新建建筑围护结构干燥特性及其影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国正处于工业化、城镇化加速发展时期,2005年建设部统计我国现有建筑总面积400多亿平方米,在未来十五年,中国每年新增建筑面积将约达18亿至20亿平方米。随着人类对环境和能源危机的关注,对建筑节能和居住环境要求的日益提高,围护结构性能的研究提到了越来越重要的日程。建筑围护结构材料是典型的多孔介质,多数为复杂的毛细多孔体,其孔洞充满着湿空气、液态水或冰。在潮湿的建筑材料层中通过几种不同的途径进行热量传递,围护结构内部的湿量传递对热量传递和围护结构的保温性能有不可忽视的影响。
     目前国内外围护结构热质耦合传递文献主要是对热湿地区准稳态建筑的热质耦合传递的模拟及其研究。而对新建建筑,即初始含湿量较大的建筑的干燥过程的研究较少,尤其是对严寒地区的新建建筑的研究,未见文献发表。围护结构的湿积累引发的工程耐久性问题、围护结构的内表面散湿量对室内热舒适性及空气品质的影响、围护结构的含湿量及湿渗透对建筑负荷尤其是冬季供暖负荷的影响,都是亟待解决的问题。而新建建筑围护结构由于有较大的初始含湿量,上述问题在干燥过程中将更加严重。
     本文运用Whitaker体积平均法,首次对严寒地区(以哈尔滨地区为例)新建建筑围护结构干燥过程的热湿耦合传递进行了模拟。考虑了液态水的渗透和冬季围护结构内湿分结冰的情况,以体积含湿量梯度为质驱动势,经过对多层多孔材料界面处含湿量的不连续处理,建立了不同干燥时段的热质耦合传递质量和能量平衡方程。分析了室内外条件、围护结构保温层热侧的隔汽层、冷侧的空气层以及围护结构内外表面涂层对新建建筑围护结构干燥速率的影响。在哈尔滨工业大学建筑节能实验室对单层多孔介质围护结构干燥过程的热质耦合传递进行了实验研究,并与模拟结果进行了对比,验证了模拟的正确性。
     对于夏热冬冷或夏热冬暖地区,由于室外气温较高,新建建筑围护结构的干燥对室内温湿度环境的影响可通过增加通风率来缓解,可对于严寒地区,尤其是冬季,由于通风能耗较大,一般通风率较小,新建建筑的干燥对室内环境的影响会更严重。在哈尔滨地区实际的室外气候条件下,本文对新建建筑的干燥过程对室内温湿度环境的影响进行了研究,分别建立了围护结构和室内空气的综合质量和能量平衡方程。并讨论了不同的通风率对围护结构内表面散湿量及室内空气呼吸舒适度不满意率的影响。
     目前发达国家建筑外围护结构的热阻是我国建筑围护结构热阻的2-3倍,在我国推广节能建筑已势在必行。然而为应对世界性的能源危机而提出的一些国际国内节能标准并没有考虑围护结构内的湿传递,在建筑能耗的研究中忽略墙体湿传递会导致能耗较大的估算误差。严寒地区冬季建筑供暖能耗占整个建筑能耗较大的比例,新建建筑较大的初始含湿量及保温层的受潮影响整个建筑的保温性能。本文对新建建筑围护结构干燥过程中热质传递对建筑能耗的影响进行了研究,包括冬季的供暖能耗和全年湿负荷。
     本文对新建建筑围护结构的干燥过程进行了较全面的研究,完善了围护结构的热质耦合传递理论,为进一步推动建筑节能以及室内空气质量的研究提供重要的参考作用
China is in the time of fast developing of industrialization and urbanization. In 2005, the government showed that the existing building total area was about 40,000 million square meter, and 1800 to 2000 million square meters building area would increase every year in the next fifteen years. With the attention on human environment and energy crisis and increased need for energy-saving and indoor environment, more and more refined study was on the building envelope. Building envelope is a typical porous media, in which is full of moist air, liquid water or ice. The heat transfers in the moist porous building materials through a few different ways. The effect of moisture transfer on heat transfer and insulation performance of porous building envelope can not ignore.
     The main attention of the existing references about the heat and mass transfer of building envelope is on the simulation and study of heat and mass transfer of quasi-stable state building in hot and moist area. But little was on the drying of the new buildings, that is buildings with high initial moisture content, especially the buildings in cold serious area, in which no published reference seen. The wall system is an important component of building exterior envelope which affects the building performance in many ways: the moist damping on the building service life, the interior moisture release on the indoor air quanlity and the moisture infiltration on the building energy performance, etc. these questions would be more serious for new buildings due to the high initial moisture content.
     The heat and moisture coupling transfer of drying building envelope with multilayer composition in the cold serious area Harbin was simulated first time using Whitaker volume average method. The infiltration of liquid water and the freezing of moisture were considered. The moisture content gradient was used as mass transfer driving forces and the discontinuity effects of interface between porous materials with different pore size distribution was solved. The heat and mass conservation equations were built for different drying periods. The effect of indoor and outdoor climate condition, the vapor insulation and air layer beside insulated layer, the interior wallpaper and exterior glazed tile on the drying rate was compared and analyzed. The experimental study on the single layer porous building materials envelope was done in energy-saving laboratory of Harbin Institute of Technology, and the result was compared with simulated result.
     For the warm areas, the effect of building drying on indoor air quality can be minished through increasing ventilation rate. But for cold serious area, especially in winter, the ventilation rate is usually small due to the big energy consumption, so the effect on indoor condition would be more serious. The effect of building envelope drying on the indoor temperature and humidity was analyzed under the measured outdoor climate condition of Harbin. The integrated heat and moisture coupled transfer of the whole building was modeled. The effect of different indoor ventilation rate on interior moisture release and percent dissatisfied of warm respiratory comfort was discussed.
     The building envelope insulation performance of developed countries is about two to three times higher than our countries. It is imperative to achieve energy-saving buildings under the situation. The proposed international and internal energy-saving criterion to reply to the economy crisis did not take into account the effect of moisture transfer in building envelope. The estimation error on building energy performance due to the neglect of moisture infiltration affects the building energy efficiency more serious. In cold serious area, the heating load in winter has a big proportion to the whole building energy performance. The new building due to the high initial moisture content and insulation damping affects the building insulation performance. The effect of heat and moisture transfer on building energy, that is building energy consumption and air-conditioning moisture load, was studied in this paper.
     The drying performance of the new building envelope was studied comprehensively in this paper,which consummated the study on heat and moisture transfer of building envelope further. It will provide an imporant intruction for energy-saving and study of indoor air quality deeply.
引文
1.刘光廷,黄达海.混凝土温湿耦合研究.建筑材料学报. 2003, 6(2):173-181
    2.贾永英.建筑墙体热质耦合传递数值模拟.大庆石油学院硕士研究生学位论文. 2002:14-15
    3.刘伟范爱武黄晓明多孔介质传热传质理论与应用科学出版社2006:1-4
    4.卢涛.毛细多孔介质干燥过程中传热传质模型的研究与分析.大连理工大学博士学位论文. 2003:11-18
    5.雷树业,杨荣贵,杜建华.非饱和含湿多孔介质传热传质的渗流模型研究.清华大学学报. 1999,39(6):74-77
    6.朱庆霞,胡国林.多孔介质内部热质传递的等效耦合扩散模型的推导及其应用.陶瓷学报. 2002(23): 163-168
    7.周雍.建筑传湿的不利影响及处理原则.沈阳建筑工程学院学报1999, 15(2):183-186
    8.刘晓燕,贾永英,王志国.建筑墙体热、湿及空气耦合传递.太阳能学报. 2004, 25(1):13-18
    9.宋永红.新型墙体材料的选用.建筑工业信息. 2005(4):52-53
    10. M.J.Cunningham, G.A.Tsongas, D.McQuade. Solar-driven Moisture Transfer Through Absorbent Roofing Materials. ASHRAE Transaction. 1990,95(2): 465-471
    11.唐鸣放,陈启高,王进.空气渗透对房屋围护结构多孔材料层湿度的影响.重庆建筑大学学报. 1997, 19 (4):77-80
    12. Shakun. The Causes and Control of Moid and Mildew in Hot and Humid Climates. ASHRAE Transactions, 1998,104(1): 1282-1292
    13.湖南地区建筑外墙外保温体系设计方法研究.湖南大学硕士学位论文. 2006: 47-48
    14.赵立华,董重成,贾春霞.外保温墙体传湿研究.哈尔滨建筑大学学报. 2001,34(6):78-81
    15.苏向辉.多层多孔结构内热湿耦合迁移特性研究.南京航空航天大学博士学位论文2003:5-9
    16.肖石.霉菌一个值得注意的问题.海外防水. 2003(6):32-34
    17. Achilles Karagiozis, Mikael Salonvaara. Hygrothermal System Performance of a Whole building. Building and Environment. 2001(36):779-787
    18.卢涛,沈胜强,葛玉林.含湿毛细多孔介质干燥过程相变传热分析.工程热物理学报. 2003,24(3):100-102
    19.卢涛,沈胜强,刘晓华.多孔介质对流干燥过程数值模拟.大连理工大学学报. 2005,45(4):543-546
    20.李友荣,曾丹苓,吴双应.对流干燥时水分蒸发扩散过程的热力学条件.重庆大学学报. 2000,23 (4):103-105
    21. Huang C.L.D., Siang H.H. Heat and Moisture Transfer in Concrete Slabs. Heat and Mass Transfer.1979, 22(2):257-266
    22. Nasrallah S.Ben. Detailed Study of a Model of Heat and Mass Transfer during Convective Drying of Porous Media. Heat and Mass Transfer.1988, 31(5):957-967
    23.孙喜山.多相热湿动态传递过程的理论研究及应用.哈尔滨建筑大学博士学位论文. 1998
    24. Ilic M., I. W. Turner. Convective Drying of a Consolidated Slab of Wet Porous Material. Heat and Mass Transfer.1989, 32(12):2351-2362
    25. Patrick P, I. W. turner. A 3-D Version of TransPore: a Comprehensive heat and Mass Computational Model for Simulating the Drying of Porous Media. Heat and Mass Transfer.1999, 42(24):401-452
    26. Rogers J.A., Kaviany M. Funicular and Evaporative-front Redimes in Convective Drying of Granular Beds. Heat and Mass Transfer.1992, 35(2):469-480
    27. Reardon S. A., Davis M.R. Friction Heat and Mass Transfer for Paper Drying. Heat and Mass Transfer.1998, 41(10):1313-1325
    28.朱杰.多孔介质内的相变传热传质过程研究.大连理工大学硕士学位论文. 2006:16-17
    29. Achilles Karagiozis, Mikael Salonvaara. Hygrothermal System Performance of a Whole building. Building and Environment. 2001(36):779-787
    30. Dariuse J.Gawin. Aldona Wieckowska. Effect of Moisture on Hygrothermal and Energy Performance of a Building wuth Cellular Concrete Walls inClimatic Conditions of Poland. ASHRAE Transaction, 2004, 110(2): 795-803
    31. Wei Chen, Bingcheng, Liu, Wei Liu. Numerical and experimental analysis of heat and moisture content transfer in a lean-to greenhouse. Energy and Buildings. 2006 (38): 99–104
    32.张华玲,刘朝,付祥钊.多孔墙体湿分传递与室内热湿环境研究.暖通空调. 2006,36 (10): 29-35
    33.陶智,康宁.建筑结构中的湿迁移.力学进展. 1994, 24(4):441-455
    34. Hartwig M K. Calculation of Heat Moisture Transfer in Exposed Building Components. Heat Mass Transfer. 1997,40(1):159-167
    35. Lu Xiaoshu. Estimation of Indoor Moisture Generation Rate from Measurement in Buildings. Building and Environment. 2003,38(5):665-675
    36. I. Budaiwi, R. El-Diasty, A. Abdou. Modelling of Moisture and Thermal Transient Behaviour of Multilayer Non-cavity Walls. Building and Environment. 1999(34): 537-551
    37. A.Keresteciogiu, L.Gu. Theoretical and Computational Investigation of Simultaneous Heat and Moisture Transfer in Buildings:“Evaporation and Condensation”Theory. ASHRAE Transaction. 1990,96(2):455-463
    38. R. J. Liesen, C.O. Pedersen. Modelling the Energy Effects of Combined Heat and Mass Transfer in Building Elements: Part 1-Theory. ASHRAE Transaction,1999 105(2) 941-953
    39. LuXiaoshu. Modelling of Heat and Moisture Transfer in Buildings, Model Program. Energy and Buildings. 2002,34(4):1033-1043
    40. Mamoru Matsumoto, Shuichi Hokoi, Masanori Hatano. Model for Simulation of Freezing and Thawing Processes in Building Materials. Building and Environment. 2001(36):733-742
    41. Danko Davidovic, Jelena Srebric, EricF.P. Burnett. Modeling convective drying of ventilatedwallchambers inbuilding enclosures. International Journal of Thermal Sciences. 2006(45):180-189
    42.韩吉田,施明恒.同时测定含湿多孔介质热湿迁移特性的参数估计法.计量学报1995,16(2):153-160
    43.田晓亮,涂颉,吕灿仁.含湿多孔介质传输机理系数的确定.天津大学学报. 1994(27):436-443
    44郝锦志,髦树业,马斌.松散颗粒介质水的渗透率与孔隙率实验研究.广西师范大学学报. 2003,21 (4):15-18
    45. Bardorf V. Effect of relative humidity on permeance of coatings[J]. Journal of Testing and Evaluation. 1989, 17(5):299-306
    46. Fanney A.H., Thomas W.C., Burch D.M. Measurements of Moisture Diffusion in Building Materials. ASHRAE Transactions, 1991, 97(2): 33-113
    47. Burch D.M., Thomas W.C. Fanney A.H. Water Vapor Permeability Measurements of Commom Building Materials. ASHRAE Transactions, 1992, 98(2): 69-77
    48.胡松涛.不可逆过程热力学的应用及致密毛细多孔体干燥过程的研究.哈尔滨建筑大学博士学位论文. 1996:13-14
    49. Jerry M. Sipes. Mohammad H. Hosni. Experimental Water Vapor Permeability Results for Common Wall Materials. ASHRAE Transaction, 2000,106(2): 238-247
    50.贾永英,刘晓燕,刘艳坡.墙体热质耦合传递模型的块追赶法求解.大庆石油学院学报. 2005,29 (6): 67-70
    51.陈永成,陈启高.围护结构吸湿区湿分布的分析解.重庆建筑大学学报. 1997,19 (4):30-37
    52.陈永成,陈启高.建筑墙体潮湿区湿度计算方法研究.重庆建筑大学学报. 1997,19 (3):16-22
    53. S.P.W.Wong. Simulation of Simultaneous Heat and Moisture Transfer by Using the Finite Difference Method and Verified Tests in a Test Chamber. ASHRAE Transaction,1990, 96(2) :472-487
    54. Win Jin Chang, Cheng-I Weng. An Analytical Solution to Coupled Heat and Moisture Diffusion Transfer in Porous Materials. Heat and Mass Transfer. 2000(43):3621-3632
    55. Targo Kalamees, Juha Vinha. Hygrothermal Calculations and Laboratory Tests on Timber-framed Wall Structures. Building and Environment. 2003(38): 689-697
    56.梅宁,尹凤.陆虹涛湿度变化对气体污染物扩散影响的研究.中国海洋大学学报. 2006,36(6) :987~990
    57.黄季宜,金招芬.调湿建材调节室内湿度的可行性分析.暖通空调. 2002,32(1): 105-106
    58.胡敏.建筑结构湿过程对室内环境的影响及其分析方法的研究.湖南大学硕士学位论文. 2006:16-18
    59.胡敏,陈友明,郭兴国.空气湿度对人体舒适感的影响.制冷与空调. 2007,21(3): 111-115
    60. J Toftum, P O Fanger. Air Humidity Requirements for Human Comfort. ASHRAE Transaction. 1999,105 (2): 641-647
    61. Carsten, Nathan Mendes, Karl Grau. Evaluation of Moisture Buffer Effects by Performing Whole-Building Simulations. ASHRAE Transaction, 2004, 110(2): 783-793
    62. Ten Wolde,A. Ventilation, Humidity and Condensation in Manufactured Houses during Winter. ASHRAE Transaction. 1994, 100(1): 103-115
    63. Mikael H. Salonvaara. Prediction of Hygrothermal Performance of Building Envelope Parts Coupled with Indoor Climate. ASHRAE Transaction,1998 104(2) 908-919
    64. Simonson, Salonvaara. The Effect of Structures on Indoor Humidity- Possibility to Improve Comfort and Perceived Air Quality. Indoor Air. 2002(12): 1-9
    65. Stephane Hameury. Moisture Buffering Capacity of Heavy Timber Structures Directly Exposed to an Indoor Climate: a Numerical study. Building and Environment. 2005(40):1400-1412
    66. Carey J. Simonson, Mikael Salonvaara. Moderating Indoor Conditions with Hygroscopic Building Materials and Outdoor Ventilation. ASHRAE Transaction, 2004, 110(2): 804-819
    67. Andreas H. Holm, Hartwig M. Kunzel, Klaus Sedlbauer. Predicting Indoor Temperature and Humidity Conditions Including Hygrothermal Interactions with the Building Envelope. ASHRAE Transaction, 2004, 110(2): 820-826
    68.陈友明,陈在康.建筑内表面吸放湿过程对室内环境和空调负荷的影响的仿真研究.暖通空调. 1999,29(5):5-9
    69 P.Haupl, J.Grunewald, H.Fechner. Coupled Heat Air and Moisture Transfer in Building Structures. Heat and Mass Transfer. 1997(96):1633-1642
    70. Hosni M.H, Sipes J. M. Experimental Results for Diffusion and Infiltration of Moisture in Concrete Masonry Walls Exposed to Hot and Humid Climates. ASHRAE Transaction,1999 105(2) 191-203
    71. Hartwig M. Kunzel. The Smart Vapor Retarder: An Innovation Inspired byComputer Simulations. ASHRAE Transaction,1998 104(2) 903-907
    72. Lotz, W.A. Moisture Problem in Buildings in Hot Humid Climates. ASHRAE Journal. 1989 (4):26-27
    73. Odom, J.D. Designing and Constructing Mildew-free Hotels. ASHRAE Transactions. 1998, 104(1):1275-1281
    74. William E. Stewart. Effect of Air Pressure Differential on Vapor Flow Through Sample Building Walls. ASHRAE Transaction,1998,104(2): 17-24
    75. Burch, D.M. An Analysis of Moisture accumulation in Walls Subject to Hot and Humid Climates. ASHRAE Transactions. 1993,98(2):1013-1022
    76. N. Mendes, F.C.Winkelmann, R.Lamberts, P.C. Philippi. Moisture Effects on Conduction Loads. Energy and Building. 2003(35):631-644
    77. R. J. Liesen, C.O. Pedersen. Modelling the Energy Effects of Combined Heat and Mass Transfer in Building Elements: Part 1-Theory. ASHRAE Transaction,1999, 105(2) 941-953
    78. R. J. Liesen, C.O. Pedersen. Modelling the Energy Effects of Combined Heat and Mass Transfer in Building Elements: Part 2-Application to a Building Energy Analysis Program and Examples. ASHRAE Transaction,1999, 105(2) 954-961
    79.季杰.严寒地区建筑墙体湿迁移对能耗影响的研究.哈尔滨建筑工程学院博士学位论文. 1991:11-12
    80.张东辉.多孔介质扩散、导热、渗流分形模型的研究.东南大学博士学位论文. 2003: 1-1
    81. Wong S.P.W., Wang S.K. Fundermentals of Simultaneous Heat and Moisture Transfer between the Building Envelope and the Condition Space Air. ASHRAE Transaction,1990, 96(2) 73-83
    82.廖晓,张雄,张青.建筑围护结构用蓄热复合相变材料研究.墙材革新与建筑节能. 2007(11):36-38
    83.杨国忠,王如竹,夏再忠.强化管管外升膜蒸发换热特性实验.工程热物理学报. 2007, 28(2):280-282
    84.王小军,陈炳德,黄彦平.加热上升管内过冷流动沸腾数值模拟.化工学报. 2007,58(6):1353-1358
    85.杜建华,吴伟,胡雪蛟.带开槽结构的多孔表面沸腾换热的双孔隙模型.清华大学学报(自然科学版). 2001,41(10):78-81
    86.赵绪新,刘伟,朱光明.蒸发状况下土壤中热湿迁移的非稳态数值模拟.华中理工大学学报. 2000,28(10):105-107
    87.张玲,陈光明,黄奕沄.垂直埋管热湿传递线源模型的建立及其计算条件.太阳能学报. 2007,28(2):141-145
    88.高青,李明,于鸣.湿土壤含湿特性对传热影响研究.热科学与技术. 2005,4(2):136-140
    89.林泰瑞.多孔介质传热传质引论.科学出版社. 1995: 39-41
    90. Li-Zhi Zhang. Heat and mass transfer in plate-fin sinusoidal passages with vapor-permeable wall materials. Heat and Mass Transfer. 2007, 51(3):618-629
    91. Mark W.Lin, Justin B.Berman. Modelling of Moisture Migration in FRP Reinforced Masonry Structure. Building and Environment. 2006(41):646-656
    92. Whitaker, S., 1985,Moisture Transport Mechanisma during the Drying of Granular Porous Media. 1985. Drying’85. Hemisphere Publication corp.,D.C. :21-32
    93.王补宣,王仁.含湿建筑材料的导热系数.工程热物理学报. 1983,(4)2:146-152
    94.闫增峰,赵敬源,刘加平.生土建筑围护结构表面吸放湿过程实验研究长安大学学报建筑与环境科学版. 2003,20(4):16-19
    95.陆耀庆.供暖通风设计手册.中国建筑工业出版社. 1987:38-40
    96. Jerzy Wyrwal, Andrzej Marynowicz. Vapor Condensation and Moisture Accumulation in Porous Building Wall. Building and Environment. 2002(37):313-318
    97. Harmathy, T.Z.,1969, Simultaneous Moisture and Heat Transfer in Porous Systems with Particular Reference to Drying. Ind. & Engr. Chem. Fundamentals 8(1):92-103
    98.周明煜,李诗明,陈陟.北极夏季冰面上近地层特征及热量收支问题.地球物理学报. 2006 , 49(2) :353~359
    99.徐宇工,李笑.多孔建筑材料冻融现象研究中孔隙水冻结点的确定方法.哈尔滨建筑大学学报. 2001,34(3):91-95
    100.阎增峰.生土建筑室内热湿环境研究.西安建筑科技大学硕士学位论文. 2003:19-21
    101. V.P.Defreitas, V.Abrantes, P.Crausse. Moisture Migration in BuildingWalls—Analysis of the Interface Phenomena. Building and Environment. 1995, 31(2):99-108
    102.封海兵.关于湿度测量技术的探讨.计量与测试技术. 2007,34(7): 56-58
    103.王洪林.超低功耗温度、湿度及露点数据记录仪的研制与应用.哈尔滨工业大学硕士学位论文. 2006:13-15
    104.陈启高.奇妙的空气层.重庆建筑工程学院学报. 1985,(4):1-9
    105.肖石.霉菌一个值得注意的问题.海外防水. 2003(6):32-34
    106.张燎原.建筑物外墙热湿传递过程的数值模拟.北京交通大学硕士研究生学位论文. 2006: 31-35
    107.毕宇欣.建筑节能理论与设计应用.新疆化工. 2006,2: 23-25
    108.黄国亮,刘雄,时志洋.上海地区居住建筑外墙保温系统节能分析.上海建设科技. 2007(5):72-74
    109.张松.夏热冬冷地区居住建筑节能检测技术方法的实施.深圳土木与建筑. 2006,3(4):10-14
    110.彭红圃,朱惠英,柳朝慧.广西居住节能建筑外围护构造及保温隔热材料应用述评.建筑节能. 2007,35(5):22-27
    111. Simonson,C.J.,.M. Salonvaara, and T.Ojanen. Heat and Mass Transfer between Indoor Air and a Permeable and Hygroscopic Building Envelope, PartⅠ-Field Measurements. Journal of Thermal Envelope and Building Science. 2004, 27(1):63-101
    112. Simonson,C.J.,.M. Salonvaara, and T.Ojanen. Heat and Mass Transfer between Indoor Air and a Permeable and Hygroscopic Building Envelope,PartⅡ-Verification and Numerical Studies. Journal of Thermal Envelope and Building Science.2004, 27(1):161-185
    113. Salonvaara,M.H. Prediction of Hygrothermal Performance of Building Envelope Parts Coupled with Indoor Climate. ASHRAE Transaction,1998 104(2): 908-918
    114. Fangting Song, Bin Zhao, Xudong Yang. A New Approach on Zonal Modeling of Indoor Environment with Mechanical Ventilation. Building and Environment. 2008 (43): 278–286
    115.江燕涛,赖学江,曾东琪.关于低温送风系统的通风、热舒适和空气品质的探讨.制冷. 2005,24(3): 62-66
    116. W.C.Thomas, D.M.Burch. Experimental Validation of a MathematicalModel for Predicting Water Vapor Sorption at Interior Building Surfaces. ASHRAE Transaction. 1990,96(2):487-496
    117. Philipp Plathner, Monika Woloszyn. Interzonal Air and Moisture Transport in a Test House: Experiment and Modeling. Building and Environment. 2002(37): 189–199
    118. Prabal Talukdar, Stephen O. Olutmayin, Olalekan F. Osanyintola. An Experimental Data Set for Benchmarking 1-D, Transient Heat and Moisture Transfer Models of Hygroscopic Building Materials. Part I: Experimental Facility and Material Property Data. Heat and Mass Transfer. 2007(50): 4527–4539
    119. Prabal Talukdar, Olalekan F. Osanyintola, Stephen O. Olutimayin. An Experimental Data Set for Benchmarking 1-D, Transient Heat and Moisture Transfer Models of Hygroscopic Building Materials. Part II: Experimental, Numerical and Analytical Data. Heat and Mass Transfer. 2007, 50(23):4915-4926
    120. Toftum,J., A.S. Jorgensen, P.O. Fange. Upper limits of Air Humidity for Preventing Warm Respiratory Discomfort. Energy and Buildings. 1998(28):15-23
    121. Carsten, Nathan Mendes, Karl Grau. Evaluation of Moisture Buffer Effects by Performing Whole-Building Simulations. ASHRAE Transaction, 2004, 110(2): 783-793
    122. Fang, L., G.. Clausen, G. and P.O.Fanger. Impact of Temperature and Humidity on the Perception of Indoor Air Quality during Immediate and Longer Whole-body Exposures. Indoor air. 1998(8): 276-284
    123. Fang, L., G.. Clausen, G. and P.O.Fanger. 1998. Impact of Temperature and Humidity on the Perception of Indoor Air Quality. Indoor air. 1998(8):80-90
    124.王焱.夏热冬冷地区建筑节能优化设计.东南大学博士学位论文. 2003:7-8
    125. Rogerio Marcos Barbosa, Nathan Mendes. Combined Simulation of Central HVAC Systems with a Whole-building Hygrothermal Model. Energy and Buildings. 2008, 40(3):276-288
    126. F.Ochs, W.Heidemann, H.Muller-Steinhagen. Effective Thermal Conductivity of Moistened Insulation Materials as a Function ofTemperature. Heat and Mass Transfer. 2008, 51(3):539-552
    127.黄涛,吴华新,章永.建筑节能设计及外墙外保温的应用.工程建设. 2006,38(4):51-54
    128.胡敏.建筑结构湿过程对室内环境的影响及其分析方法的研究.湖南大学硕士学位论文. 2006:6-7
    129.张锡虎,贺克瑾.解读北京建筑节能新标准《居住建筑节能设计标准》.暖通空调. 2004,34(10): 39-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700