单路与多路CMOS工艺单片光电集成接收机研究与制作
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数据传输量的不断增大,传统的电互连已经不能满足要求。目前在信息传输方面,呈现出光互连与电互连共存的局面,并且由于光互连的优越性,在不久的将来光互连有可能全面取代电互连。在光互连系统中,高速高灵敏度的光接收机设计是一个关键点。传统的光接收机中,光电探测器以及高速模拟电路模块的设计制造大部分采用非CMOS技术,虽然能够获得较为优越的性能,但是工艺不成熟,制作成本高,设计和加工周期长。CMOS超大规模集成电路以及工艺技术的发展,推动了光互连CMOS高速光电探测器和前置放大电路的发展,使得有可能将光接收机中的光电探测器与接收机前置模拟放大电路部分集成到同一块芯片上,这样在光电探测器与前置模拟放大电路之间就可以直接通过CMOS工艺中的金属层来进行连接,从而可以最大限度的消除封装和模块间互连所产生的寄生效应以及外界环境的电磁干扰和噪声,降低了光接收机制作的工艺复杂度,制作成本较低。并且,随着CMOS工艺技术的不断成熟,特征尺寸不断减小,接收机各个模块的速度能够很快的提高,具有广阔的发展前景。
     本文围绕高速高灵敏度光接收机中的光电探测器和前置放大电路展开研究,首先讨论了光接收机的基本结构、性能参数,分别分析了光电探测器和前置放大电路的原理、性能、结构,阐述了在光接收机设计过程中各部分所面临的问题和各个性能参数之间必要的折中。分别对光电探测器以及前端放大电路进行了模拟。在此基础上,设计了单路OEIC接收机和12路OEIC接收机并流片测试,具体包括:
     1.设计了多种与标准CMOS工艺兼容的硅基光电探测器结构,通过软件进行仿真得出其性能参数,分别采用无锡上华0.6μm CMOS工艺和台积电0.18μm CMOS工艺进行了单独的流片,并进行了测试。
     2.设计了光接收机前置放大电路。在TIA电路中,带宽的提高和噪声性能的提高几乎是矛盾的,因此需要在二者之间进行适当的折衷。我们提出了光接收机灵敏度的具体分析方法,并通过仿真确定电路参数与接收机灵敏度的关系;同时结合CMOS集成电路工艺的发展,提出了新型的在TIA中进行前均衡频率补偿的方法,来提高其带宽。
     3.针对VSR4-1.0协议的要求,进行了12路并行光接收机的研究。在研制过程中,并行光接收机与单路光接收机的一个重要不同点就是在通道之间存在串扰。我们尝试了抑制串扰通常所采用的隔离方法,同时寻找到一种新型的通过电路设计分析来减小通道间串扰的新方法。
     4.在上述模拟仿真和分析的基础上,设计了光接收机各部分和整体的版图,并且进行了流片和测试,测试结果证实了仿真中的想法。
     5.进行了12路光接收机模块的制作。
     本论文的研究成果在于将光接收机中的光电探测器和前置放大电路集成到同一块衬底上,实现了高速高灵敏度的单路和12路并行光接收机,为单片集成CMOS光接收机的实用化打下了坚实的基础。
With the rapid improvement of data amount, traditional electrical interconnection (EI) becomes non-satisfiable for huge capability. Now in the data transmission aspect, there are both electrical and optical interconnections (OI), and because of the advantages of optical interconnect, we can forecast that in the near future it will totally substitute EI. In OI system, the design of high speed, high sensitivity optical receiver is always a key point. In the past, the photodetector of optical receiver and the high speed analog circuit module were all fabricated by non-CMOS technologies, for their excellent performance with the limitation of expensive manufacturing costs and much longer design and fabrication cycle. The development of CMOS technology has promoted the photodetector and high speed front-end circuit design for OI, made it possible to integrate these two parts into one single chip, and connect them by the metal layer in CMOS process. Through this way, the parasitic effects of packaging and module connection were eliminated, the EMI and noise from outside were restrained, and also the complexity of fabrication was reduced. Furthermore, with the progress in CMOS technology, the feature size has kept shrinking, made the development of speed and sensitivity of photo receiver more rapid.
     This thesis focuses on the research on photodetector and TIA circuit in optical receiver. At first, the basic system structure and parameters of the receiver have been described; the principle, topology and characteristics of PD and TIA have been analyzed; the challenges and trade-off in receiver design have been discussed.
     In this foundation, the single channel and 12 channels parallel optical receiver have been simulated, taped out, and tested respectively, and the optical receiver module has been fabricated. In more detail, it includes:
     1. Several kinds of PD structures compatible with standard CMOS process have been designed and simulated, Selected structures have been taped out with CSMC( a foundary in WuXi, China) 0.6μm CMOS process and TSMC(a foundary in Taiwan, China) 0.18μm CMOS process.
     2. The TIA circuit of optical receiver has been designed. In the circuit design, we should trade-off between bandwidth and noise. The method of sensitivity analysis has been described, and the relation between circuit parameters and receiver’s sensitivity has been found out through simulation. At the same time, new topologies of TIA circuit which use pre-equalizer to extend the bandwidth have been presented.
     3. According to the requirement of VSR4-1.0, the research of 12-channel parallel optical receiver has been described. In this process, the main deference to single channel is that there are inter-channel crosstalks among channels. The traditional crosstalk restrainment method of isolation has been attempted. More over, a novel way to cancel it by study crosstalk issues from circuit design perspective has been given.
     4. After the simulation and analysis, the overall layout of the photoreceiver has been designed, and has been taped out and tested. The results confirmed the ideas in simulation.
     5. The 12-channel parallel optical receiver module has been fabricated.
     The achievements of this thesis are that integrated the PD and TIA circuit into one single chip, implemented high speed, high sensitivity single channel and 12-channel parallel photoreceiver. It will provide valuable guides to the realization of high speed optical interconnection.
引文
[1] Neil Savage,“Linking with Light, IEEE Spectrum”, Vol.39, No.8, 2002
    [2] D. Jiang, B. L. Bhuva, D. V. Kems et al.,“Comparative Analysis of Metal and Optical Interconnect Technology,”Proceedings of the International Interconnect Technology Conference, 2000, pp. 25
    [3] Optoelectronic Industry and Technology Development Association (OITDA),“Future Vision of the Optoelectronics Industry”, November 2004.
    [4] Daniel K.Lau, Samia Islam,“Photonics in China”, 2004 International Conference on Business of Electronic Product Reliability and Liability, 2004 IEEE: 151-156
    [5] Behzad Razavi,“Prospects of CMOS Technology for High-speed Optical Communication Circuits”, IEEE Journal of Solid-State Circuits, September 2002, Vol.37, No.9: 953-958
    [6] Kshirsagar, G.; Chowdhury, M.H.,“Optical Interconnect Technology; Photons Based Signal Communication”, APCCAS 2006 (IEEE Asia Pacific Conference on Circuits and Systems), 4-7 Dec. 2006 Page(s):1426 - 1429
    [7] Behzad Razavi,“Design of Integrated Circuits for Optical Communications”, McGraw-Hill, 2003
    [8] M. Forbes, J. Gourlay et al.,“Optically interconnected electronic chips: a tutorial and review of the technology”, Electronics & Communication Engineering Journal, Vol.13, No.5, pp. 221-232, Oct 2001
    [9]王志功,光纤通信集成电路设计,高等教育出版社,2003.6
    [10]王廷尧等,光通信设备基础天津科学技术出版社,1992.12
    [11] Qasaimeh, O.; Zhenqiang Ma; Bhattacharya, P.et al.,“Monolithically integrated multichannel SiGe/Si p-i-n-HBT photoreceiver arrays”, Journal of Lightwave Technology, Volume 18, Issue 11, Nov. 2000 Page(s):1548– 1553
    [12] Lunardi, L. M.; Chandrasekhar, S.; Gnauck, A. H. et al.,“A 12-Gb/s high-performance, high-sensitivity monolithic p-i-n/HBT photoreceiver module for long-wavelength transmission systems”, Photonics Technology Letters, IEEE, Volume 7, Issue 2, Feb. 1995 Page(s):182– 184
    [13] Fang, Y.K.; Kun-Hsien Lee; Kun-Hsien Wu et al.,“An integrated PIN/MISS OEIC for high current photoreceiver applications”, IEEE Transactions on Electron Devices, Volume 44, Issue 1, Jan. 1997 Page(s):34 - 38
    [14] Fay, P.; Adesida, I.; Caneau, C.; Chandrasekhar, S.,“High sensitivity 12 Gb/s monolithically integrated pin-HEMT photoreceivers”, 1998 International Conference on Indium Phosphide and Related Materials, 11-15 May 1998 Page(s):439– 442
    [15] Chandrasekhar, S.; Lunardi, L.M.; Gnauck, A.H. et al.,“A 10 Gbit/s OEIC photoreceiver using InP/InGaAs heterojunction bipolar transistors”, Electronics Letters, Volume 28, Issue 5, 27 Feb. 1992 Page(s):466 - 468
    [16] D.A.B.Miller,“Optical Interconnects to Silicon CMOS”, Device Research Conference, pp. 35-38, 2001
    [17] H. Wong,“Recent developments in silicon optoelectronic devices”, MIEL 23rd International Conference on Microelectronics, 2002 Vol.1: 285-292
    [18] Mario Paniccia; Ansheng Liu“Integration Challenge of Silicon Photonics with Microelectronics”, 2005, 2nd IEEE International Conference on Group IV Photonics, 2005: 20~22
    [19] L. C. Kimerling, et.al,““Recent advances in CMOS compatible integrated photonics”, SPIE Proceedings vol. 6125, January 2006
    [20] E.A. Fitzgerald and L.C. Kimerling,“Silocon-Based Microphotonics and Integrated Optoelectronics”, MRS Bulletin, April 1998, Vol. 23(4), pp. 39-47
    [21] U. Hilleringmann, K. Goser,“Optoelectronic System Integration on Silicon: Waveguides, Photodetectors, and VLSI CMOS Circuits on One Chip”, IEEE Transactions on Electron Devices, Vol.42, No.5, pp. 841-845, May 1995
    [22] Berthold, J.,“Evolution of WDM in transport networks”, Optical Fiber Communication Conference and Exhibit, 1998. OFC '98., Technical Digest, 22-27 Feb. 1998 Page(s):133
    [23] Yang, Y.; Wang, J.,“Cost-effective designs of WDM optical interconnects”, IEEE Transactions on Parallel and Distributed Systems, Volume 16, Issue 1, Jan 2005 Page(s):51– 66
    [24] Cho, Y.; Chang, N.,“Energy-Aware Clock-Frequency Assignment in Microprocessors and Memory Devices for Dynamic Voltage Scaling”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Volume 26, Issue 6, June 2007 Page(s):1030 - 1040
    [25] E. Griese,“Parallel Optical Interconnects for High Performance Printed Circuit Boards”, (PI’99) Proceedings. The 6th International Conference on Parallel Interconnects, pp. 173-183, 1999
    [26] A.F.J.Levi,“Parallel Optical Network Interconnects”, Lasers and ElectroOptics Society 1999 12th Annual Meeting. LEOS’99, IEEE, Vol.2, pp. 693-694, 1999
    [27] Wong, Y.M.; Muehlner, D.J.; Faudskar, C.C. et al.,“OptoElectronic Technology Consortium (OETC) parallel optical data link: components, system applications, and simulation tools”, 46th Electronic Components and Technology Conference, 28-31 May 1996 Page(s):269– 278
    [28] Ju-Hyoung Mun; Sung Min Park; Myung-Ryong Nam,“Four-channel CMOS photoreceiver array for parallel optical interconnects”, IEEE International Symposium on Circuits and Systems(ISCAS), 2005, 23-26 May 2005, Vol. 2, Page(s):1529 - 1532
    [29] S.Gunther, A.Ramakrishnan Supper D et al.,“VCSEL technologies and applications”. Proceedings of SPIE, The International Society for Optical Engineering, 2002, v4870: pp. 419-429
    [30] J. L. Jewell et al.,“Vertical-Cavity surface-emitting lasers: Design, growth, fabrication, characterization,”IEEE J. Quantum Electron., June 1991, vol. 27, pp: 1332–1346
    [31] Schaffer, T.E.; Mitkas, P.A.,“Smart photodetector array for page-oriented optical memory in 0.35-μm CMOS”, IEEE Photonics Technology Letters , Volume 10, Issue 6, June 1998 Page(s):866– 868
    [32]陈弘达,左超著,甚短距离并行光传输技术,科学出版社,2005年1月
    [33] Momtaz A., Jun Cao, Caresosa M., et al.“A fully integrated SONET OC-48 transceiver in standard CMOS”, IEEE Journal of Solid-State Circuits, 2001, 36(12): 1964~1973
    [34] Behzad Razavi,“A 60GHz CMOS Receiver Front-end”, IEEE Journal of Solid-State Circuits, vol.41, pp. 17-22, Jan. 2006
    [35] Telecommunications,“10 Hotest techniques in 2000”, Telecommunications, Vol 34, May 2000, p32
    [36] OIF Physical and Link Layer Working Group, Very short Reach (VSR) OC-192/STM-64 Interface Based on Parallel Optics: Implementation Agreement OIF-VSR4-01.0, California, USA, 2000
    [37] OIF Physical and Link Layer Working Group, Serial OC-192 1310nm Very short Reach (VSR) Interface: Implementation Agreement OIF-VSR4-02.0, California, USA, 2000
    [38] Paraschis, L.; Nicholl, G.; Nowell, M.; McAdams, L.,“Very short reach (VSR) parallel optics OC-192/STM-64 interface, optimized for network intra-PoP interconnections”, Optical Fiber Communication Conference and Exhibit, 2001(OFC 2001). Volume 3, 2001 Page(s):WS4-1 - WS4-3 vol.3
    [39] Gross, Y.; Lasri, J.; Orenstein, M.,“Modal and modulation characteristics of multimode VCSELs under external feedback for very short reach communications”, 13th Annual Meeting of Lasers and Electro-Optics Society 2000 (LEOS 2000), IEEE Volume 2, 13-16 Nov. 2000 vol.2 Page(s):890 - 891
    [40] Wei Tang; Plant, D.V.,“A Low Power 3.12Gbit/s/Channel Parallel Optical Receiver for Very Short Reach (VSR) Applications”, 2006 23rd Biennial Symposium on Communications, May 29 - June 1, 2006 Page(s):35 - 38
    [41] Sakamoto, T.; Sato, N.; Koike, S et al.,“4 channel/spl times/10 Gbit/s parallel optical module for short reach optical links”, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003 (LEOS 2003) Volume 2, Page(s):567 - 568
    [42] Iwase, M.; Shirai, T.; Ishikawa, Y. et al.,“3.125 Gbps /spl times/ 8 channels parallel interconnection module with low height MT receptacle connector for single mode fibers”, 52nd Electronic Components and Technology Conference, 2002, Proceedings, 28-31 May 2002 Page(s):292 - 299
    [43] Tang, W.; Plant, D.V.,“A 2.5-Gbps De-Skew Chip for Very Short Reach (VSR) Interconnects”, Lasers & Electro-Optics Society, IEEE, Oct. 2006 Page(s):823 - 824
    [44] Cheng-Ta Chan,“A 10 Gb/s CMOS optical receiver using modified regulated cascade scheme”, 48th Midwest Symposium on Circuits and Systems, 2005, 7-10 Aug. 2005 Vol. 1 Page(s):171 - 174
    [45] Athale, R.A.,“Optical interconnects: how far will it go”, Conference on Lasers and Electro-Optics, 2003 (CLEO '03), 1-6 June 2003 Page(s):2
    [46] Gopinath, A.; De La Rue, R.M.; Okamoto, K.et al.,“Introduction to the issue on integrated optics and optoelectronics”, IEEE Journal of Selected Topics in Quantum Electronics, Volume 8, Issue 6, Nov.-Dec. 2002 Page(s):1215 - 1216
    [47] Dupuis, R.D,“III-V semiconductor heterojunction devices grown by metalorganic chemical vapor deposition”, IEEE Journal of Selected Topics in Quantum Electronics, Volume 6, Issue 6, Nov.-Dec. 2000 Page(s):1040– 1050
    [48] Myunghee Lee; Vendier, O.; Brooke, M.A. et al.,“CMOS optical receiver with integrated compound semiconductor thin-film inverted MSM detector operating at 155 Mbps”, Lasers and Electro-Optics Society Annual Meeting, 1995. 8th Annual Meeting Conference Proceedings, IEEEVolume 1, 30-31 Oct. 1995 Page(s):47 - 48
    [49] Jokerst, N.M.; Brooke, M.A.; Vendier, O. et al.“Thin-film multi-material optoelectronic integrated circuits”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, Volume 19, Issue 1, Feb. 1996 Page(s):97– 106
    [50] Park, M.S.; Minasian, R.A.,“Ultra-low-noise and wideband-tuned optical receiver synthesis and design”, Journal of Lightwave Technology, Volume 12, Issue 2, Feb, 1994 Page(s):254 - 259
    [51] Dries, J.C.; Bush, M.G.; Lange, M. et al.,“Demonstration of a 40 Gb/s, 4 channel optical receiver array”, Lasers and Electro-Optics Society 2000 Annual Meeting (LEOS 2000), 13th Annual Meeting, IEEE, Volume 1, 13-16 Nov. 2000 Page(s):344– 345
    [52] Tsunetsugu, H.; Hayashi, T.; Hosoya, M. et al.,“Flip chip bonding technique using transferred microsolder bumps”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part C, Volume 20, Issue 4, Oct. 1997 Page(s):327– 334
    [53] Verma, A.; Chatterjee,A.; Bhuva, B.,“All Si-based optical interconnect for signal transmission”, Interconnect Technology Conference, 2001. Proceedings of the IEEE 2001 International, 4-6 June 2001 Page(s):69– 71
    [54] J. W. Lim, Y. C. Tzeng, H. L. Chuang et al.,“A 3.3V monolithic photodetector/CMOS preamplifier for 531 Mb/s optical data link applications”, IEEE Solid-state circuit conference, paper TA 6.1, 1993
    [55] T. K. Woodward, Ashok V. Krishnamoorthy,“1-Gb/s integrated optical detectors and receivers in commercial CMOS technologies”, IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(2): 146~156
    [56] T. K. Woodward, A. V. Krishnamoorthy, R. G. Rozier et al.,“Low-power, small-foot print Ethernet-compatible optical receiver circuit in 0.25μm CMOS”, Electronics Letter, 2000, Vol. 36, pp. 1489-1491
    [57] Csutak, S.M.; Schaub, J.D. et al.,“High-speed monolithically integrated silicon optical receiver fabricated in 130-nm CMOS technology”, Photonics Technology Letters, IEEE, Volume 14, Issue 4, April 2002 Page(s):516– 518
    [58] B. Yang; J.D. Schaub et al.,“10-Gb/s all-silicon optical receiver”, Photonics Technology Letters, IEEE, Volume 15, Issue 5, May 2003 Page(s):745 - 747
    [59] Saˇsa Radovanovic′, Anne-Johan Annema and Bram Nauta.“A 3-Gb/s Optical Detector in Standard CMOS for 850-nm Optical Communication”, IEEE Journal of Solid-State Cricuits, 2005, 40(8): 1706~1717
    [60] Carolien Hermanst, Paul Leroux and Michiel Steyaert,“Gigabit Photodiodes in Standard Digital nanometer CMOS Technologies”, ESSDERC '03. 33rd Conference on European Solid-State Device Research,p51, 2003
    [61] Cathleen Rooman, Dani?l Coppée, and Maarten Kuijk,“Asynchronous 250-Mb/s Optical Receivers with Integrated Detector in Standard CMOS Technology for Optocoupler Applications”, IEEE Journal of Solid-State Circuits, vol. 35, No. 7, pp: 953 July 2000
    [62] H.Zimmmermann, T.Heide.“A Monolithically Integrated 1-Gb/s Optical Receiver in 1-μm CMOS Technology”, IEEE Photonics Technology Letters,2001.13(7)pp: 711-713
    [63] Wang, Xiuyuan; Mao, Luhong et al.,“Experimental research of MS/RF CMOS-process-compatible photodetector with STI”, 2005 IEEE International Conference on Group IV Photonics, v 2005, p 74-76
    [64] Huang Jiale; Mao Luhong et al.“A MS/RF CMOS-process-compatible photodetector”, Chinese Journal of Semiconductors (半导体学报), v 26, n 10, Oct. 2005, pp. 1995-2000
    [65] Mao, Luhong; Chen, Yongquan et al.,“Circuit model of double photo-diodes for high-speed OEIC receivers”, Proceedings of SPIE - The International Society for Optical Engineering, v 5644, n PART 2, Optoelectronic Devices and Integration, 2005, page(s): 444-451
    [66] Chen Hongda; Gao Peng et al.,“Monolithically integrated optoelectronic receivers implemented in 0.25μm MS/RF CMOS”, Chinese Journal of Semiconductors(半导体学报), v 27, n 2, Feb. 2006, p 323-327
    [67] Huang, Beiju; XuZhang,; Liu, Haijun et al.,“A 1Gb/s silicon photo-receiver in standard CMOS for 850-nm optical communication”, Proceeding of 2007 International Workshop on Electron Devices and Semiconductor Technology, 2007 (EDST 2007), 3-4 June 2007 Page(s):210 - 213
    [68] Liu Jinbin; Gu Ming; Chen Hongda et al.,“A CMOS Front-end Circuit for SONET OC-96 Receiver”, 2006 International Conference on Communications, Circuits and Systems Proceedings, Volume 3, June 2006 Page(s):1961 - 1965
    [69] Zheng Rui; Li Zhiqun; Wang Zhigong et al.,“1.25-Gb/s CMOS front-end amplifier for optical receiver”, Microwave Conference Proceedings, 2005 (APMC 2005), Asia-Pacific Conference Proceedings, Volume 3, 4-7 Dec. 2005 Page(s):4 pp
    [70] Tian Jun; Shi Yi; Zheng Youdou et al.,“1.25 Gb/s low power CMOS limiting amplifier for optical receiver”, 7th International Conference on Solid-State and Integrated Circuits Technology, 2004. Proceedings, Volume 2, 18-21 Oct. 2004 Page(s):1469 - 1471
    [71] Lu Jianhua; Tian Lei; Chen Haitao et al.,“Design techniques of CMOS SCL circuits for Gb/s applications”, 4th International Conference on ASIC, 2001, Proceedings, 23-25 Oct. 2001 Page(s):559– 562
    [72] John Gowar,“Optical communication systems”, Prentice/Hall International, 1984
    [73] W.J. Haynie, Richard E. Peterson,“The technology of communication: drawing, photographic and optical systems, print, and electronic media”, McGraw-Hill, 1997
    [74] J. H. Franz, V. K. Jain,“Optical Communications Components and Systems, Narosa, New Delhi, 2000
    [75] Zhihong Huang; Banerjee, S.K.; Jungwoo Oh et al.,“Interdigitated photodiode fabricated on high quality Ge on Si with thin SiGe buffer layers”, 2006 Digest of the LEOS Summer Topical Meetings, 17-19 July 2006 Page(s):42 - 43
    [76]施敏主编,刘晓彦,贾霖,康晋峰等译,现代半导体器件物理,科学出版社,2001
    [77] Mitsuo Fukuda,Optical Semiconductor Devices, Published by John Wiley &Sons,1999.
    [78] M. Sze, Physics of Semiconductor Devices 2nd Edition, John Wiley & Sons, New York, 1981
    [79]黄德修,半导体光电子学,电子科技大学出版社,第一版,1991
    [80]黄章勇,光纤通信用光电子器件和组件,北京邮电大学出版社,北京,2001
    [81] Boyogueno, A., Kaminska, B., Slamani, M. et al.,“A preamplifier IC design for photonic links”, The 2000 IEEE International Symposium on Circuits and Systems (ISCAS 2000 Geneva), Volume 5, 28-31 May 2000 Page(s):285 - 288
    [82] Hermans, C.; Steyaert, M.S.J.,“A high-speed 850-nm optical receiver front-end in 0.18-/spl mu/m CMOS”, IEEE Journal of Solid-State Circuits, Volume 41, Issue 7, July 2006 Page(s):1606 - 1614
    [83] Jong Hwa Lee; Seon I Jeong; Sang Bock Cho et al.,“Design of a 2.5 Gbps CMOS trans-impedance amplifier (TIA) for optical communication”, The 8th Russian-Korean International Symposium on Science and Technology, 2004, Volume 1, 26 June-3 July 2004 Page(s):229 - 233
    [84]赵梓森,光纤通信工程,北京:人民邮电出版社,2002
    [85] Mukunda B. Das, Jau-Wen Chen, Eugene John.,“Designing optoelectronic integrated circuit (OEIC) receivers for high sensitivity and maximally flat frequency reponse”, IEEE Journal of Lightwave Technology, 1995, 13(9): 1876~1884
    [86]刘恩科,朱秉升,罗晋生等,半导体物理学,北京:国防工业出版社,1999. 256~283
    [87] Behzad Razavi,“Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001,
    [88] P. R. Gray, Analysis and Design of Analog Integrated Circuits”,北京:高等教育出版社,2003
    [89] A. A. Abidi,“High-Frequency noise measurements on FETs with small Dimensions”, IEEE Transaction on Electron Devices, November 1986, Vol. 33, pp. 1801-1805
    [90] Thomas Lee,“The Design of CMOS Radio-Frequency Integrated Circuits”, Cambridge University Press, 1998
    [91] Merlet, T.; Dolfi, D.; Huignard, J.P.,“Compared microwave performances of a high-speed PIN photodiode and a traveling fringes photodetector”, IEEE Photonics Technology Letters, Volume 10, Issue 4, April 1998 Page(s):585 - 587
    [92] Campbell, J.C.; Zhihong Huang; Ning Kong et al.,“Si and Si-compatible photodetectors”, 2nd IEEE International Conference on Group IV Photonics, 21-23 Sept, 2005 Page(s):183– 185
    [93] Schaub, J.D.; Kuchta, D.M.; Rogers, D.L.,“Multi Gbit/s, high-sensitivity all silicon 3.3 V optical receiver using PIN lateral trench photodetector”, Optical Fiber Communication Conference and Exhibit 2001 (OFC 2001), Volume 4, Page(s):PD19-1 - PD19-3
    [94] Ishibashi T., Furuta T., Fushimi H. et al.,“InP/InGaAs uni-traveling carrier photodiodes”, IEICE Trans Electron, 2000, E83-C(6): 938
    [95] Ishibashi T., Kodama S., Shimizu N. et al.,“High speed response of uni-traveling carrier photodiodes”, Jpn. J. Appl. Phys., 1997, 36(10) Part 1: 6263
    [96] Ito H, Furata T., Hirata A. et al.,“Pre-amplifier integrated uni-travelling-carrier Photodiode module for operation in 120GHz band”, Electron letters, 2005, 41(6):1
    [97] E. Fullin, G. Voirin, M. Chevroulet et al.,“CMOS-Based technology for Integrated Optoelectronics: a Modular Approach”, IEDM 1994, Technical Digest, pp. 527-530
    [98] E. Braβ, U. Hilleringmann, K. Schumacher, System Integration of Optical Devices and Analog CMOS Amplifiers”, IEEE J. Solid-State Circuits, Vol. 29, No.8, 1994
    [99] Horst Zimmermann,“Integrated Silicon Optoelectronics”, springer, Berlin, 2000
    [100]H. A Wheeler,“Simple Inductance Formulas for Radio Coils”, IRE Proceedings, 1938, pp. 1398
    [101] M. Lee,“A Quasi-Monolithic Optical Receiver Using a Standard Digital CMOS Technology”, Ph.D Thesis, Georgia Institute of Technology, May 1996
    [102] Karl Schr?dinger, Jaro Stimma, Mauthe,“A Fully Integrated CMOS Receiver Front-End for Optic Gigabit Ethernet”, IEEE Journal of Solid-State Circuits, Vol.37, No.7, 2002
    [103] V. L. Belini, M. A. Romero,“Design of active inductors using CMOS technology”, IEEE Proceedings of the 15th Symposium on Integrated Circuits and Systems Design, 2002: 296~301
    [104] Chia-Hsin Wu, Jieh-Wei Liao, and Shen-Iuan Liu,“A 1V 4.2mW fully integrated 2.5Gb/s CMOS limiting amplifier using folded active inductors”, IEEE Proceedings of the 2004 International Symposium on Circuits and Systems, 2004, Vol.1, Page(s): I - 1044~1047
    [105] Sung Min Park,“1.25-Gb/s Regulated Cascode CMOS Transimpedance Amplifier for Gigabit Ethernet Applications”, IEEE J. Solid-State Circuits, 2004 Vol. 39, No.1
    [106] [美]陈惠开,宽带匹配网络的理论与设计,北京:人民邮电出版社,1982.110~116
    [107] K. Joardar,“A Simple Approach to Modeling Cross-talk in Integrated Circuits”, IEEE Journal of Solid-State Circuits, Oct 1994, Vol. 29, No.10, pp. 1212-1219
    [108] M. Soda, H. Tezuka, F. Sato et al.,“One-Chip Receiver IC for 2.4Gb/s Optical Communication Systems”, IEEE CICC, pp. 99-102, May 1995
    [109] A. Schild, H. M. Rein, J. Mullrich et al.,“High-gain SiGe Transimpedance Amplifier Array for 12×10Gb/s Parallel Optical-fiber Link”, IEEE Journal of Solid-State Circuits, January 2003, Vol. 38, No.1, pp.4-12
    [110] J.Lee, S-J.Song, S. M. Park et al.,“A Multichip on Oxide of 1Gb/s 80 dB Fully-differential CMOS Transimpedance Amplifier for Optical Interconnect Applications”, IEEE ISSCC, 2002, Vol. 1, pp. 80-447
    [111] Natalie W. Wong,“Design of Monolithic CMOS Photoreceiver with Low Substrate Crosstalk for Multi-Channel Applications”, Ms. thesis, University of Toronto, 2003
    [112] P. Bhattacharya,“Semiconductor Optoelectronics Devices”, Prentice Hall, Englewood Cliffs, New Jersey 1994
    [113]中国PCB论坛网,http://www.pcbbbs.com
    [114] Deb G.K.,“Low EMI design of microprocessor based PCB-a case study”, 1998 IEEE International Symposium on Electromagnetic Compatibility, Volume 1, 24-28 Aug. 1998 Page(s):614 - 618
    [115] Weng-Jin Wu; Yao-Ling Cheng; Yi-Ming Chen et al.,“Low cost package of parallel optical receiver module”, The 5th Pacific Rim Conference on Lasers and Electro-Optics, Volume 2, 15-19 Dec. 2003, Page(s):592
    [116] Agrawal, N., Rue, J., Perkins, J. et al.,“Packaging of high speed optical receivers”, IEEE Lasers and Electro-Optics Society 2000 Annual Meeting (LEOS 2000), 13th Annual Meeting, Volume 2, 13-16 Nov. 2000 Page(s):794– 795
    [117] Andrew Davidson, Herman Chui,“Photodetector impulse response yields eye-diagram information”, Laser Focus World, July 2005, pp. 103-106
    [118] Pina C.A.,“Evolution of the MOSIS VLSI educational program”, The First IEEE International Workshop on Electronic Design, Test and Applications, 2002, Page(s): 187-191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700