猪繁殖性状相关基因遗传效应及表达规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪的繁殖性状,包括初情期、产仔数、初生重等,是现代猪生产中重要的经济性状,繁殖性能的高低直接影响到猪场的生产效率和经济效益;同时,也是一个低遗传力的数量性状,容易受到环境条件的影响。研究猪繁殖性状相关的基因对于揭示影响猪繁殖性能遗传机制和高繁殖力猪的选育具有重要意义。候选基因法是一种定位数量性状基因座(QTL)的主要方法,该方法是依据生物体内已知的或可能的生理生化过程来选择相关基因并对其与表型的关系进行探讨。利用候选基因法定位主效基因在畜禽中已有许多成功的范例,如鸡性连锁矮小基因、猪应激综合征基因、猪雌激素受体基因等。
     本研究利用候选基因法分析了繁殖性状相关基因FSHβ、FSHR、LHR、PGR、KISS-1、 GPR54与小梅山猪产仔性能的关系。采用混合基因组DNA池与测序技术对上述6个基因的单核苷酸多态性(Single nucleotide polymorphism, SNP)进行筛选;采用PCR-SSCP、 PCR-RFLP、错配PCR-RFLP、直接PCR等技术对SNPs进行大规模检测,并与小梅山猪的繁殖性状进行关联分析;采用RQ-PCR技术研究上述6个基因在小梅山猪下丘脑-垂体-性腺轴系统中的表达规律;采用ECLIA技术研究血清中FSH、LH、E2、P4等生殖激素在不同生长发育阶段中的变化规律。主要研究结果如下:
     1、以猪FSHβ基因为候选基因,对该基因的外显子区域进行扫描,共发现7个SNP。外显子1区域中未检测出突变位点,但在内含子1中检测出1个SNP,即C5807A;外显子2中检测出1个SNP,即C6699T;外显子3中检测出5个SNP,分别为A8753G、C8766T、 T8788C、A8880G、8943del;上述突变位点中,只有C6699T发生在CDS区域内,但未能引起氨基酸的改变,属于同义突变。小梅山猪、枫泾猪和大白猪FSHβ基因中分别有4、4和3个基因位点表现出多态性,并均为中度多态。连锁不平衡分析结果表明,上述7个突变位点间存在强连锁不平衡现象。相关分析结果表明,FSHβ基因FSHβ-1位点的BB型、FSHβ-2位点的DD型、FSHβ-3.1位点的FF型、FSHβ-3.2位点的HH型与单倍型组合H5H5(BDFH/BDFH)对2胎以上或所有胎次小梅山母猪的总产仔数(Total number born, TNB)和产活仔数(Number born alive, NBA)有显著或极显著影响;方差组分分析结果表明,2胎以上或所有胎次小梅山母猪的TNB和NBA的遗传在各位点上主要受到基因的加性效应的影响,单倍型组合H5H5为一个优势组合,可作为猪繁殖性状选育的一个分子标记。
     2、以猪FSHR基因为候选基因,对该基因的外显子区域进行扫描,共发现6个SNP。外显子1区域内检测到3个SNP,分别为C70T、C74G、C81T;外显子10中检测到3个SNP,分别为C1166T、T1491C、T1977C;其中,C74G的突变导致苏氨酸变为丝氨酸,即Thr13Ser, C1166T导致苏氨酸变为异亮氨酸,即Thr377Ile,其余突变均未能引起氨基酸的改变,属于同义突变。小梅山猪、枫泾猪和大白猪FSHR基因中分别有3、3和4个基因位点表现出多态性,小梅山猪FSHR-1位点为高度多态,其余为中度多态;枫泾猪的3个基因位点均为中度多态;大白猪FSHR-1位点为高度多态,其余为低度多态。相关分析结果表明,FSHR基因FSHR-1位点的AC型、FSHR-10.4位点的BB型、FSHR-10.5位点的DD型与单倍型组合H3H5对2胎以上或所有胎次小梅山母猪的TNB和NBA有显著或极显著影响;方差组分分析结果表明,2胎以上或所有胎次小梅山母猪的TNB和NBA的遗传在FSHR-1位点上主要受到基因显性效应的影响,在FSHR-10.4与FSHR-10.5位点上主要受到基因的加性效应的影响。
     3、以猪LHR基因为候选基因,对该基因的外显子区域进行扫描,共发现1个SNP。外显子11中1351bp处发生C→T的突变,即C1351T,未引起氨基酸的变化,属于同义突变。小梅山猪中检测出多态性,而枫泾猪和大白猪中未能检测出多态性。相关分析结果表明,LHR基因LHR-11.4位点的MN型对2胎以上或所有胎次小梅山母猪的TNB和NBA有显著或极显著影响;方差组分分析结果表明,2胎以上或所有胎次小梅山母猪的TNB和NBA的遗传在LHR-11.4位点上主要受到基因的显性效应的影响。
     4、以猪PGR基因为候选基因,对该基因的外显子区域进行扫描,共发现1个SNP。外显子1中1319bp处发生C→T的突变,即C1319T,未引起氨基酸的变化,属于同义突变。小梅山猪、枫泾猪和大白猪PGR基因中均检测出多态性。相关分析结果表明,对2胎以上或所有胎次小梅山母猪中,PGR基因PGR-1.6位点的AB型个体的TNB和NBA比AA型个体均高。
     5、以猪KISS-1基因为候选基因,对该基因的外显子区域进行扫描,共发现6个SNP。5’区域内检测到1个SNP,即A7G;外显子1中1个SNP,即G41T;内含子1中3个SNP,分别为633inde1、A859G、C1026A;外显子2中1个SNP,即G2343C。小梅山猪、枫泾猪和大白猪KISS-1基因中分别有4、5和5个基因位点表现出多态性,小梅山猪KISS-1基因中4个位点均为中度多态;枫泾猪中,KISS1-4位点为中度多态,其余位点均为低度多态;大白猪中KISS1-5位点为中度多态,其余位点均为低度多态。连锁不平衡分析结果表明,A7G与G41T、A7G与C1026A、G41T与C1026A间存在完全连锁不平衡现象。相关分析结果表明,KISS-1基因KISS1-3位点的AB型、KISS1-4位点的KL型、KISS1-6位点的MN型、KISS1-7位点的PQ型与单倍型组合H1H5(ALNQ/BKMP)对2胎以上或所有胎次小梅山母猪的TNB和NBA有显著或极显著影响;方差组分分析结果表明,2胎以上或所有胎次小梅山母猪的TNB和NBA的遗传在各位点上主要受到基因的显性效应的影响。
     6、以猪GPR54基因为候选基因,对该基因的外显子区域进行扫描,共发现3个SNP。外显子1中检测出1个SNP,即T245C;内含子2中1个SNP,即1984-1985bp间增加1个碱基C;外显子5中1个SNP,即T3295C,其中,T245C引起氨基酸的改变(亮氨酸→脯氨酸,即Leu35Pro)。小梅山猪、枫泾猪和大白猪GPR54基因中分别有3、2和3个基因位点表现出多态性,小梅山猪与枫泾猪各位点均为中度多态;大白猪GPR54基因中,GPR54-1.1位点为低度多态,其余2个位点为中度多态。连锁不平衡分析结果表明,1984add与T3295C间存在完全连锁不平衡现象。相关分析结果表明,GPR54基因GPR54-1.1位点的BB型、GPR54-3位点的CD型、GPR54-5.1位点的EF型与单倍型组合H1H1(BDE/BDE)对2胎以上或所有胎次小梅山母猪的TNB和NBA有显著或极显著影响;方差组分分析结果表明,2胎以上或所有胎次小梅山母猪的TNB和NBA的遗传在GPR54-1.1位点上主要受到基因的加性效应的影响,而在GPR54-3和GPR54-5.1位点上主要受到基因的显性效应的影响。
     7、对小梅山猪FSHβ、FSHR、LHR、PGR、KISS-1和GPR54基因在下丘脑-垂体-性腺轴系统中的表达规律进行研究。结果显示:小梅山猪从初生到5月龄间下丘脑-垂体-性腺轴下各组织中均检测到FSHp、FSHR、LHR、PGR、KISS-1和GPR54基因的表达;不同组织中,FSHβ基因在垂体中均高度表达,输卵管和卵巢则低度表达,4月龄时,FSHβ基因在垂体中的相对表达量是输卵管的54.557倍,其表达水平在不同生长阶段中呈现先上升后下降趋势,4月龄时达到高峰;4月龄前,FSHR基因在下丘脑中高度表达,4月龄之后,则卵巢和下丘脑均为高度表达,而子宫均为低度表达;LHR基因在不同组织中,均以下丘脑为高度表达,4月龄之后,卵巢亦为高度表达;PGR基因在不同组织中,均以子宫为高度表达,4月龄之后,下丘脑和卵巢亦高度表达,垂体均为低度表达;不同生长阶段中,各组织PGR基因表达水平均呈现先上升后下降的趋势,并且均在4月龄达到高峰,尤其是卵巢最为明显;4月龄之后,KISS-1与GPR54基因在下丘脑中高度表达,但4月龄之前,两者表达差异较大,KISS-1基因在子宫中高度表达,GPR54基因则波动很大;KISS-1与GPR54基因表达水平在下丘脑、垂体、卵巢和子宫中的趋势,与FSHβ基因之于垂体、FSHR基因之于卵巢与子宫、LHR基因之于卵巢与下丘脑、PGR之于各组织,是相同的。
     8、对小梅山猪性发育过程中血清中FSH、LH、E2和P4等生殖激素水平的变化规律加以研究,结果显示:初生时,血清中FSH、LH、E2和P4等生殖激素水平处于高位状态,1月龄~4月龄间可能略有波动,但均呈现上升趋势,至4月龄时达到最高水平,并且差异均达到显著或极限著水平,5月龄时,这4种生殖激素水平又迅速下降;根据上述4种生殖激素的变化规律,并结合生产实践,可以推测小梅山猪的初情期在3.5月龄-4.5月龄间。
Reproductive traits of swine, including puberty, litter size, weight at birth, and so on, are important economic traits in modern pig production, which highly influence productive efficiency and economic profits. And also they are quantitative traits of low heredity, which are easily influenced by environmental factors. Identification of genes associated with reproductive traits could give an insight into the genetic mechanism of pig reproductive performance and be helpful for pig breeding with high reproductive performance. Candidate gene approach is one of the strategies in mapping quantitative traits. Some major genes have been mapped successfully by this method, e.g. sex-linkage dwarf gene of chicken, stress syndrome gene of swine and estrogen receptor gene of swine, and so on.
     To investigate the genes associated with swine reproductive traits, we selected FSHβ, FSHR, LHR, PGR, KISS-1and GPR54gene as candidate genes to analyze the relationship of those genes with reproductive performance in Xiaomeishan pig population. Mixed genome DNA pool and direct sequencing methods were used to screen the SNPs of those above six genes, PCR-SSCP, PCR-RFLP, mismatched PCR-RFLP, and direct PCR methods to detect at each SNP locus in a large scale, and then their relationship with reproductive traits in Xiaomeishan pig population were analyzed. The developmental patterns of FSHβ, FSHR, LHR, PGR, KISS-1and GPR54mRNA expression in the hypothalamic-pituitary-gonadal (HPG) axis in Xiaomeishan pig population and serum FSH, LH, E2and P4were determined by relative quantitative RT-PCR and ECLIA methods, respectively. The main results were as follows:
     1. All exons in FSHβ gene were screened, and seven SNPs in total were detected. No mutations were detected in exon1, but one SNP in intron1, that is, C5807A; one SNP in exon2, that is, C6699T; five SNPs in exon3, that is, A8753G, C8766T, T8788C, A8880G and8943delllbp. Only transition C6699T in those above SNPs was located in CDS region, but not causes the change of amino acid, and was a synonymous mutation. In Xiaomeishan pig, Fengjing pig and Large White pig populations, there were4,4and3loci displayed polymorphisms in FSHP gene, respectively, and all were highly informative loci. Those above seven SNPs were in intense state of linkage disequilibrium. It could be found that genotype BB at FSHβ-1locus, genotype DD at FSHβ-2locus, genotype FF at FSHβ-3.1, genotype HH at FSHβ-3.2and haplotype combination H5H5(BDFH/BDFH) had significant effect or highly significant effect on total number born (TNB) or number born alive (NBA) traits in Xiaomeishan sows after the second parity or sows in all parities, the heredity of which is mainly influenced by gene additive effect at each locus. So haplotype combination H5H5is a predominant genotype, and can be regarded as a molecular marker in pig breeding of reproductive traits.
     2. Six SNPs were discovered in swine FSHR gene. Amongst them, three SNPs were in exonl, that is, C70T, C74G and C81T; three SNPs in exon10, that is, C1166T, T1491C and T1977C, in which transversion C74G and transition C1166T caused the change of amino acid, that is, Thrl3Ser and Thr377Ile, respectively. In Xiaomeishan pig, Fengjing pig and Large White pig populations, there were3,3and4loci displayed polymorphisms in FSHR gene, respectively; FSHR-1locus in Xiaomeishan pig was highly informative locus, the other were reasonably informative loci; three loci in Fengjing pig were all reasonably informative loci; FSHR-1locus in Large white pig was highly informative locus, the other were slightly informative loci. It could be found that genotype AC at FSHR-1locus, genotype BB at FSHR-10.4locus, genotype DD at FSHR-10.5and haplotype combination H3H5had significant effect or highly significant effect on TNB or NBA traits in Xiaomeishan sows after the second parity or sows in all parities, the heredity of which is mainly influenced by gene dominant effect at FSHR-1locus and by gene additive effect at FSHR-10.4and FSHR-10.5loci.
     3. Only one SNP was found in exonll of swine LHR gene, that is, C1351T, which not caused the change of amino acid, and was a synonymous mutation. And it only existed in Xiaomeishan pig population, not in Fengjing pig and Large White pig populations. The results suggested that genotype MN at LHR-11.4locus had significant effect or highly significant effect on TNB or NBA traits in Xiaomeishan sows after the second parity or sows in all parities, the heredity of which is mainly influenced by gene dominant effect at LHR-11.4locus.
     4. Only one SNP was detected in exonl of swine PGR gene, that is, C1319T, which not caused the change of amino acid, and was a synonymous mutation. Polymorphism was detected in all three pig populations. The result showed that AB genotypic sows of Xiaomeishan pigs produced more TNB and NBA than AA genotypic sows after the second parity or in all parities.
     5. Six SNPs were found in swine KISS-1gene. Amongst them, one SNP was in5'-UTR, that is, A7G; one SNP in exon1, that is, G41T; three SNP2in intron1, that is, A859G, C1026A and633addl9bp; one SNP in exon2, that is, G2343C. In Xiaomeishan pig, Fengjing pig and Large White pig populations, there were4,5and5loci displayed polymorphisms in KISS-1gene, respectively. All four loci in Xiaomeishan pig were highly informative loci; KISS1-4locus in Fengjing pig and KISS1-5locus in Large White pig were reasonably informative loci, the other slightly informative loci. SNPs A7G and G41T, A7G and C1026A, G41T and C1026A were all in complete state of linkage disequilibrium. The results indicated that genotype AB at KISS1-3locus, genotype KL at KISS1-4locus, genotype MN at KISS1-6, genotype PQ at KISS1-7and haplotype combination H1H5(ALNQ/BKMP) had significant effect or highly significant effect on TNB or NBA traits in Xiaomeishan sows after the second parity or sows in all parities, the heredity of which is mainly influenced by gene additive effect at each locus.
     6. Three SNPs were detected in swine GPR54gene. Amongst them, one SNP was in exon1, that is, T245C; one SNP in intron1, that is,1984addlbp; one SNP in exon5, that is, T3295C, in which transition T245C caused the change of amino acid, that is, Leu35Pro. In Xiaomeishan pig, Fengjing pig and Large White pig populations, there were3,2and3loci displayed polymorphisms in KISS-1gene, respectively. GPR54-1.1locus in Large White pig was slightly informative locus, the other in three pigs were all reasonably informative loci. SNPs1984addlbp and T3295C were in complete state of linkage disequilibrium. The results indicated that genotype BB at GPR54-1.1locus, genotype CD at GPR54-3locus, genotype EF at GPR54-5.1and haplotype combination H1H1(BDE/BDE) had significant effect or highly significant effect on TNB or NBA traits in Xiaomeishan sows after the second parity or sows in all parities, the heredity of which is mainly influenced by gene additive effect at GPR54-1.1and by gene dominant effect at GPR54-3and GPR54-5.1loci.
     7. The developmental patterns of FSHp, FSHR, LHR, PGR, KISS-1and GPR54mRNA expression in the hypothalamic-pituitary-gonadal (HPG) axis in Xiaomeishan pig population were studied. The results showed that FSHp, FSHR, LHR, PGR, KISS-1and GPR54mRNA were all tested in different tissues in HPG axis from birth to5-month-old in Xiaomeishan pig. FSHβ gene presented high expression in pituitary and low expression in oviduct and ovary. FSHβ gene expression in pituitary was54.557times higher than in oviduct, and it increased with the age, attained the peak at4-month old, and then declined. FSHR gene performed high expression in hypothalamus before4-month-old, and high in ovary and hypothalamus after4-month-old, and low in uterus during the sexual development phases. LHR gene showed high expression in hypothalamus in all phrases, and after4-month-old also high in ovary. PGR gene showed high expression in uterus in all phrases, after4-month-old high in hypothalamus and ovary, but low in pituitary in all phrases, and it increased with the age, attained the peak at4-month old, and then declined in all tissues, especially in ovary. KISS-1and GPR54genes presented high expression in hypothalamus after4-month-old. But there were big difference between them before4-month-old, KISS-1gene high in uterus and GPR54gene different. We also found that the tendency of KISS-1and GPR54gene expression in hypothalamus, pituitary, ovary and uterus were the same as FSHp gene in pituitary, FSHR gene in ovary and uterus, LHR gene in ovary and hypothalamus, and PGR gene in all tissue.
     8. The patterns of serum FSH, LH, E2and P4during sexual development phrases in Xiaomeishan pig population were also studied. The results showed that at birth serum FSH, LH, E2and P4were all in high levels, there was a slight fluctuation from1-4month old, but presented a increasing trend, and attained a peak at4-month-old, had significant or highly significant difference, at5-month-old they all rapidly decreased. Based on the changes of those four above hormones in association with the practice, it could be speculated that the puberty time of Xiaomeishan pig was between3.5-month-old and4.5-month-old.
引文
[1]曹果清.猪PRLP和FSHβ基因多态性研究[D].山西农业大学博士论文,2004.
    [2]赵秀华.京海黄鸡IGFBP-1、IGFBP-2和STAT5b基因遗传效应及表达规律的研究[D].扬州大学博士论文,2012.
    [3]Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Res,1990,18 (22):6531-6535.
    [4]Welsh J, Petersen C, McClelland M. Polymorphisms generated by arbitrarily primed PCR in the mouse:application to strain identification and genetic mapping [J]. Nucleic Acids Res,1991, 19 (2):303-306.
    [5]张跟喜.边鸡遗传多样性及Myostatin基因多态性对生长和繁殖性状的遗传效应研究[D].扬州大学博士论文,2010.
    [6]Orita M, Suzuki Y, Sekiya T, et al. Rapid and sensitive detection of point mutations and DNA polymorphism using the polymerase chain reaction [J]. Genomics,1989,5 (4):874-879.
    [7]Vaiman D, Pailhoux E, Payen E, et al. Evolutionary conservation of a microsatellite in the Wilms tumour (WT) gene:mapping in sheep and cattle [J]. Cytogenet Cell Genet,1995,70 (1-2):112-115.
    [8]Weber JL. Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms [J]. Genomics, 1990,7 (4):524-530.
    [9]Rothschild MF, Jacobson C, Vaske D, et al. The estrogen receptor locus is associated with a major gene influencing litter size in pigs [J]. Proc Natl Acad Sci USA,1996,93 (1):201-205.
    [10]Vincent AL, Wang L, Tuggle CK, et al. Prolactin receptor maps to pig chromosome 16 [J]. Mamm Genome,1997,8 (10):793-794.
    [11]Rothschild MF, Vincent AL, Tuggle CK, et al. A mutation in the prolactin receptor gene is associatied with increased litter size in pigs [J]. Anim Genet,1998,29 (Suppl.l):69.
    [12]Messer L, Wang L, Yelich J, et al. Linkage mapping of the retinol-binding protein 4 (RBP4) gene to porcine chromosome 14 [J]. Mamm Genome,1996,7 (5):396.
    [13]Messer L, Wang L, Yelich J, et al. Linkage mapping of the retinoic acid receptor-gamma gene to porcine chromosome 5 [J]. Anim Genet,1996,27 (3):175-177.
    [14]Ellegren H. Variable SINE 3' poly(A) sequences:an abundant class of genetic markers in the pig genome [J]. Mamm Genome,1993,4 (8):429-434.
    [15]梁鸿雁.初情期前母猪性腺外促性腺激素受体表达的研究[D].吉林大学博士论文,2009.
    [16]包文斌,潘章源,朱璟,等.猪TLR4基因在F18大肠杆菌抗性型和敏感型资源群体间的差异表达分析[J].畜牧兽医学报,2011,42(2):278-283.
    [17]王国富,高树新,张立凡,等.金华猪DGAT1、DGAT2基因发育性表达特点及其与肌内脂肪的关联分析[J].华北农学报,2011,26(5):25-28.
    [18]李峰,孟舒,康廷国.电化学发光免疫法测定鹿鞭中性激素含量[J].中国医院药学杂志,2006,26(2):234-235.
    [19]徐自慧,黄驭,祝有国.电化学发光免疫法和时间分辨荧光免疫法检测血清TSH的比较[J].临床医学研究,2006,23(3):432-433.
    [20]Grimnes G, Almaas B, Eggen AE, et al. Effect of smoking on the serum levels of 25-hydroxyvitamin D depends on the assay employed [J]. Eur J Endocrinol,2010,163 (2):339-348.
    [21]程丽萍.电化学发光免疫法与酶联免疫吸附法检测乙肝病毒标志物对比分析[J].中国误诊学杂志,2010,10(6):1289-1290.
    [22]Eshratkhah B, Rajabian H, Namvar D, et al. Comparative study on determination of plasma thyroid hormones by chemiluminescence and electrochemiluminescence immunoassay methods in sheep [J]. Comp Clin Pathol,2011,20 (2):135-138.
    [23]Uusitalo-Seppala R, Koskinen P, Leino A, et al. Early detection of severe sepsis in the emergency room:diagnostic value of plasma C-reactive protein, procalcitonin, and interleukin-6 [J]. Scand J Infect Dis,2011,43 (11-12):883-890.
    [24]Hou YF, Sun GZ, Sun HS, et al. Diagnostic value of anti-Sa and anticitrullinated protein antibodies in rheumatoid arthritis [J]. J Rheumatol.,2012,39 (8):1506-1508.
    [25]余海.全自动电化学发光免疫法检测甲状腺功能5项指标的临床应用及评价[J].求医问药,2012,10(7):396.
    [26]冯学民,刘尧娟.电化学发光免疫法检测促甲状腺素受体抗体的临床价值[J].天津医药,2012,40(8):817-818.
    [27]陈海斌,梁业宾,黄慧嫦,等.标本溶血对电化学发光免疫法结果的影响[J].检验医学,2012,28(8):651-653.
    [28]Dias JA, Lindau-Shepard B, Hauer C, et al. Human follicle-stimulating hormone structure-activity relationships [J]. Biol Reprod,1998,58 (6):1331-1336.
    [29]Layman LC, McDonough PG Mutations of follicle stimulating hormone-beta and its receptor in human and mouse:genotype/phenotype. [J]. Mol Cell Endocrinol,2000,161 (1-2):9-17.
    [30]Kumar TR, Kelly M, Mortrud M, et al. Cloning of the mouse gonadotropin beta-subunit-encoding genes, I. Structure of the follicle-stimulating hormone beta-subunit-encoding gene [J]. Gene,1995,166 (2):333-334.
    [31]Casarini L, Pignatti E,Simoni M. Effects of polymorphisms in gonadotropin and gonadotropin receptor genes on reproductive functio [J]. Rev Endocr Metab Disord,2011,12 (4):303-321.
    [32]Nagirnaja L, Rull K, Uuskula L, et al. Genomics and genetics of gonadotropin beta-subunit genes:Unique FSHB and duplicated LHB/CGB loci [J]. Mol Cell Endocrinol 2010,329 (l-2):4-16.
    [33]An XP, Han D, Hou JX, et al. Polymorphism of exon2 of FSHβ gene and its relationship with reproduction performance in two goat breeds [J]. Agri Sci Chn,2010,9 (6):880-886.
    [34]梁琛,储明星,张建海,等.FSHβ基因PCR-SSCP多态性及其与济宁青山羊高繁殖力关系的研究[J].遗传,2006,28(9):1071-1077.
    [35]赵要风,张顺,李宁,等.香猪、民猪FSHβ亚基基因位点的多态性分析[J].遗传,1997,19:27-28.
    [36]杜立新,柳淑芳,闫艳春,等.猪FSHβ亚基基因结构区Alu序列插入突变的研究[J].遗传学报,2002,29(11):977-982.
    [37]李凤娥.猪ESR和FSHP位点对繁殖性状的调控及其调控机理的研究[D].华中农业大学博士学位论文,2002.
    [38]Li MD, Rohrer GA, Wise TH, et al. Identification and characterization of a new allele for the beta subunit of follicle-stimulating hormone in Chinese pig breeds [J]. Anim Genet,2000,31 (1):28-30.
    [39]张冬杰,杨国伟,刘娣.民猪FSHβ-亚基基因的多态性分析[J].中国畜牧杂志,2006,42(1):50-51.
    [40]罗仍卓么,王立贤,孙世铎.北京黑猪FSHβ亚基基因的多态性与繁殖性状的关联分析[J].遗传,2007,29(12):1497-1503.
    [41]Kottler ML, Chou YY, Chabre O, et al. A new FSHbeta mutation in a 29-year-old woman with primary amenorrhea and isolated FSH deficiency:functional characterization and ovarian response to human recombinant FSH [J]. Eur J Endocrinol,2010,162 (3):633-641.
    [42]Layman LC, Porto AL, Xie J, et al. FSH beta gene mutations in a female with partial breast development and a male sibling with normal puberty and azoospermia [J]. J Clin Endocrinol Metab,2002,87 (8):3702-3707.
    [43]Tong Y, Liao WX, Roy AC, et al. Association of AccI polymorphism in the follicle-stimulating hormone beta gene with polycystic ovary syndrome [J]. Fertil Steril,2000, 74(6):1233-1236.
    [44]Li N, Zhao YF, Xiao L, et al. Candidate gene approach for identification of genetic loci controlling litter size in swine[C]. Proceedings of the Sixth World Congress on Genetics Applied Livestock Production,1998.
    [45]陈克飞,黄路生,李宁,等.猪FSH及ESR合并基因型对猪产仔数性状的影响[J].科学通报,2000,45(18):1963-1966.
    [46]徐宁迎,章胜乔,彭淑红.金华猪3个繁殖性状主基因的分布及其效应的研究[J].遗传学报,2003,30(12):1090-1096.
    [47]施启顺,柳小春,刘志伟,等.5个与猪产仔数相关基因的效应分析[J].遗传,2006,28(6):652-658.
    [48]刘婵娟,曾勇庆,魏述东,等.8个猪种ESR和FSHβ基因合并基因型与繁殖性状关系的研究[J].畜牧兽医学报,2009,40(3):291-295.
    [49]Rohrer GA, Ford JJ, Wise TH, et al. Identification of quantitative trait loci affecting female reproductive traits in a multigeneration Meishan-White composite swine population [J]. J Ani Sci, 1999,77(6):1385-1391.
    [50]柳淑芳,闫艳春,杜立新.莱芜黑猪FSHβ亚基基因的多态性分析[J].山东农业大学学报(自然科学版)2002,35(8):63-65.
    [51]王重龙,陶立,琚学慧.淮猪新品系FSHβ亚基基因多态性及其与产仔数的相关性研究[J].中国畜牧兽医,2008,35(8):63-65.
    [52]Achrekar SK, Modi DN, Meherji PK, et al. Follicle stimulating hormone receptor gene variants in women with primary and secondary amenorrhea [J]. J Assist Reprod Genet,2010,27 (6):317-326.
    [53]宋美玲,马向明,王建民,等.波尔山羊FSHR5'端序列的SNP多态性及超排效果分析[J].家畜生态学报,2006,27(4):25-28.
    [54]Chu MX, Guo XH, Feng CJ, et al. Polymorphism of 5'regulatory region of ovine FSHR gene and its association with litter size in Small Tail Han sheep [J]. Mol Biol Rep,2012,39 (4):3721-3725.
    [55]Kang L, Zhang N, Zhang Y, et al. Molecular characterization and identification of a novel polymorphism of 200 bp indel associated with age at first egg of the promoter region in chicken follicle-stimulating hormone receptor (FSHR) gene [J]. Mol Biol Rep,2011,39 (3):2967-2973.
    [56]何荆洲.荷斯坦奶牛FSHR基因5’侧翼和第10外显子多态性及其与超数排卵关系的研 究[D].广西大学硕士论文,2008.
    [57]郭志波,杨丽萍,尹尧,等.猪FSHR基因外显子1的多态性分析[J].黑龙江畜牧兽医,2007,9:45-46.
    [58]Rahal P, Latronico AC, Kohek MB, et al. Polymorphisms in the bovine follicle-stimulating hormone receptor gene [J]. Anim Genet,2000,31 (4):280-281.
    [59]姜怀志.双羔型辽宁绒山羊FSHR基因SNP分析的研究[J].吉林农业大学学报,2004,26(5):550-553.
    [60]黄丹丽,杨章平,任湘莲,等.乌珠穆沁羊FSHR基因第10外显子的PCR-SSCP检测及序列分析[J].家畜生态学报,2008,29(2):17-20.
    [61]蓝贤勇,陈宏,潘传英,等.山羊FSHR基因第10外显子的PCR-SSCP检测及其序列分析[J].农业生物技术学报,2006,14(4):484-488.
    [62]黄磊,宇向东,王永,等.乐至黑山羊FSHR第10外显子的SNP研究[J].西南民族大学学报,2010,36(5):753-756.
    [63]Perez Mayorga M, Gromoll J, Behre HM, et al. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype [J]. J Clin Endocrinol Metab, 2000,85 (9):3365-3369.
    [64]Achrekar SK, Modi DN, Desai SK, et al. Follicle-stimulating hormone receptor polymorphism (Thr307Ala) is associated with variable ovarian response and ovarian hyperstimulation syndrome in Indian women [J]. Fertil Steril,2009,91 (2):432-439.
    [65]de Castro F, Ruiz R, Montoro L, et al. Role of follicle-stimulating hormone receptor Ser680Asn polymorphism in the efficacy of follicle-stimulating hormone [J]. Fertil Steril,2003, 80 (3):571-576.
    [66]Jun JK, Yoon JS, Ku SY, et al. Follicle-stimulating hormone receptor gene polymorphisms and ovarian responses to controlled ovarian hyperstimulation for IVF-ET [J]. J Hum Genet,2006, 51 (8):665-670.
    [67]Loutradis D, Patsoula E, Minas V, et al. FSH receptor gene polymorphisms have a role for different ovarian response to stimulation in patients entering IVF/ICSI-ET programs [J]. J Assist Reprod Genet,2006,23 (4):177-184.
    [68]雷雪芹,魏伍川,陈宏,等.6个牛品种在FSHR基因位点的遗传关系及其多态对双胎性状的标记[J].西北农林科技大学学报,2004,32(7):1-6.
    [69]陈杰,刘红林,姜志华,等.二花脸FSHR座位PCR-SSCP标记与产活仔数的关系[J].南京农业大学学报,2002,25(3):53-56.
    [70]Mizrachi D,Shemesh M. Follicle-stimulating hormone receptor and its messenger ribonucleic acid are present in the bovine cervix and can regulate cervical prostanoid synthesis [J]. Biol Reprod,1999,61 (3):776-784.
    [71]Zheng W, Magid MS, Kramer EE, et al. Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube [J]. Am J Pathol,1996,148 (1):47-53.
    [72]Payne AH,Hardy MP. Contemporary Endocrinology:The Leydig Cell in Health and Disease[M]. Humana Press Inc,2004.
    [73]Bruysters M, Christin-Maitre S, Verhoef-Post M, et al. A new LH receptor splices mutation responsible for male hypogonadism with subnormal sperm production in the propositus, and infertility with regular cycles in an affected sister [J]. Hum Reprod,2008,23 (8):1917-1923.
    [74]Marson EP, Ferraz JB, Meirelles FV, et al. Effects of polymorphisms of LHR and FSHR genes on sexual precocity in a Bos taurus×Bos indicus beef composite population [J]. Genet Mol Res,2008,7 (1):243-251.
    [75]狄冉,冯涛,储明星,等.山羊促黄体素受体基因(LHR)外显子1的PCR-SSCP分析[J].农业生物技术学报,2009,17(4):614-620.
    [76]Zhang FP, Poutanen M, Wilbertz J, et al. Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice [J]. Mol Endocrinol, 2001,15(1):172-183.
    [77]Pakarainen T, Zhang FP, Nurmi L, et al. Knockout of luteinizing hormone receptor abolishes the effects of follicle-stimulating hormone on preovulatory maturation and ovulation of mouse graafian follicles [J]. Mol Endocrinol,2005,19 (10):2591-2602.
    [78]朱虹,徐勇,陈临琪.特发性性早熟女童黄体生成素受体基因Asp578Gly激活突变的研究[J].实用预防医学,2004,11(6):1082-1084.
    [79]赖春田,施晓波.黄体生成素受体rs61996318基因多态性与多囊卵巢综合征的相关性研究[J].中国优生与遗传杂志,2010,19(9):25-26.
    [80]马延敏,王树玉,张小为.黄体生成素受体rs61996318基因多态性与多囊卵巢综合征的相关性研究[J].中国优生与遗传杂志,2010,19(9):25-26.
    [81]O'Shaughnessy PJ, McLelland D,McBride MW. Regulation of Luteinizing Hormone-Receptor and Follicle-Stimulating Hormone-Receptor Messenger Ribonucleic Acid Levels during Development in the Neonatal Mouse Ovary [J]. Biol Reprod,1997,57 (3):602-608.
    [82]Abdennebi L, Monget P, Pisselet C, et al. Comparative expression of luteinizing hormone and follicle-stimulating hormone receptors in ovarian follicles from high and low prolific sheep breeds [J]. Biol Reprod,1999,60 (4):845-854.
    [83]Derecka K, Pietila EM, Rajaniemi HJ, et al. Cycle dependent LH/hCG receptor gene expression in porcine nongonadal reproductive tissues [J]. J Physiol Pharmaco,1995,46 (1):77-85.
    [84]Arck P, Hansen PJ, Mulac Jericevic B, et al. Progesterone during pregnancy: endocrine-immune cross talk in mammalian species and the role of stress [J]. Am J Reprod Immunol,2007,58 (3):268-279.
    [85]Clarke CL,Sutherland RL. Progestin regulation of cellular proliferation [J]. Endocr Rev, 1990,11(2):266-301.
    [86]Graham JD,Clarke CL. Physiological action of progesterone in target tissues [J]. Endocr Rev, 1997,18(4):502-519.
    [87]Jacobsen BM, Schittone SA, Richer JK, et al. Progesterone-independent effects of human progesterone receptors (PRs) in estrogen receptor-positive breast cancer:PR isoform-specific gene regulation and tumor biology [J]. Mol Endocrinol,2005,19 (3):574-587.
    [88]Shang YF. Gene regulation by nuclear receptors [J]. J Heal Sci,2002,34:440-449.
    [89]Kastner P, Krust A, Turcotte B, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B [J]. EMBO J,1990,9 (5):1603-1614.
    [90]Horwitz KB, Mockus MB, Pike AW, et al. Progesterone receptor replenishment in T47D human breast cancer cells. Roles of protein synthesis and hormone metabolism [J]. J Biol Chem, 1983,258 (12):7603-7610.
    [91]Misrahi M, Atger M, d'Auriol L, et al. Complete amino acid sequence of the human progesterone receptor deduced from cloned cDNA [J]. Biochem Biophys Res Commun,1987, 143 (2):740-748.
    [92]Romano A, Delvoux B, Fischer DC, et al. The PROGINS polymorphism of the human progesterone receptor diminishes the response to progesterone [J]. J Mol Endocrinol,2007,38 (1-2):331-350.
    [93]Ehn NL, Cooper ME, Shi M Orr K, et al. Evaluation of fetal and maternal genetic variation in the progesterone receptor gene for contributions to preterm birth [J]. Pediatr Res,2007,62 (5):630-635.
    [94]Johnatty SE, Spurdle AB, Beesley J, et al. Progesterone receptor polymorphisms and risk of breast cancer:results from two Australian breast cancer studies [J]. Breast Cancer Res Treat, 2008,109 (1):91-99.
    [95]Su MT, Lee IW, Chen YC, et al. Association of progesterone receptor polymorphism with idiopathic recurrent pregnancy loss in Taiwanese Han population [J]. Assist Reprod Genet,2011, 28 (3):239-243.
    [96]Mulac-Jericevic B, Lydon JP, DeMayo FJ, et al. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform [J]. Proc Natl Acad Sci USA,2003,100 (17):9744-9749.
    [97]Mulac-Jericevic B, Mullinax RA, DeMayo FJ, et al. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform [J]. Science,2000,289 (5485):1751-1754.
    [98]Mulac-Jericevic B,Conneely OM. Reproductive tissue selective actions of progesterone receptors [J]. Reproduction,2004,128 (2):139-146.
    [99]De Vivo I, Hankinson SE, Colditz GA, et al. A functional polymorphism in the progesterone receptor gene is associated with an increase in breast cancer risk [J]. Cancer Res,2003,63 (17):5236-5238.
    [100]De Vivo I, Hankinson SE, Colditz GA, et al. The progesterone receptor Va1660→Leu polymorphism and breast cancer risk [J]. Breast Cancer Res Treat,2004,6 (6):636-639.
    [101]Karadeniz M, Erdogan M, Berdeli A, et al. The progesterone receptor PROGINS polymorphism is not related to oxidative stress factors in women with polycystic ovary syndrome [J]. Cardiovasc Diabetol,2007,6:29.
    [102]Yu KD, Chen AX,Shao ZM. No association between a progesterone receptor gene promoter polymorphism (+331G>A) and breast cancer risk in Caucasian women:evidence from a literature-based meta-analysis [J]. Breast Cancer Res Treat,2010,122 (3):853-858.
    [103]连瑞虹,吴尔若.卵巢孕酮受体的研究进展[J].中国计划生育学杂志,2000,60(4):182-186.
    [104]Pasanen S, Ylikomi T, Syvala H, et al. Distribution of progesterone receptor in chicken: novel target organs for progesterone and estrogen action [J]. Mol Cell Endocrinol,1997,135 (1):79-91.
    [105]Di Cosmo A, Paolucci M, Di Cristo C, et al. Progesterone receptor in the reproductive system of the female of Octopus vulgaris:characterization and immunolocalization. Progesterone receptor in the reproductive system of the female of Octopus vulgaris: characterization and immunolocalization [J]. Mol Reprod Dev,1998,50 (4):451-460.
    [106]de Roux N, Genin E, Carel JC, et al. Hypogonadotropic hypogonadism due to loss of function of the KiS SI-derived peptide receptor GPR54 [J]. Proc Natl Acad Sci USA,2003,100 (19):10972-10976.
    [107]Funes S, Hedrick JA, Vassileva G, et al. he KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system [J]. Biochem Biophys Res Commun,2003,312 (4):1357-1363.
    [108]Seminara SB, Messager S, Chatzidaki EE, et al. The GPR54 gene as a regulator of puberty [J]. N Engl J Med,2003,349 (17):1614-1627.
    [109]West A, Vojta PJ, Welch DR, et al. Chromosome localization and genomic structure of the KISS-1 metastasis suppressor gene (KISS-1) [J]. Genomics,1998,54 (1):145-148.
    [110]Luan X, Zhou Y, Wang W, et al. Association study of the polymorphisms in the KISS1 gene with central precocious puberty in Chinese girls [J]. Eur J Endocrinol,2007,157 (1):113-118.
    [111]Ruiz MT, Galbiatti AL, Pavarino EC, et al. Q36R polymorphism of KiSS-1 gene in Brazilian head and neck cancer patients [J]. Mol Biol Rep,2012,39 (5):6029-6034.
    [112]Feng T, Zhao YZ, Chu MX, et al. Association between sexual precocity and alleles of KISS-1 and GPR54 genes in goats [J]. Anim Biotechnol,2009,20 (3):172-176.
    [113]Hou JX, An XP, Wang JG, et al. New genetic polymorphisms of KiSS-1 gene and their association with litter size in goats [J]. Small Rumin Res,2011,96 (2-3):106-110.
    [114]曹贵玲.SSH筛选济宁青山羊性早熟相关基因及KISS-1、GPR54、Lin28B基因的研究[D].中国农业科学院博士论文,2011.
    [115]Colledge WH. GPR54 and kisspeptins [J]. Results Probl Cell Differ,2008,46:117-143.
    [116]Manuel TS. GPR54 and kisspeptin in reproduction [J]. Hum Reprod Update,2006,12 (5):631-639.
    [117]Brailoiu GC, Dun SL, Ohsawa M, et al. KiSS-1 expression and metastin-like immunoreactivity in the rat brain [J]. J Comp Neurol,2005,481 (3):314-329.
    [118]Smith JT, Popa SM, Clifton DK, et al. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge [J]. J Neurosci,2006,26 (25):6687-6694.
    [119]Dungan HM, Clifton DK,Steiner RA. Minireview:Kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion [J]. Endocrinology,2006,147 (3):1154-1158.
    [120]邵宝平,王继卿,罗玉柱,等.KISS-1基因在黄牛精子发生中的表达[J].中国兽医科学,2011,41(12):1282-1287.
    [121]刘萍,王海飞,汪劲能,等.Kiss-1基因在猪初情期下丘脑-垂体-卵巢轴中的定位研究[J].安徽农业科学,2008,36(15):6324-6327.
    [122]刘延鹏.Kisspeptin/GPR54系统在下丘脑-垂体-卵巢轴对母鸡生殖调控的研究[D].南京农业大学硕士论文,2011.
    [123]Lee DK, Nguyen T, O'Neill GP, et al. Discovery of a receptor related to the galanin receptors [J]. FEBS Lett,1999,446 (1):103-107.
    [124]Cerrato F,Seminara SB. Human genetics of GPR54 [J]. Rev Endocr Metab Disord,2007,8 (1):47-55.
    [125]Li S, Ren J, Yang G, et al. Characterization of the porcine kisspeptins receptor gene and evaluation as candidate for timing of puberty in sows [J]. J Anim Breed Genet,2008,125 (4):219-227.
    [126]Cao GL, Chu MX, Fang L, et al. Analysis on DNA sequence of GPR54 gene and its association with litter size in goats [J]. Mol Biol Rep,2011,38 (6):3839-3848.
    [127]Chu MX, Xiao C, Feng T, et al. Polymorphisms of KiSS-1 and GPR54 genes and their relationships with litter size in sheep [J]. Mol Biol Rep,2012,39 (3):3291-3297.
    [128]Gottsch ML, Clifton DK,Steiner RA. Kisspeptin-GPR54 signaling in the neuroendocrine reproductive axis [J]. Mol Cell Endocrinol,2006,254-255:91-96.
    [129]Kuohung W,Kaiser UB. GPR54 and KiSS-1:role in the regulation of puberty and reproduction [J]. Rev Endocr Metab Disord.,2006,7 (4):257-263.
    [130]冯涛,储明星,张英杰.KISS-1/GPR54基因及其在生殖中的作用遗传[J].遗传,2008,30(4):419-425.
    [131]Kotani M, Detheux M, Vandenbogaerde A, et al. The metastasis suppressor gene KISS-1 encodes kisspeptins, the natural ligands of the orphan G protein coupled receptor GPR54 [J]. J Biol Chem,2001,276 (37):34631-34636.
    [132]赵要风,李宁,陈永福.猪FSHβ亚基基因RFLPs研究初报[J].畜牧兽医学报,1998,29(1):23-26.
    [133]赵要风,李宁,肖璐,等.猪FSHβ亚基基因结构区逆转座子插入突变及其与猪产仔数关系的研究[J].中国科学(C辑),1999,29(1):81-86.
    [134]Dai L, Zhao Z, Zhao R, et al. Effects of novel single nucleotide polymorphisms of the FSH beta-subunit gene on semen quality and fertility in bulls [J]. Anim Reprod Sci,2009,114 (1-3):14-22.
    [135]Rannikki AS, Zhang FP,Huhtaniemi IT. Ontogeny of follicle-stimulating hormone receptor gene expression in the rat testis and ovary [J]. Mol Cell Endocrinol,1995,107 (2):199-208.
    [136]Daelemans C, Smits G, de Maertelaer V, et al. Prediction of severity of symptoms in iatrogenic ovarian hyperstimulation syndrome by follicle-stimulating hormone receptor Ser680Asn polymorphism [J]. J Clin Endocrinol Metab,2004,89 (12):6310-6315.
    [137]Marsters P, Kendall NR,Campbell BK. Temporal relationships between FSH receptor, type 1 insulin-like growth factor receptor, and aromatase expression during FSH-induced differentiation of bovine granulosa cells maintained in serum-free culture [J]. Mol Cell Endocrinol,2003,203 (1-2):117-127.
    [138]Greb RR, Grieshaber K, Gromoll J, et al. A common single nucleotide polymorphism in exon 10 of the human follicle stimulating hormone receptor is a major determinant of length and hormonal dynamics of the menstrual cycle [J]. J Clin Endocrinol Metab,2005,90 (8):4866-4872.
    [139]周立花,李汶,卢光琇.FSHR、LHR基因突变与多态对女性生殖的影响[J].现代生物医学进展,2010,1(10):186-189.
    [140]魏伍川,余晓天,徐尚忠,等.小尾寒羊促卵泡素受体基因5'端序列的TaqI酶切多态性分析[J].草食家畜,2003,1:58-60.
    [141]姬云涛,曹斌云.山羊FSHR基因5'端侧翼序列多态性对产羔性状的影响[J].西北农林科技大学学报,2007,35(9):1-4.
    [142]朱吉.山羊FSHR基因多态性及ADD1基因的克隆测序研究[D].湖南农业大学,2006.
    [143]王明亮.牦牛FSHR基因部分序列多态性与繁殖性状关联分析及FSHR基因生物信息学分析[D].甘肃农业大学硕士论文,2012.
    [144]Rodini GP, Genro VK, Matte U, et al. here is no complete linkage between the polymorphisms N680S and T307A of the follicle stimulating hormone receptor gene in fertile women [J]. J Assist Reprod Genet,2011,28 (3):221-224.
    [145]Gromoll J, Partsch CJ, Simoni M, et al. A mutation in the first transmembrane domain of the lutropin receptor causes male precocious puberty [J]. J Clin Endocrinol Metab 1998,83 (2):476-480.
    [146]Latronico AC, Shinozaki H, Guerra G Jr, et al. Gonadotropin-independent precocious puberty due to luteinizing hormone receptor mutations in Brazilian boys:a novel constitutively activating mutation in the first transmembrane helix [J]. J Clin Endocrinol Metab,2000,85 (12):4799-4805.
    [147]Partsch CJ, Krone N, Riepe FG, et al. Long-term follow-up of spontaneous development in a boy with familial male precocious puberty [J]. Horm Res,2004,62 (4):177-181.
    [148]Gromoll J, Schulz A, Borta H, et al. Homozygous mutation within the conserved Ala-Phe-Asn-Glu-Thr motif of exon 7 of the LH receptor causes male pseudohermaphroditism [J]. Eur J Endocrinol,2002,147 (5):597-608.
    [149]Martens JW, Lumbroso S, Verhoef-Post M, et al. Mutant luteinizing hormone receptors in a compound heterozygous patient with complete Leydig cell hypoplasia:abnormal processing causes signaling deficiency [J]. J Clin Endocrinol Metab,2002,87 (6):2506-2513.
    [150]Richter-Unruh A, Verhoef-Post M, Malak S, et al. Leydig cell hypoplasia:absent luteinizing hormone receptor cell surface expression caused by a novel homozygous mutation in the extracellular domain [J]. J Clin Endocrinol Meta,2004,89 (10):5161-5167.
    [151]张善文.猪LHR和PGR基因的遗传变异及其与繁殖性状的相关性研究[D].湖南农业大学硕士论文,2007.
    [152]Romano A, Lindsey PJ, Fischer DC, et al. Two functionally relevant polymorphisms in the human progesterone receptor gene (+331 G/A and progins) and the predisposition for breast and/or ovarian cancer [J]. Gynecol Oncol,2006,101 (2):287-295.
    [153]Schweikert A, Rau T, Berkholz A, et al. Association of progesterone receptor polymorphism with recurrent abortions [J]. Eur J Obstet Gynecol Reprod Biol,2004,113 (1):67-72.
    [154]王凭青,鲁浪,储明星,等.孕酮受体基因多态性及其与济宁青山羊产羔数关系[J].中国农业科学,2009,42(5):1768-1775.
    [155]张利平.BMPR-IB基因和PGR基因作为小尾寒羊多胎候选基因的研究[D].甘肃农业大学博士论文,2005.
    [156]Qiang YZ, Qin T, Fu W, et al. Use of a rapid mis-match PCR method to detect gyrA and parC mutations in ciprofloxacin-resistant clinical isolates of Escherichia coli [J]. J Antimicrob Chemother,2002,49 (3):549-552.
    [157]栾德琴,常国斌,包文斌,等.Mx基因抗性位点在11个不同鸡种中的分布及遗传结构分析[J].中国兽医学报,2011,31(1):133-136,140.
    [158]吴晓伟,范敏其,倪黎纲,等.鸡Mx基因2032位点单核苷酸多态性研究[J].中国畜牧杂志,2009,45(5):1-5.
    [159]虞德兵,何宗亮,张伟峰,等.猪IGF2基因内含子3变异的遗传效应分析[J]..遗传,2008,30(1):87-93.
    [160]王凭青,张宝云,储明星,等.绵羊孕酮受体基因的PCR-SSCP分析[J].中国畜牧兽医,2008,35(11):24-27.
    [161]查丽莎,储明星,狄冉,等.孕酮受体基因多态性及其与小尾寒羊产羔数的关系[J].华中农业大学学报,2011,30(2):148-153.
    [162]俞理辉.绵羊PGR基因和TTF-1基因多态性研究[D].甘肃农业大学硕士论文,2012.
    [163]Tang KQ, Yang WC, Pai B, et al. Effects of PGR and ESRa genotypes on the pregnancy rates after embryo transfer in Luxi cattle [J]. Mol Biol Rep,2013,40 (1):579-584.
    [164]Lee JH, Miele ME, Hicks DJ, et al. KISS-1, a novel human malignant melanoma metastasis-suppressor gene [J]. J Natl Cancer Inst,1996,88 (23):1731-1737.
    [165]Rao YS, Mott NN,Pak TR. Effects of kisspeptin on parameters of the HPA axis [J]. Endocr, 2011,39(3):220-228.
    [166]Revel FG, Ansel L, Klosen P, et al. Kisspeptin:A key link to seasonal breeding [J]. Rev Endocr Metab Disord,2007,8 (1):57-65.
    [167]Cao GL, Chu MX, Fang L, et al. Analysis on DNA sequence of KiSS-1 gene and its association with litter size in goats [J]. Mol Biol Rep,2010,37 (8):3921-3929.
    [168]Plant TM, Ramaswamy S,Dipietro MJ. Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges [J]. Endocrinology,2006,147 (2):1007-1013.
    [169]Martinez-Chavez CC, Minghetti M,Migaud H. GPR54 and rGnRH I gene expression during the onset of puberty in Nile tilapia [J]. Gen Comp Endocrinol,2008,156 (2):224-233.
    [170]周春宝,汪劲能,陆艳凤,等.猪GPR54基因在下丘脑、垂体、卵巢发育性表达变化的研究[J].畜牧兽医学报,2009,40(3):333-337.
    [171]O'Shaughnessy PJ, Marsh P,Dudley K. Follicle-stimulating hormone receptor mRNA in the mouse ovary during post-natal development in the normal mouse and in the adult hypogonadal (hpg) mouse:structure of alternate transcripts [J]. Mol Cell Endocrinol,1994,1010 (1-2):197-201.
    [172]Sokka T,Huhtaniemi I. Ontogeny of gonadotrophin receptors and gonadotrophin-stimulated cyclic AMP production in the neonatal rat ovary [J]. J Endocrinol,1990,127 (2):197-303.
    [173]李俊杰,贾青,张正珊.雌性哺乳动物促卵泡素受体与促黄体素受体的结构与表达[J].生命的化学,2003,23(4):289-291.
    [174]牛金涛.水牛FSHR基因与其表达检测的研究[D].广西大学硕士论文,2007.
    [175]邹恒.幼龄新西兰兔超数排卵及其不同日龄FSHR基因表达量变化的研究[D].扬州大学硕士论文,2011.
    [176]Patsoula E, Loutradis D, Drakakis P, et al. Expression of mRNA for the LH and FSH receptors in mouse oocytes and preimplantation embryos [J]. Reproduction,2001,121 (3):455-461.
    [177]杜红丽,陈静,张玉山,等.二花脸与杜洛克繁殖相关基因表达差异研究[J].华南农业大学学报,2008,29(2):99-103.
    [178]谢新华.太湖猪卵巢组织FSHR基因表达水平与5'调控区多态性分[D].南京农业大学硕士论文,2011.
    [179]崔焕先,赵桂苹,刘冉冉,等.鸡促卵泡素及其受体基因在多个非繁殖组织中的表达研究[J].畜牧兽医学报,2011,42(11):1519-1525.
    [180]Prunier A, Chopineau M, Mounier AM, et al. Patterns of plasma LH, FSH, oestradiol and corticosteroids from birth to the first oestrous cycle in Meishan gilts [J]. J Reprod Fertil,1993, 98 (2):313-319.
    [181]朱荣生,张牧,经荣斌,等.姜曲海瘦肉型品系母猪早期生殖激素变化的研究[J].养猪,2004,4:9-11.
    [182]周双海,陈清明,李振宽,等.天津白母猪性发育过程中生殖激素变化规律[J].中国农业大学学报,2001,6(5):5-8.
    [183]Ziecik AJ, Ostrowska G, Kisielewska J, et al. Distribution and cycle phase dependency of gonadotropin receptors in musculature and blood vessels of the porcine broad ligament [J]. Exp Clin Endocrinol Diabetes,1995,103 (1):44-51.
    [184]Castellano JM, Gaytan M, Roa J, et al. Expression of KiSS-1 in rat ovary:putative local regulator of ovulation [J]. Endocrinology,2006,147 (10):4852-4862.
    [185]Gaytan M, Castellano JM, Roa J, et al. Expression of KiSS-1 in rat oviduct:possible involvement in prevention of ectopic implantation [J]. Cell Tissue Res,2007,329 (3):571-579.
    [186]Han SK, Gottsch ML, Lee KJ, et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty [J]. J Neurosci,2005,25 (49):11349-11356.
    [187]Shahab M, Mastronardi C, Seminara SB, et al. Increased hypothalamic GPR54 signaling:a potential mechanism for initiation of puberty in primates [J]. Proc Natl Acad Sci USA,2005,102 (6):2129-2134.
    [188]Clarke IJ, Smith JT, Morrissey A, et al. Kisspeptin stimulates ovulation in seasonally acylic ewes[C]. Proc 89th Annual Meeting of the Endocrine Society,2007.
    [189]Matsui H, Takatsu Y, Kumano S, et al. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat [J]. Biochem Biophys Res Commun,2004, 320 (2):383-388.
    [190]Elsaesser F,Ellendorff F. Inhibitory feedback action of estradiol on tonic secretion of luteinizing hormone in pre-and post-pubertal gilts [J]. Anim Reprod Sci,1991,25:155-168.
    [191]Lutz JB, Rampacek GB,Pinkert CA Kraeling RR. Serum luteinizing hormone and estrogen profiles before puberty in the gilt [J]. J Anim Sci,1984,58 (3):686-691.
    [192]Camous S, Prunier A,Pelletier J. Plasma prolactin, LH, FSH and estrogen excretion patterns in gilts during sexual development [J]. J Anim Sci,1985,60 (5):1308-1317.
    [193]Colenbrander B, Wensing C J G, Van de Wiel D F M, et al. Changes in serum FSH concentration in the pig during development [J]. Biol Reprod,1981,26:105-112.
    [194]Diekman MA, Trout WE,Anderson LL. Serum profiles of LH, FSH and prolactin from 10 weeks of age until puberty in gilts [J]. J Anim Sci,1983,56 (1):139-145.
    [195]Elsaesser F. Endocrine control of sexual maturation in the female pig[C]. Cole D J A, Foxcroft G R, eds. Control of Pig Reproduction,1982.
    [196]Ziecik AJ, Esbenshade K L, Horward H J, et al. Sex-related differences in the control of gonadotropin concentrations in neonatal pigs [J]. Anim Reprod Sci,1990,23:(123-133):
    [197]赵明珍,王宵燕,樊月钢,等.不同ESR基因型小梅山母猪生长期血清激素浓度变化特点[J].江苏农业科学,2007,6:196-198.
    [198]Pressing AL. Patterns of LH secretion associated with the appearance of surface follicles in the pre-pubertal pigs [J]. J Anim Sci,1990,68:4-6.
    [199]Miyano T, Akamastsu J, Kato S, et al. Ovarian development in Meishan Pigs [J]. Theriogenology,1990,33:769-775.
    [200]Oxender WD. Ovarian development in fetal and pre-pubertal pigs [J]. Bio Reprod,1979,21: 715-721.
    [201]Duffy DM, Wells TR, Haluska GJ, et al. The ratio of progesterone receptor isoforms changes in the monkey corpus luteum during the luteal phase of the menstrual cycle The ratio of progesterone receptor isoforms changes in the monkey corpus luteum during the luteal phase of the menstrual cycle [J]. Biol Reprod,1997,57 (4):693-699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700