多功能材料在光学阵列传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在公共安全、环境监测、医学检测等领域普遍存在着对快速、灵敏、高通量、小型化检测仪器的需求。以阵列分析为基础的阵列传感器采用了人工模拟嗅觉系统的传感模式,可以实现平面上多点信息的同时获取,极大地提高了分析效率和检测通量,为小型化仪器的发展提供了新的契机。目前,发展用于阵列传感器的新传感材料和相应的传感机理仍是阵列传感器研究的主要方向。本论文研究了基于DNA-金纳米颗粒体系的比色阵列传感器和基于氧化石墨烯的三维光谱阵列传感器,合成了基于石墨烯和配位聚合物的新多功能材料,发展了基于有机电致发光材料和器件的新传感模式。主要成果包括:
     1.系统研究了多种蛋白质在不同核酸适配体-金纳米颗粒体系上的比色响应行为,发现响应信号与蛋白质的物理化学性质及核酸适配体的结构有密切的关系。根据同一样品在不同识别单元上响应信号不同、不同样品在同一识别单元上响应信号也不同的现象,设计了基于新原理的阵列传感器,实现了对不同生物分子的快速、高灵敏和可视化检测。
     2.研究了蛋白质对氧化石墨烯的内源性荧光、催化活性和自组装性质的影响,建立了氧化石墨烯的荧光、比色和浊度三维光谱阵列传感器,实现了对蛋白质的识别检测,扩展了用于单点多维信息获取方式的传感材料和传感模式。研究了氧化石墨烯在等离子体共振基质上的荧光增强行为。通过控制合成不同尺寸和厚度的银膜,实现了氧化石墨烯荧光10倍的增强。研究了多种金属离子对氧化石墨烯荧光增强行为的影响,实现了对不同种类金属离子的区分。
     3.研究了可用于多维阵列传感器的新的多功能材料的设计和可控合成方法。选取石墨烯作为载体,将四氧化三铁纳米颗粒与其复合,获得了同时具有过氧化物酶催化活性、磁性和电化学性能的多功能材料。
     4.研究了基于发光电化学池原理的有机电致发光材料和器件,并在气体传感中获得应用。在具有高比表面积的平面电极结构的器件上,光电双重信号会对氧气产生快速可逆的响应。基于这种传感器微阵列实现了对氧气含量的检测。
In the areas such as public safety, environmental monitoring and medical diagnosis,there is a widely requirement for fast reponse, sensitive and high-throughput sensorswith miniaturization. A sensor array is an artificial olfactory system based on the arrayanalysis method. On an array, information from different sensing units could becollected simultaneously, and this sensing mode is an effective way for theminiaturization of sensing device. At the moment the research of sensor array still focuson developing new sensing materials and methods. In our present work, we developedthe AuNP-based colorimetric sensor array and graphene oxide (GO)-basedtriple-channel sensing device. Also we synthesized new multi-funtional materials basedon graphene and coordination polymers, and developed new sensing methods withorganic light-emitting device. The main contents of the present dissertation are asfollows:
     1. A new AuNP-based colorimetric sensor array for proteins detection anddiscrimination has been developed with three reported protein aptamers as nonspecificreceptors. The proteins at relatively low level could be well distinguished with nakedeye. The sensor array can also be used for the discrimination of cancerous fromnoncancerous cells.
     2. The fluorescence, catalytic activity and assembly behavior of GO afterinteraction with proteins has been studied. As different proteins give distinct influencepatterns, proteins discrimination could be achieved on the triple-channel device in a‘lab-on-graphene’ approach. At the same time, a significant enhancement (~10fold) influorescence intensity is observed from GO on Ag substrate as compared to that onglass. The influence of Ag substrate metal size is investigated.
     3. The design and synthesis of multi-functional materials for sensor array has beendeveloped. Fe3O4nanoparticles are anchored on reduced graphene oxide, and thenanocomposites exhibit peroxidase-like activity, electrochemical and magneticproperties. Superhydrophobic zinc coordination polymers particles (CPPs) withdifferent shapes are synthesized and ZnO calcined from these CPPs also exhibitsuperhydrophobic property and good photocatalytic activity.
     4. The application of light-emitting electrochemical cells (LECs) for gassensing has been studied. The sensor is realized on an improved planar light-emittingdevice, and the current and light intensity show fast and reversible responses to oxygen.The LEC sensor microarray could be used for quantitative analysis of oxygenconcentration.
引文
[1] J. Yguerabide, E. E. Yguerabide, Light-scattering submicroscopic particles as highlyfluorescent analogs and their use as tracer labels in clinical and biological applications-i.Theory. Anal. Biochem.1998,262,137-156.
    [2] P. K. Jain, K. S. Lee, I. H. El-Sayed, et al., Calculated absorption and scattering properties ofgold nanoparticles of different size, shape, and composition: Applications in biologicalimaging and biomedicine. J. Phys. Chem. B2006,110,7238-7248.
    [3] J. J. Storhoff, A. A. Lazarides, R. C. Mucic, et al., What controls the optical properties ofDNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc.2000,122,4640-4650.
    [4] M. Hu, J. Chen, Z.-Y. Li, et al., Gold nanostructures: Engineering their plasmonic propertiesfor biomedical applications. Chem. Soc. Rev.2006,35,1084-1094.
    [5] B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, et al., The fano resonance in plasmonicnanostructures and metamaterials. Nat. Mater.2010,9,707-715.
    [6] N. J. Halas, S. Lal, W.-S. Chang, et al., Plasmons in strongly coupled metallic nanostructures.Chem. Rev.2011,111,3913-3961.
    [7] M. R. Jones, K. D. Osberg, R. J. Macfarlane, et al., Templated techniques for the synthesisand assembly of plasmonic nanostructures. Chem. Rev.2011,111,3736-3827.
    [8] B. Sepulveda, P. C. Angelome, L. M. Lechuga, et al., Lspr-based nanobiosensors. NanoToday2009,4,244-251.
    [9] K. Aslan, J. R. Lakowicz, C. D. Geddes, Plasmon light scattering in biology and medicine:New sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol.2005,9,538-544.
    [10] S. K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of goldnanoparticles: From theory to applications. Chem. Rev.2007,107,4797-4862.
    [11] K. A. Willets, R. P. Van Duyne, in Annu. Rev. Phys. Chem., Vol.58,2007, pp.267-297.
    [12] H. Jans, Q. Huo, Gold nanoparticle-enabled biological and chemical detection and analysis.Chem. Soc. Rev.2012,41,2849-2866.
    [13] P. Englebienne, A. Van Hoonacker, M. Verhas, et al., Advances in high-throughput screening:Biomolecular interaction monitoring in real-time with colloidal metal nanoparticles. Comb.Chem. High Throughput Screen2003,6,777-787.
    [14] P. Englebienne, A. Van Hoonacker, M. Verhas, High-throughput screening using the surfaceplasmon resonance effect of colloidal gold nanoparticles. Analyst2001,126,1645-1651.
    [15] P. Englebienne, Use of colloidal gold surface plasmon resonance peak shift to infer affinityconstants from the interactions between protein antigens and antibodies specific for single ormultiple epitopes. Analyst1998,123,1599-1603.
    [16] L. A. Dykman, V. A. Bogatyrev, B. N. Khlebtsov, et al., A protein assay based on colloidalgold conjugates with trypsin. Anal. Biochem.2005,341,16-21.
    [17] F. Frederix, J. M. Friedt, K. H. Choi, et al., Biosensing based on light absorption ofnanoscaled gold and silver particles. Anal. Chem.2003,75,6894-6900.
    [18] J. M. Bingham, J. N. Anker, L. E. Kreno, et al., Gas sensing with high-resolution localizedsurface plasmon resonance spectroscopy. J. Am. Chem. Soc.2010,132,17358-17359.
    [19] T. Sannomiya, C. Hafner, J. Voros, In situ sensing of single binding events by localizedsurface plasmon resonance. Nano Lett.2008,8,3450-3455.
    [20] B.-A. Du, Z.-P. Li, C.-H. Liu, One-step homogeneous detection of DNA hybridization withgold nanoparticle probes by using a linear light-scattering technique. Angew. Chem. Int. Edit.2006,45,8022-8025.
    [21] X. Liu, Q. Dai, L. Austin, et al., A one-step homogeneous immunoassay for cancer biomarkerdetection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem.Soc.2008,130,2780-2782.
    [22] J. R. Kalluri, T. Arbneshi, S. A. Khan, et al., Use of gold nanoparticles in a simplecolorimetric and ultrasensitive dynamic light scattering assay: Selective detection of arsenic ingroundwater. Angew. Chem. Int. Edit.2009,48,9668-9671.
    [23] J. M. Nam, S. I. Stoeva, C. A. Mirkin, Bio-bar-code-based DNA detection with PCR-likesensitivity. J. Am. Chem. Soc.2004,126,5932-5933.
    [24] C. S. Thaxton, R. Elghanian, A. D. Thomas, et al., Nanoparticle-based bio-barcode assayredefines "Undetectable'' PSA and biochemical recurrence after radical prostatectomy. Proc.Natl. Acad. Sci. U. S. A.2009,106,18437-18442.
    [25] D. G. Georganopoulou, L. Chang, J. M. Nam, et al., Nanoparticle-based detection in cerebralspinal fluid of a soluble pathogenic biomarker for alzheimer's disease. Proc. Natl. Acad. Sci.U. S. A.2005,102,2273-2276.
    [26] J. M. Nam, C. S. Thaxton, C. A. Mirkin, Nanoparticle-based bio-bar codes for theultrasensitive detection of proteins. Science2003,301,1884-1886.
    [27] P. L. Stiles, J. A. Dieringer, N. C. Shah, et al., in Annual review of analytical chemistry, Vol.1,2008, pp.601-626.
    [28] Y. W. C. Cao, R. C. Jin, C. A. Mirkin, Nanoparticles with raman spectroscopic fingerprintsfor DNA and rna detection. Science2002,297,1536-1540.
    [29] J. F. Li, Y. F. Huang, Y. Ding, et al., Shell-isolated nanoparticle-enhanced ramanspectroscopy. Nature2010,464,392-395.
    [30] X. Qian, X.-H. Peng, D. O. Ansari, et al., In vivo tumor targeting and spectroscopic detectionwith surface-enhanced raman nanoparticle tags. Nat. Biotechnol.2008,26,83-90.
    [31] K. Aslan, I. Gryczynski, J. Malicka, et al., Metal-enhanced fluorescence: An emerging tool inbiotechnology. Curr. Opin. Biotechnol.2005,16,55-62.
    [32] A. P. Alivisatos, K. P. Johnsson, X. G. Peng, et al., Organization of 'nanocrystal molecules'using DNA. Nature1996,382,609-611.
    [33] R. Elghanian, J. J. Storhoff, R. C. Mucic, et al., Selective colorimetric detection ofpolynucleotides based on the distance-dependent optical properties of gold nanoparticles.Science1997,277,1078-1081.
    [34] J. J. Storhoff, A. D. Lucas, V. Garimella, et al., Homogeneous detection of unamplifiedgenomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat.Biotechnol.2004,22,883-887.
    [35] J.-M. Nam, K.-J. Jang, J. T. Groves, Detection of proteins using a colorimetric bio-barcodeassay. Nat. Protoc.2007,2,1438-1444.
    [36] L.-J. Ou, P.-Y. Jin, X. Chu, et al., Sensitive and visual detection of sequence-specificDNA-binding protein via a gold nanoparticle-based colorimetric biosensor. Anal. Chem.2010,82,6015-6024.
    [37] Y. Jiang, H. Zhao, N. Zhu, et al., A simple assay for direct colorimetric visualization oftrinitrotoluene at picomolar levels using gold nanoparticles. Angew. Chem. Int. Edit.2008,47,8601-8604.
    [38] K. Ai, Y. Liu, L. Lu, Hydrogen-bonding recognition-induced color change of goldnanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem.Soc.2009,131,9496-9497.
    [39] Y. Jiang, H. Zhao, Y. Lin, et al., Colorimetric detection of glucose in rat brain using goldnanoparticles. Angew. Chem. Int. Edit.2010,49,4800-4804.
    [40] J.-S. Lee, M. S. Han, C. A. Mirkin, Colorimetric detection of mercuric ion (Hg2+) in aqueousmedia using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Edit.2007,46,4093-4096.
    [41] X. Xue, F. Wang, X. Liu, One-step, room temperature, colorimetric detection of mercury(Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc.2008,130,3244-3245.
    [42] J. W. Liu, Y. Lu, A colorimetric lead biosensor using dnazyme-directed assembly of goldnanoparticles. J. Am. Chem. Soc.2003,125,6642-6643.
    [43] S. Kim, J. W. Park, D. Kim, et al., Bioinspired colorimetric detection of calcium(ii) ions inserum using calsequestrin-functionalized gold nanoparticles. Angew. Chem. Int. Edit.2009,48,4138-4141.
    [44] Y. Zhou, S. Wang, K. Zhang, et al., Visual detection of copper(ii) by azide-andalkyne-functionalized gold nanoparticles using click chemistry. Angew. Chem. Int. Edit.2008,47,7454-7456.
    [45] W. L. Daniel, M. S. Han, J.-S. Lee, et al., Colorimetric nitrite and nitrate detection with goldnanoparticle probes and kinetic end points. J. Am. Chem. Soc.2009,131,6362-6363.
    [46] J. H. Lee, Z. Wang, J. Liu, et al., Highly sensitive and selective colorimetric sensors foruranyl (UO2+2): Development and comparison of labeled and label-free dnazyme-goldnanoparticle systems. J. Am. Chem. Soc.2008,130,14217-14226.
    [47] S. He, D. Liu, Z. Wang, et al., Utilization of unmodified gold nanoparticles in colorimetricdetection. Sci. China-Phys. Mech. Astron.2011,54,1757-1765.
    [48] H. X. Li, L. Rothberg, Colorimetric detection of DNA sequences based on electrostaticinteractions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. U. S. A.2004,101,14036-14039.
    [49] H. X. Li, L. J. Rothberg, Label-free colorimetric detection of specific sequences in genomicDNA amplified by the polymerase chain reaction. J. Am. Chem. Soc.2004,126,10958-10961.
    [50] R. Kanjanawarut, X. Su, Colorimetric detection of DNA using unmodified metallicnanoparticles and peptide nucleic acid probes. Anal. Chem.2009,81,6122-6129.
    [51] Y. L. Jung, C. Jung, H. Parab, et al., Direct colorimetric diagnosis of pathogen infections byutilizing thiol-labeled PCR primers and unmodified gold nanoparticles. Biosens. Bioelectron.2010,25,1941-1946.
    [52] Q. Shen, Z. Nie, M. Guo, et al., Simple and rapid colorimetric sensing of enzymatic cleavageand oxidative damage of single-stranded DNA with unmodified gold nanoparticles asindicator. Chem. Commun.2009,929-931.
    [53] H. Wei, B. Li, J. Li, et al., Simple and sensitive aptamer-based colorimetric sensing of proteinusing unmodified gold nanoparticle probes. Chem. Commun.2007,3735-3737.
    [54] X. Lou, Y. Xiao, Y. Wang, et al., Label-free colorimetric screening of nuclease activity andsubstrates by using unmodified gold nanoparticles. Chembiochem2009,10,1973-1977.
    [55] D. Li, A. Wieckowska, I. Willner, Optical analysis of Hg(2+) ions byoligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew. Chem. Int. Edit.2008,47,3927-3931.
    [56] X. Xu, J. Wang, K. Jiao, et al., Colorimetric detection of mercury ion (Hg2+) based on DNAoligonucleotides and unmodified gold nanoparticles sensing system with a tunable detectionrange. Biosens. Bioelectron.2009,24,3153-3158.
    [57] L. Li, B. Li, Y. Qi, et al., Label-free aptamer-based colorimetric detection of mercury ions inaqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal.Chem.2009,393,2051-2057.
    [58] Z. Wang, J. H. Lee, Y. Lu, Label-free colorimetric detection of lead ions with a nanomolardetection limit and tunable dynamic range by using gold nanoparticles and dnazyme. Adv.Mater.2008,20,3263-3267.
    [59] J. Wang, L. Wang, X. Liu, et al., A gold nanoparticle-based aptamer target binding readoutfor ATP assay. Adv. Mater.2007,19,3943-3946.
    [60] J. Zhang, L. Wang, D. Pan, et al., Visual cocaine detection with gold nanoparticles andrationally engineered aptamer structures. Small2008,4,1196-1200.
    [61] Z. Chen, S. Luo, C. Liu, et al., Simple and sensitive colorimetric detection of cysteine basedon ssDNA-stabilized gold nanoparticles. Anal. Bioanal. Chem.2009,395,489-494.
    [62] L. Li, B. Li, Sensitive and selective detection of cysteine using gold nanoparticles ascolorimetric probes. Analyst2009,134,1361-1365.
    [63] F. Xia, X. Zuo, R. Yang, et al., On the binding of cationic, water-soluble conjugated polymersto DNA: Electrostatic and hydrophobic interactions. J. Am. Chem. Soc.2010,132,1252-1254.
    [64] F. Xia, X. Zuo, R. Yang, et al., Colorimetric detection of DNA, small molecules, proteins, andions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl. Acad.Sci. U. S. A.2010,107,10837-10841.
    [65] K. P. Loh, Q. Bao, G. Eda, et al., Graphene oxide as a chemically tunable platform for opticalapplications. Nat. Chem.2010,2,1015-1024.
    [66] S. Guo, S. Dong, Graphene and its derivative-based sensing materials for analytical devices. J.Mater. Chem.2011,21,18503-18516.
    [67] H. Ma, D. Wu, Z. Cui, et al., Graphene-based optical and electrochemical biosensors: Areview. Anal. Lett.2013,46,1-17.
    [68] C.-H. Lu, H.-H. Yang, C.-L. Zhu, et al., A graphene platform for sensing biomolecules.Angew. Chem. Int. Edit.2009,48,4785-4787.
    [69] S. He, B. Song, D. Li, et al., A graphene nanoprobe for rapid, sensitive, and multicolorfluorescent DNA analysis. Adv. Funct. Mater.2010,20,453-459.
    [70] Y. Wang, Z. Li, D. Hu, et al., Aptamer/graphene oxide nanocomplex for in situ molecularprobing in living cells. J. Am. Chem. Soc.2010,132,9274-9276.
    [71] H. Chang, L. Tang, Y. Wang, et al., Graphene fluorescence resonance energy transferaptasensor for the thrombin detection. Anal. Chem.2010,82,2341-2346.
    [72] H. Dong, W. Gao, F. Yan, et al., Fluorescence resonance energy transfer between quantumdots and graphene oxide for sensing biomolecules. Anal. Chem.2010,82,5511-5517.
    [73] D. Du, Z. Zou, Y. Shin, et al., Sensitive immunosensor for cancer biomarker based on dualsignal amplification strategy of graphene sheets and multienzyme functionalized carbonnanospheres. Anal. Chem.2010,82,2989-2995.
    [74] X.-H. Zhao, R.-M. Kong, X.-B. Zhang, et al., Graphene-dnazyme based biosensor foramplified fluorescence "Turn-on" Detection of Pb2+with a high selectivity. Anal. Chem.2011,83,5062-5066.
    [75] J. Balapanuru, J.-X. Yang, S. Xiao, et al., A graphene oxide-organic dye ionic complex withDNA-sensing and optical-limiting properties. Angew. Chem. Int. Edit.2010,49,6549-6553.
    [76] G. Eda, Y.-Y. Lin, C. Mattevi, et al., Blue photoluminescence from chemically derivedgraphene oxide. Adv. Mater.2010,22,505-509.
    [77] X. Sun, Z. Liu, K. Welsher, et al., Nano-graphene oxide for cellular imaging and drugdelivery. Nano Res.2008,1,203-212.
    [78] J. H. Jung, D. S. Cheon, F. Liu, et al., A graphene oxide based immuno-biosensor forpathogen detection. Angew. Chem. Int. Edit.2010,49,5708-5711.
    [79] J.-L. Chen, X.-P. Yan, K. Meng, et al., Graphene oxide based photoinduced charge transferlabel-free near-infrared fluorescent biosensor for dopamine. Anal. Chem.2011,83,8787-8793.
    [80] L. Gao, J. Zhuang, L. Nie, et al., Intrinsic peroxidase-like activity of ferromagneticnanoparticles. Nat. Nanotechnol.2007,2,577-583.
    [81] H. Wei, E. Wang, Fe3O4magnetic nanoparticles as peroxidase mimetics and their applicationsin H2O2and glucose detection. Anal. Chem.2008,80,2250-2254.
    [82] A. Asati, S. Santra, C. Kaittanis, et al., Oxidase-like activity of polymer-coated cerium oxidenanoparticles. Angew. Chem. Int. Edit.2009,48,2308-2312.
    [83] Y. Song, K. Qu, C. Zhao, et al., Graphene oxide: Intrinsic peroxidase catalytic activity and itsapplication to glucose detection. Adv. Mater.2010,22,2206-2210.
    [84] F. Qu, T. Li, M. Yang, Colorimetric platform for visual detection of cancer biomarker basedon intrinsic peroxidase activity of graphene oxide. Biosens. Bioelectron.2011,26,3927-3931.
    [85] Y. Guo, L. Deng, J. Li, et al., Hemin-graphene hybrid nanosheets with intrinsicperoxidase-like activity for label-free colorimetric detection of single-nucleotidepolymorphism. Acs Nano2011,5,1282-1290.
    [86] Y. Cui, Y. Yue, G. Qian, et al., Luminescent functional metal-organic frameworks. Chem.Rev.2012,112,1126-1162.
    [87] M. D. Allendorf, C. A. Bauer, R. K. Bhakta, et al., Luminescent metal-organic frameworks.Chem. Soc. Rev.2009,38,1330-1352.
    [88] J. Lee, O. K. Farha, J. Roberts, et al., Metal-organic framework materials as catalysts. Chem.Soc. Rev.2009,38,1450-1459.
    [89] J.-R. Li, R. J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organicframeworks. Chem. Soc. Rev.2009,38,1477-1504.
    [90] J. Rocha, L. D. Carlos, F. A. Almeida Paz, et al., Luminescent multifunctionallanthanides-based metal-organic frameworks. Chem. Soc. Rev.2011,40,926-940.
    [91] O. Shekhah, J. Liu, R. A. Fischer, et al., MOF thin films: Existing and future applications.Chem. Soc. Rev.2011,40,1081-1106.
    [92] D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'Keeffe, et al., Secondary building units,nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev.2009,38,1257-1283.
    [93] D. Zacher, O. Shekhah, C. Woell, et al., Thin films of metal-organic frameworks. Chem. Soc.Rev.2009,38,1418-1429.
    [94] J. C. Tan, A. K. Cheetham, Mechanical properties of hybrid inorganic-organic frameworkmaterials: Establishing fundamental structure-property relationships. Chem. Soc. Rev.2011,40,1059-1080.
    [95] Z. Wang, S. M. Cohen, Postsynthetic modification of metal-organic frameworks. Chem. Soc.Rev.2009,38,1315-1329.
    [96] Z.-Z. Lu, R. Zhang, Y.-Z. Li, et al., Solvatochromic behavior of a nanotubular metal-organicframework for sensing small molecules. J. Am. Chem. Soc.2011,133,4172-4174.
    [97] L. G. Beauvais, M. P. Shores, J. R. Long, Cyano-bridged Re(6)Q(8)(Q=S, Se)Cluster-Cobalt(ii) framework materials: Versatile solid chemical sensors. J. Am. Chem. Soc.2000,122,2763-2772.
    [98] H. Lee, S. H. Jung, W. S. Han, et al., A chromo-fluorogenic tetrazole-based CoBr2coordination polymer gel as a highly sensitive and selective chemosensor for volatile gasescontaining chloride. Chem.-Eur. J.2011,17,2823-2827.
    [99] L.-G. Qiu, Z.-Q. Li, Y. Wu, et al., Facile synthesis of nanocrystals of a microporousmetal-organic framework by an ultrasonic method and selective sensing of organoamines.Chem. Commun.2008,3642-3644.
    [100] Y. Qiu, H. Deng, J. Mou, et al., In situ tetrazole ligand synthesis leading to a microporouscadmium-organic framework for selective ion sensing. Chem. Commun.2009,5415-5417.
    [101] X. Zou, G. Zhu, I. J. Hewitt, et al., Synthesis of a metal-organic framework film by directconversion technique for VOCs sensing. Dalton Trans.2009,3009-3013.
    [102] L. Basabe-Desmonts, D. N. Reinhoudt, M. Crego-Calama, Design of fluorescent materials forchemical sensing. Chem. Soc. Rev.2007,36,993-1017.
    [103] Z. Xie, L. Ma, K. E. deKrafft, et al., Porous phosphorescent coordination polymers foroxygen sensing. J. Am. Chem. Soc.2010,132,922-923.
    [104] J. An, C. M. Shade, D. A. Chengelis-Czegan, et al., Zinc-adeninate metal-organic frameworkfor aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanidecations. J. Am. Chem. Soc.2011,133,1220-1223.
    [105] A. Lan, K. Li, H. Wu, et al., A luminescent microporous metal-organic framework for the fastand reversible detection of high explosives. Angew. Chem. Int. Edit.2009,48,2334-2338.
    [106] S. Pramanik, C. Zheng, X. Zhang, et al., New microporous metal-organic frameworkdemonstrating unique selectivity for detection of high explosives and aromatic compounds. J.Am. Chem. Soc.2011,133,4153-4155.
    [107] Y. Takashima, V. Martinez Martinez, S. Furukawa, et al., Molecular decoding usingluminescence from an entangled porous framework. Nat. Commun.2011,2,1-8.
    [108] I. Imaz, J. Hernando, D. Ruiz-Molina, et al., Metal-organic spheres as functional systems forguest encapsulation. Angew. Chem. Int. Edit.2009,48,2325-2329.
    [109] G. Lu, S. Li, Z. Guo, et al., Imparting functionality to a metal-organic framework material bycontrolled nanoparticle encapsulation. Nat. Chem.2012,4,310-316.
    [110] M. O'Toole, D. Diamond, Absorbance based light emitting diode optical sensors and sensingdevices. Sensors2008,8,2453-2479.
    [111] A. Ivanisevic, J. Y. Yeh, L. Mawst, et al., Semiconductor devices-light-emitting diodes aschemical sensors. Nature2001,409,476-476.
    [112] S. Sax, E. Fisslthaler, S. Kappaun, et al., Sensled: An electro-optical active probe for oxygendetermination. Adv. Mater.2009,21,3483-3487.
    [113] Z. H. Zou, L. F. Horowitz, J. P. Montmayeur, et al., Genetic tracing reveals a stereotypedsensory map in the olfactory cortex (retracted article. See vol452, pg120,2008). Nature2001,414,173-179.
    [114] G. Barnea, S. O'Donnell, F. Mancia, et al., Odorant receptors on axon termini in the brain.Science2004,304,1468-1468.
    [115] K. J. Albert, N. S. Lewis, C. L. Schauer, et al., Cross-reactive chemical sensor arrays. Chem.Rev.2000,100,2595-2626.
    [116] N. A. Rakow, K. S. Suslick, A colorimetric sensor array for odour visualization. Nature2000,406,710-713.
    [117] K. S. Suslick, An optoelectronic nose:"Seeing" Smells by means of colorimetric sensorarrays. MRS Bull.2004,29,720-725.
    [118] K. S. Suslick, N. A. Rakow, A. Sen, Colorimetric sensor arrays for molecular recognition.Tetrahedron2004,60,11133-11138.
    [119] K. S. Suslick, D. P. Bailey, C. K. Ingison, et al., Seeing smells: Development of anoptoelectronic nose. Quim. Nova2007,30,677-681.
    [120] N. A. Rakow, A. Sen, M. C. Janzen, et al., Molecular recognition and discrimination ofamines with a colorimetric array. Angew. Chem. Int. Edit.2005,44,4528-4532.
    [121] P. J. Mazzone, J. Hammel, R. Dweik, et al., Diagnosis of lung cancer by the analysis ofexhaled breath with a colorimetric sensor array. Thorax2007,62,565-568.
    [122] C. Zhang, K. S. Suslick, A colorimetric sensor array for organics in water. J. Am. Chem. Soc.2005,127,11548-11549.
    [123] S. H. Lim, L. Feng, J. W. Kemling, et al., An optoelectronic nose for the detection of toxicgases. Nat. Chem.2009,1,562-567.
    [124] L. Feng, C. J. Musto, J. W. Kemling, et al., A colorimetric sensor array for identification oftoxic gases below permissible exposure limits. Chem. Commun.2010,46,2037-2039.
    [125] L. Feng, C. J. Musto, J. W. Kemling, et al., Colorimetric sensor array for determination andidentification of toxic industrial chemicals. Anal. Chem.2010,82,9433-9440.
    [126] B. A. Suslick, L. Feng, K. S. Suslick, Discrimination of complex mixtures by a colorimetricsensor array: Coffee aromas. Anal. Chem.2010,82,2067-2073.
    [127] C. Zhang, D. P. Bailey, K. S. Suslick, Colorimetric sensor arrays for the analysis of beers: Afeasibility study. J. Agric. Food Chem.2006,54,4925-4931.
    [128] C. Zhang, K. S. Suslick, Colorimetric sensor array for soft drink analysis. J. Agric. FoodChem.2007,55,237-242.
    [129] X. Huang, J. Xin, J. Zhao, A novel technique for rapid evaluation of fish freshness usingcolorimetric sensor array. J. Food Eng.2011,105,632-637.
    [130] Y. Salinas, J. V. Ros-Lis, J.-L. Vivancos, et al., Monitoring of chicken meat freshness bymeans of a colorimetric sensor array. Analyst2012,137,3635-3643.
    [131] C. J. Musto, S. H. Lim, K. S. Suslick, Colorimetric detection and identification of natural andartificial sweeteners. Anal. Chem.2009,81,6526-6533.
    [132] H. Lin, K. S. Suslick, A colorimetric sensor array for detection of triacetone triperoxide vapor.J. Am. Chem. Soc.2010,132,15519-15521.
    [133] H. Lin, M. Jang, K. S. Suslick, Preoxidation for colorimetric sensor array detection of VOCs.J. Am. Chem. Soc.2011,133,16786-16789.
    [134] J. R. Carey, K. S. Susick, K. I. Hulkower, et al., Rapid identification of bacteria with adisposable colorimetric sensing array. J. Am. Chem. Soc.2011,133,7571-7576.
    [135] N. T. Greene, K. D. Shimizu, Colorimetric molecularly imprinted polymer sensor array usingdye displacement. J. Am. Chem. Soc.2005,127,5695-5700.
    [136] C. C. Huang, Y. F. Huang, Z. H. Cao, et al., Aptamer-modified gold nanoparticles forcolorimetric determination of platelet-derived growth factors and their receptors. Anal. Chem.2005,77,5735-5741.
    [137] Y. Jv, B. Li, R. Cao, Positively-charged gold nanoparticles as peroxidiase mimic and theirapplication in hydrogen peroxide and glucose detection. Chem. Commun.2010,46,8017-8019.
    [138] X. Li, F. Wen, B. Creran, et al., Colorimetric protein sensing using catalytically amplifiedsensor arrays. Small2012,8,3589-3592.
    [139] U. H. F. Bunz, V. M. Rotello, Gold nanoparticle-fluorophore complexes: Sensitive anddiscerning "Noses" For biosystems sensing. Angew. Chem. Int. Edit.2010,49,3268-3279.
    [140] O. R. Miranda, B. Creran, V. M. Rotello, Array-based sensing with nanoparticles:'chemicalnoses' for sensing biomolecules and cell surfaces. Curr. Opin. Chem. Biol.2010,14,728-736.
    [141] Y. Liu, L. Ding, Y. Cao, et al., Fluorescent sensor arrays. Prog. Chem.2012,24,1915-1927.
    [142] C. C. You, O. R. Miranda, B. Gider, et al., Detection and identification of proteins usingnanoparticle-fluorescent polymer 'chemical nose' sensors. Nat. Nanotechnol.2007,2,318-323.
    [143] M. De, S. Rana, H. Akpinar, et al., Sensing of proteins in human serum using conjugates ofnanoparticles and green fluorescent protein. Nat. Chem.2009,1,461-465.
    [144] R. L. Phillips, O. R. Miranda, C.-C. You, et al., Rapid and efficient identification of bacteriausing gold-nanoparticle-poly(para-phenyleneethynylene) constructs. Angew. Chem. Int. Edit.2008,47,2590-2594.
    [145] A. Bajaj, O. R. Miranda, I.-B. Kim, et al., Detection and differentiation of normal, cancerous,and metastatic cells using nanoparticle-polymer sensor arrays. Proc. Natl. Acad. Sci. U. S. A.2009,106,10912-10916.
    [146] A. Bajaj, S. Rana, O. R. Miranda, et al., Cell surface-based differentiation of cell types andcancer states using a gold nanoparticle-GFP based sensing array. Chem. Sci.2010,1,134-138.
    [147] O. R. Miranda, H.-T. Chen, C.-C. You, et al., Enzyme-amplified array sensing of proteins insolution and in biofluids. J. Am. Chem. Soc.2010,132,5285-5289.
    [148] W.-Y. Chen, G.-Y. Lan, H.-T. Chang, Use of fluorescent DNA-templated gold/silvernanoclusters for the detection of sulfide ions. Anal. Chem.2011,83,9450-9455.
    [149] C.-A. J. Lin, T.-Y. Yang, C.-H. Lee, et al., Synthesis, characterization, and bioconjugation offluorescent gold nanoclusters toward biological labeling applications. Acs Nano2009,3,395-401.
    [150] Y.-H. Lin, W.-L. Tseng, Ultrasensitive sensing of Hg2+and CH3Hg+based on thefluorescence quenching of lysozyme type vi-stabilized gold nanoclusters. Anal. Chem.2010,82,9194-9200.
    [151] Y. Liu, K. Ai, X. Cheng, et al., Gold-nanocluster-based fluorescent sensors for highlysensitive and selective detection of cyanide in water. Adv. Funct. Mater.2010,20,951-956.
    [152] F. Wen, Y. Dong, L. Feng, et al., Horseradish peroxidase functionalized fluorescent goldnanoclusters for hydrogen peroxide sensing. Anal. Chem.2011,83,1193-1196.
    [153] J. Xie, Y. Zheng, J. Y. Ying, Protein-directed synthesis of highly fluorescent goldnanoclusters. J. Am. Chem. Soc.2009,131,888-889.
    [154] G. Hong, S. M. Tabakman, K. Welsher, et al., Metal-enhanced fluorescence of carbonnanotubes. J. Am. Chem. Soc.2010,132,15920-15923.
    [155] J. R. Lakowicz, K. Ray, M. Chowdhury, et al., Plasmon-controlled fluorescence: A newparadigm in fluorescence spectroscopy. Analyst2008,133,1308-1346.
    [156] T. Ming, H. Chen, R. Jiang, et al., Plasmon-controlled fluorescence: Beyond the intensityenhancement. J. Phys. Chem. Lett.2012,3,191-202.
    [157] K. Ray, R. Badugu, J. R. Lakowicz, Metal-enhanced fluorescence from CdTe nanocrystals: Asingle-molecule fluorescence study. J. Am. Chem. Soc.2006,128,8998-8999.
    [158] H. Kong, Y. Lu, H. Wang, et al., Protein discrimination using fluorescent gold nanoparticleson plasmonic substrates. Anal. Chem.2012,84,4258-4261.
    [159] P. McCord, S. L. Yau, A. J. Bard, Chemiluminescence of anodized and etched silicon-evidence for a luminescent siloxene-like layer on porous silicon. Science1992,257,68-69.
    [160] Z. Y. Zhang, C. Zhang, X. R. Zhang, Development of a chemiluminescence ethanol sensorbased on nanosized ZrO2. Analyst2002,127,792-796.
    [161] Y. F. Zhu, J. J. Shi, Z. Y. Zhang, et al., Development of a gas sensor utilizingchemiluminescence on nanosized titanium dioxide. Anal. Chem.2002,74,120-124.
    [162] Z. Y. Sun, H. Q. Yuan, Z. M. Liu, et al., A highly efficient chemical sensor material for H2S:Alpha-Fe2O3nanotubes fabricated using carbon nanotube templates. Adv. Mater.2005,17,2993-2997.
    [163] N. Na, S. Zhang, S. Wang, et al., A catalytic nanomaterial-based optical chemo-sensor array. J.Am. Chem. Soc.2006,128,14420-14421.
    [164] Y. Wu, N. Na, S. Zhang, et al., Discrimination and identification of flavors with catalyticnanomaterial-based optical chemosensor array. Anal. Chem.2009,81,961-966.
    [165] H. Kong, S. Zhang, N. Na, et al., Recognition of organic compounds in aqueous solutions bychemiluminescence on an array of catalytic nanoparticles. Analyst2009,134,2441-2446.
    [166] H. Kong, D. Liu, S. Zhang, et al., Protein sensing and cell discrimination using a sensor arraybased on nanomaterial-assisted chemiluminescence. Anal. Chem.2011,83,1867-1870.
    [167] H. Kong, H. Wang, S. Zhang, et al., A thermochemiluminescence array for recognition ofprotein subtypes and their denatured shapes. Analyst2011,136,3643-3648.
    [168] X. Wang, N. Na, S. Zhang, et al., Rapid screening of gold catalysts bychemiluminescence-based array imaging. J. Am. Chem. Soc.2007,129,6062-6063.
    [169] N. Na, S. Zhang, X. Wang, et al., Cataluminescence-based array imaging for high-throughputscreening of heterogeneous catalysts. Anal. Chem.2009,81,2092-2097.
    [170] L. Wu, Y. Zhang, S. Zhang, et al., Development of a cataluminescence-based method forrapid screening of de-NOx catalysts. Anal. Methods2012,4,2218-2220.
    [171] A. Hierlemann, R. Gutierrez-Osuna, Higher-order chemical sensing. Chem. Rev.2008,108,563-613.
    [172] M. Schmittel, H.-W. Lin, Quadruple-channel sensing: A molecular sensor with a single typeof receptor site for selective and quantitative multi-ion analysis. Angew. Chem. Int. Edit.2007,46,893-896.
    [173] D. Liu, M. Liu, G. Liu, et al., Dual-channel sensing of volatile organic compounds withsemiconducting nanoparticles. Anal. Chem.2010,82,66-68.
    [174] P. Wu, L.-N. Miao, H.-F. Wang, et al., A multidimensional sensing device for thediscrimination of proteins based on manganese-doped ZnS quantum dots. Angew. Chem. Int.Edit.2011,50,8118-8121.
    [175] H. Pei, J. Li, M. Lv, et al., A graphene-based sensor array for high-precision and adaptivetarget identification with ensemble aptamers. J. Am. Chem. Soc.2012,134,13843-13849.
    [176] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, et al., A DNA-based method for rationallyassembling nanoparticles into macroscopic materials. Nature1996,382,607-609.
    [177] J. N. Anker, W. P. Hall, O. Lyandres, et al., Biosensing with plasmonic nanosensors. Nat.Mater.2008,7,442-453.
    [178] L. Rodriguez-Lorenzo, R. de la Rica, R. A. Alvarez-Puebla, et al., Plasmonic nanosensorswith inverse sensitivity by means of enzyme-guided crystal growth. Nat. Mater.2012,11,604-607.
    [179] R. de la Rica, M. M. Stevens, Plasmonic elisa for the ultrasensitive detection of diseasebiomarkers with the naked eye. Nat. Nanotechnol.2012,7,821-824.
    [180] J. Liu, Y. Lu, Preparation of aptamer-linked gold nanoparticle purple aggregates forcolorimetric sensing of analytes. Nat. Protoc.2006,1,246-252.
    [181] Y. Ohno, K. Maehashi, Y. Yamashiro, et al., Electrolyte-gated graphene field-effecttransistors for detecting pH protein adsorption. Nano Lett.2009,9,3318-3322.
    [182] D. R. Dreyer, S. Park, C. W. Bielawski, et al., The chemistry of graphene oxide. Chem. Soc.Rev.2010,39,228-240.
    [183] S. Guo, S. Dong, Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids,and energy and analytical applications. Chem. Soc. Rev.2011,40,2644-2672.
    [184] S. S. Chou, M. De, J. Luo, et al., Nanoscale graphene oxide (NGO) as artificial receptors:Implications for biomolecular interactions and sensing. J. Am. Chem. Soc.2012,134,16725-16733.
    [185] J.-L. Chen, X.-P. Yan, Ionic strength and pH reversible response of visible and near-infraredfluorescence of graphene oxide nanosheets for monitoring the extracellular pH. Chem.Commun.2011,47,3135-3137.
    [186] Q. Mei, K. Zhang, G. Guan, et al., Highly efficient photoluminescent graphene oxide withtunable surface properties. Chem. Commun.2010,46,7319-7321.
    [187] Y. Song, W. Wei, X. Qu, Colorimetric biosensing using smart materials. Adv. Mater.2011,23,4215-4236.
    [188] C. Huang, H. Bai, C. Li, et al., A graphene oxide/hemoglobin composite hydrogel forenzymatic catalysis in organic solvents. Chem. Commun.2011,47,4962-4964.
    [189] Y. Xu, K. Sheng, C. Li, et al., Self-assembled graphene hydrogel via a one-step hydrothermalprocess. Acs Nano2010,4,4324-4330.
    [190] Y. Xu, Q. Wu, Y. Sun, et al., Three-dimensional self-assembly of graphene oxide and DNAinto multifunctional hydrogels. Acs Nano2010,4,7358-7362.
    [191] S. H. Lee, H. W. Kim, J. O. Hwang, et al., Three-dimensional self-assembly of grapheneoxide platelets into mechanically flexible macroporous carbon films. Angew. Chem. Int. Edit.2010,49,10084-10088.
    [192] Y. Sun, C. Li, Y. Xu, et al., Chemically converted graphene as substrate for immobilizing andenhancing the activity of a polymeric catalyst. Chem. Commun.2010,46,4740-4742.
    [193] K. Sokolov, G. Chumanov, T. M. Cotton, Enhancement of molecular fluorescence near thesurface of colloidal metal films. Anal. Chem.1998,70,3898-3905.
    [194] G. S. Hong, S. M. Tabakman, K. Welsher, et al., Metal-enhanced fluorescence of carbonnanotubes. J. Am. Chem. Soc.2010,132,15920-15923.
    [195] B. S. Zhao, B. B. Cao, W. L. Zhou, et al., Nonlinear optical transmission of nanographene andits composites. J. Phys. Chem. C2010,114,12517-12523.
    [196] J. Gersten, A. Nitzan, Spectroscopic properties of molecules interacting with small dielectricparticles. J. Chem. Phys.1981,75,1139-1152.
    [197] H. Mertens, A. F. Koenderink, A. Polman, Plasmon-enhanced luminescence near noble-metalnanospheres: Comparison of exact theory and an improved gersten and nitzan model. Phys.Rev. B2007,76,115123(1-12).
    [198] M. Deak, G. V. Horvath, S. Davletova, et al., Plants ectopically expressing the iron-bindingprotein, ferritin, are tolerant to oxidative damage and pathogens. Nat. Biotechnol.1999,17,192-196.
    [199] K. Bian, Z. H. Gao, N. Weisbrodt, et al., The nature of heme/iron-induced protein tyrosinenitration. Proc. Natl. Acad. Sci. U. S. A.2003,100,5712-5717.
    [200] Q. Zeng, J. Cheng, L. Tang, et al., Self-assembled graphene-enzyme hierarchicalnanostructures for electrochemical biosensing. Adv. Funct. Mater.2010,20,3366-3372.
    [201] X. B. Zhao, B. Xiao, A. J. Fletcher, et al., Hysteretic adsorption and desorption of hydrogenby nanoporous metal-organic frameworks. Science2004,306,1012-1015.
    [202] Y.-M. Jeon, G. S. Armatas, J. Heo, et al., Amorphous infinite coordination polymermicroparticles: A new class of selective hydrogen storage materials. Adv. Mater.2008,20,2105-2110.
    [203] A. M. Spokoyny, D. Kim, A. Sumrein, et al., Infinite coordination polymer nano-andmicroparticle structures. Chem. Soc. Rev.2009,38,1218-1227.
    [204] A. U. Czaja, N. Trukhan, U. Mueller, Industrial applications of metal-organic frameworks.Chem. Soc. Rev.2009,38,1284-1293.
    [205] O. R. Evans, W. B. Lin, Crystal engineering of nlo materials based on metal-organiccoordination networks. Accounts Chem. Res.2002,35,511-522.
    [206] W. Lu, S. S.-Y. Chui, K.-M. Ng, et al., A submicrometer wire-to-wheel metamorphism ofhybrid tridentate cyclometalated platinum(ii) complexes. Angew. Chem. Int. Edit.2008,47,4568-4572.
    [207] S. Jung, M. Oh, Monitoring shape transformation from nanowires to nanocubes andsize-controlled formation of coordination polymer particles. Angew. Chem. Int. Edit.2008,47,2049-2051.
    [208] S. Jung, W. Cho, H. J. Lee, et al., Self-template-directed formation of coordination-polymerhexagonal tubes and rings, and their calcination to ZnO rings. Angew. Chem. Int. Edit.2009,48,1459-1462.
    [209] Y.-M. Jeon, J. Heo, C. A. Mirkin, Dynamic interconversion of amorphous microparticles andcrystalline rods in salen-based homochiral infinite coordination polymers. J. Am. Chem. Soc.2007,129,7480-7481.
    [210] X. Zhang, F. Shi, J. Niu, et al., Superhydrophobic surfaces: From structural control tofunctional application. J. Mater. Chem.2008,18,621-633.
    [211] W. Cho, Y. H. Lee, H. J. Lee, et al., Systematic transformation of coordination polymerparticles to hollow and non-hollow In2O3with pre-defined morphology. Chem. Commun.2009,4756-4758.
    [212] C. Li, X. Yin, L. Chen, et al., Synthesis of cobalt ion-based coordination polymer nanowiresand their conversion into porous Co3O4nanowires with good lithium storage properties.Chem.-Eur. J.2010,16,5215-5221.
    [213] J. S. Song, F. Tronc, M. A. Winnik, Two-stage dispersion polymerization towardmonodisperse, controlled micrometer-sized copolymer particles. J. Am. Chem. Soc.2004,126,6562-6563.
    [214] Y. Xiong, Y. Xia, Shape-controlled synthesis of metal nanostructures: The case of palladium.Adv. Mater.2007,19,3385-3391.
    [215] J. Yuan, X. Liu, O. Akbulut, et al., Superwetting nanowire membranes for selectiveabsorption. Nat. Nanotechnol.2008,3,332-336.
    [216] Y. Kaminorz, E. Smela, O. Inganas, et al., Sensitivity of polythiophene planar light-emittingdiodes to oxygen. Adv. Mater.1998,10,765-769.
    [217] Q. B. Pei, G. Yu, C. Zhang, et al., Polymer light-emitting electrochemical-cells. Science1995,269,1086-1088.
    [218] A. Wu, D. Yoo, J. K. Lee, et al., Solid-state light-emitting devices based on the tris-chelatedruthenium(ii) complex:3. High efficiency devices via a layer-by-layer molecular-levelblending approach. J. Am. Chem. Soc.1999,121,4883-4891.
    [219] H. Rudmann, S. Shimada, M. F. Rubner, Solid-state light-emitting devices based on thetris-chelated ruthenium(ii) complex.4. High-efficiency light-emitting devices based onderivatives of the tris(2,2'-bipyridyl) ruthenium(ii) complex. J. Am. Chem. Soc.2002,124,4918-4921.
    [220] G. Kalyuzhny, M. Buda, J. McNeill, et al., Stability of thin-film solid-state electroluminescentdevices based on tris(2,2'-bipyridine)ruthenium(ii) complexes. J. Am. Chem. Soc.2003,125,6272-6283.
    [221] E. Holder, B. M. W. Langeveld, U. S. Schubert, New trends in the use of transitionmetal-ligand complexes for applications in electroluminescent devices. Adv. Mater.2005,17,1109-1121.
    [222] Q. Sun, Y. Li, Q. Pei, Polymer light-emitting electrochemical cells for high-efficiencylow-voltage electroluminescent devices. J. Disp. Technol.2007,3,211-224.
    [223] D. R. Kauffman, C. M. Shade, H. Uh, et al., Decorated carbon nanotubes with unique oxygensensitivity. Nat. Chem.2009,1,500-506.
    [224] K. Judai, S. Numao, A. Furuya, et al., Increased electric conductance through physisorbedoxygen on copper nanocables sheathed in carbon. J. Am. Chem. Soc.2008,130,1142-1143.
    [225] E. R. Carraway, J. N. Demas, B. A. Degraff, Luminescence quenching mechanism formicroheterogeneous systems. Anal. Chem.1991,63,332-336.
    [226] E. R. Carraway, J. N. Demas, B. A. Degraff, Photophysics and oxygen quenching oftransition-metal complexes on fumed silica. Langmuir1991,7,2991-2998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700