, 188:49-58
    10 Riveros-Rosas H. Personal exposure to elements in Mexico city air. The science of the Total Environment, 1997, 198: 79-96
    11 Mclnnes G.. Multi-element and sulphate in particulate surveys: summary of fourth year's results. Stevenage: Warren Spring Laboratory, 1981, 1: 9-16
    12 Nepi B S, Sadasivan S, Mishra U C. Aerosol composition and sources in urban areas in India. Atoms Environ, 1987, 21:1259-1266
    13 李顺品,温沙洛,周兰萍.攀枝花市学龄前儿童血铅钒钛水平的调查分析.中国妇幼保健,2005,20(1):117-118
    14 Carty J, Kloog N, Cohen Y, et al. The effect of air pollution on the integrity of chlorophyll, spectral reflectance response, and on concentrations of nickel, vanadium, and sulfur in the Lichen Ramlina durisaei. Environmental Research, 1997, 74:174-187
    15 Nriagu JO, Pacyna JM. Quantiative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 1988, 333:134-139
    16 Nadal M, Schuhmacher M, Domingo JL. Metal pollution of soils and vegetation in an area withpetrochemical industry. Science of the Total Environment, 2004, 321: 59-69
    17 Liu Y, Woodin MA, Smith TJ, et al. Exposure to fuel-oilash and welding emissions during the overhaul of an oil-fired boiler. J Occup Environ Hyg. 2005, 2 (9): 435-443.
    18 Gummow B, Botha CJ, Noordhuizen JP, et al. The public health implications of farming cattle in areas with high background concentrations of vanadium. Preventive Veterinary Medicine, 2005, 12, 72 (3): 281-290
    19 S' anchez I, Lopez P, Mussali P, et al. Vanadium concentrations in lung, liver, kidney, testes and brain alter the inhalation of 0.02M of V2O5, An experimental modelinmice. Toxicol Sci, 2003, 72: 1453
    20 Dimond E, Caravaca J, Benchimol A. Vanadium: Excretion, toxicity, lipid effect in man. American journal ofclinical nutrition, 1963, 12:49-53
    21 Sabbioni E, Marafante E. Relations between iron and vanadium metabolism. The exchange of vanadium between transferrin and ferritin. Toxicol Environ Health, 1981, 8:419-429
    22 Degani H, Gohin M, Karlish S, et al. Electron paramagnetic studies and insulin like effects of vanadium in rat adipocytes. Biochemistry, 1981, 20: 5795-5799
    23 Hansen TV, Aaseth J, Alexander J. The effects of chelating agents on vanadium distribution in the rat body and uptake by human erythrocytes. Arch Toxicol, 1982, 50:195-202
    24 Edel J, Sabbioni E. Retention of intratrachealy instilled and ingested tetravalent and pentavalent vanadium in rat. Trace Elem Electrolytes Health Dis, 1988, 21:23-30
    25 Hamel FG, Duckworth WC. The relationship between insulin and vanadium metabolism in insulin target tissues. Mol Cell Biochem, 1995, 153:95-102
    26 Domingo JL, Gomez M, Sanchz DJ, et al. Toxicology of vanadium compounds in diabetic rats: the action of chelating agents on vanadium accumulation. Cell Biochem, 1995, 153:233-240
    27 王云,魏复盛.土壤环境元素化学.北京:中国环境科学出版社,1995:231
    28 蔡宏道.现代环境卫生学.北京:人民出版社,1995:745-746
    29 Barceloux DG. Vanadium. Toxicol Clin Toxicol, 1999, 37:265-278
    30 Zene Z, et al. Human response to controlled vanadium pentoxide exposure. Arch Environ Health, 1967, 14:709
    31 林杰.尿钒的自然排泄速度EDTA趋钒效果.中华劳动卫生职业病杂志,1989,7(2):85
    32 西山敬太郎.钒的劳动卫生学的调查研究.四国医学杂志,1977,33(6):389
    33 RTECS: Registry of toxic effects of chemical substances, National Institute for occupational Safety and Health, Cincinati, OH, 1988
    34 王志勤,贾西平,田晓燕。一起五氧化二钒急性中毒的调查分析。职业与健康,1999,5(5):4-5
    35 WHO: Environmental Health Criteria 81, Vanadium Geneva, 1988
    36 Woodin MA, Liu Y, Neuberg D, et al. Acute respiratory symptoms in workers exposed to vanadium-rich fuel-oil ash. Am J Ind Med, 2000, 37(4): 353-363
    37 Todaro A, et al. Acute exposure to vanadium containing dusts: the health effects and biological monitoring in a group of workers employed in bouler maintenance. Med Lav, 1991, 82(2): 142
    38 NIOSH: Meditext (R) (Medical Management), 1987-1996 Micromedex Inc, Vol 28, Expires 96
    39 北京医学院第三附属医院职业病科,等.钒对生产工人健康影响的研究,中华劳动卫生职业病杂志,1983,4:199
    40 黄瑞田,等.钒作业工人临床X线观察.中华预防医学会杂志,1989,23(5):283
    41 周清.钒化合物对工人肺功能影响的研究.职业医学,1990,17(2):79-81
    42 满一晓,等.五氧化二钒对作业者健康的影响.中华劳动卫生职业病杂志,1987,5(2):117
    43 李正山,等.五氧化二钒车间劳动卫生学调查.中华劳动卫生职业病杂志,1987,5(5):279
    44 袁中文,等。钒作业工人肺功能的研究。中华劳动卫生职业病杂志,1987,5:186
    45 Riley MR, Boesewetter DE, Kim AM, et al. Effects of metals Cu, Fe, Ni, V, and Zn on rat lung epithelial cells. Neurochem Res, 2.004, 29 (7): 1365-1369
    46 Curran GL. Effect of certain transition group elements on hepatic synthesis of cholesterol in the rat. J biol Chem, 1954, 210: 765-770
    47 Snyder F, Cornatzer WE. Vanadium inhibition of phospholipid sulphydryl activity in rat liver. Nature (Lond), 1958, 182: 462
    48 安倍,宏彦,谷川,等.一起急性五氧化二钒中毒肝脏损害症状.日本消化器病学会杂志,1973,70(12):1389
    49 Pillips TD, et al. Vanadium chemistry and the kidney. Fed Pro, 1983, 42(13): 2969
    50 Bayati MA, et al. Time and dose-response study of the effects of vanadium on rats: morphological and biochemical changes in organs. J Environ Patho Toxicol Oncol, 1989, 9(5): 435
    51 Lewis CE. The biological actions of vanadium. Am Med Assoc Arch Ind Health, 1959, 20(5): 455
    52 Steffen RP, et al. Effects of prolonged dietary administration of vanadium on blood pressure in the rat. Hypertension, 1981, 3: 173
    53 Cohen MD, Wei CI, Tan H, et al. Effect of ammonium metavanadate on the murine response. Toxicol Environ Health, 1986, 19: 279-298
    54 Cohen MD, Chen CM, Wei CI. Decreased resistance to Listeria monocytogenes in mice following vanadate expostire: effect upon the function of macrophages. Int J Immunopharmac, 1993, 11: 285-292
    55 Sharma RP, Bourcier DR, Brinkerhpff CR, et al. Effects of vanadium on immunologic functions. Am J ind Med, 1981, 2(2): 91-99
    56 Sanchez D J, Colomina M T, Domingo J L. Effects of vanadium on activity and learning in rats. Physiology & Behavior, 1998, 63(3): 345-350
    57 Poggioli R, Arlerri R, Bertolini A, et al. Behavioral and developmental outcomes of prenatal and postnatal vanadium exposure in the rat. Pharmacological Research, 2001, 43(4): 341-347
    58 张天宝,孙棉龄,李勇.五氧化二钒对大鼠胚胎中脑细胞增殖和分化的影响.癌变·畸变·突变,1998,10(2):81-84
    59 Avila-Costa MR, Montiel FE, Colin-Barenque L, et al. Nigrostriatal modifications after vanadium inhalation: an immunocytochemical and cytological approach. Neurochem Res, 2004, 29 (7): 1365-1369
    60 Pazhynich VM. Maximum permissible concentration of vanadium pentoxide in the atmosphere. Hyg Sanit, 1966, 31: 6-11
    61 袁中文,林杰.五氧化二钒作业工人的健康调查.职业卫生与救援,1998,16(1):11-12
    62 Conri C, Simonoff M, Fleury B. Variations in serum vanadium levels during the treatment of mental depression. Biol Psychiat, 1986, 21:1335-1339
    63 Naylor G J. Vanadium and affective disorders. Biol Psychiat. 1983, 18:103-112
    64 Naylor G J, Smith A H, Bryce-Smith D, et al. Tissue vanadium levels in manic-depressive psychosis. Psychol Med, 1984, 14: 767-772
    65 张天宝,杨在昌,孙棉龄,等。五氧化二钒对雄性大鼠生殖功能的影响。卫生毒理学杂志,1996,10(3):197
    66 张天宝,杨在昌,孙棉龄,等。五氧化二钒对雌性大鼠生殖功能的影响。卫生毒理学杂志,1996,10(3):196
    67 李宏霞,杨在昌,张天宝,等。钒对睾丸生精细胞的体外毒性研究。卫生毒理学杂志,1995,9(3):171
    68 张天宝,孙棉龄.五氧化二钒对体外小鼠胚胎发育的影响.癌变·畸变·突变,1996,8(4):205-207
    69 张天宝.钒在大鼠妊娠期间经胎盘转运的研究.华西医学大学学报,1991,22(3):299
    70 Roshchin AV, Ordzhonikidze EK, Shalganova IV. Vanadium toxicity, metabolism, carrier state. J Hyg Epidemiol Microbiol Immunol, 1980, 24(4): 377-383
    71 Hackett PL, Kelman BJ. Availability of toxic trace metals to the conceptus. Sci Total Environ, 1983, 28:433-442
    72 Lahav M, Rennert H, Barzilai D. Inhibition by vanadate of cyclic AMP production in rat corpora lutea incubated in vitro. Life Sci, 1986, 39(26): 2557-2564
    73 曾昭华,曾雪萍.地下水中钒的形成及其与人群健康的关系.云南环境科学,1996,15(3):56-57
    74 曾昭华,廖苏平.中国癌症与土壤环境中钒元素的关系.吉林地质,2002,21(3):93-98
    75 Rojas E, Herrera LA, Poirier A, et al. Are metals dietary carcinogens. Mutation Research, 1999, 443:157
    76 Stoner GD, Shimkin MB, Troxell MC, et al. Test for carcinogenicity of metallic compounds by the pulmonary tumor response in strain a mice. Cancer Res, 1976, 36:1744-1747
    77 Thompson HJ, Chasteen ND, Meeker LD. Dietary vanadyl (IV) sulfate inhibits chemically-induced mammarycarcinogenesis. Carcinogenicity, 1984, 5: 849-851
    78 Kanisawa M, Schroeder HA. Life-term studies on the effects of arsenic, germanium, tin, and vanadium on spontaneous tumours in mice. Cancer Res, 1967, 27: 1192-1195
    79 Schroeder HA, et al. A sensible look at air pollution by metals. Arch environ Health, 1970, 21:798-806
    80 Schroeder HA, Mitchener M. Life-term effects of mercury, methylmercury, and nine other trace metals on mice. J Nutr, 1975, 105(4): 452-458
    81 Kopf-Maier P, Kopf H. Vanadocene dichloride: another anti-tumour agent from the metallocene series. Z Naturforsch, 1979: 805-807(in German).
    82 Kopf-Maier P, Hesse B, Kopf H. Tumour inhibition by metallocenes: effect of titanocene and hafnocene dichlorides on Ehrlich ascites tumour in mice. J Cancer Res clin Oncol, 1980, 96(1): 43-51
    83 Kingsnorth AN, Lamuraglia GM, Ross JS, et al. Vanadate supplements and 1,2-dimethylhydrazine induced colon cancer in mice: increased thymidine incorporation without enhanced carcinogenesis. Br J Cancer, 1986, 53(5): 683-686
    84 Thompson HJ, Chasteen ND, Meeker LD. Didtary vanadyl(IV) sulfate inhibits chemically induced mammary carcinogenesis. Carcinogenesis, 1986, 5: 849-851
    85 Djordjevic C, Wampler GL. Anti-tumor activity and toxicity of peroxo heteroligand vanadates (V) in relation to biochemistry of vanadium. J Inorg Biochem, 1985, 25: 51-55
    86 Sakurai H, Tamura H, Okatani K. Mechanism for a new antitumor vanadium complex: hydroxyl radical dependent DNA cleavage by 1,10- phenanthrolinevanadyl complex in the presence of hydrogen peroxide. Biochem Biophys Res Commun, 1995, 206: 113-137
    87 Bishayee A, Chatterjee M. Inhibitory effect of vanadium on rat liver carcinogenesis initiated with diethyi, nitrosamine and promoted by Phenobarbital. Br J Cancer, 1995, 71: 1214-1220
    88 周清,等.炼钒工人的皮炎调查及其病因.中华劳动卫生职业病杂志,1987,5(5):279
    89 Belehava VA. Vanadization of teeth as a means of preventing dental caries. Nauchn Irkutsk Med Inst, 1969, 95: 20
    90 林杰.钒及其化合物与中毒防治.北京:中国标准出版社,2000:53-154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700