花岗岩热破裂实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温岩体地热是一种新的清洁能源,高温岩体地热资源的开发涉及许多基础学科与技术学科,如地学、热力学、岩体力学、深部钻井技术、材料科学、地球深部的测试技术等。在开发地热的过程中需要解决的问题多多,大深度打钻孔、打钻后钻孔的变形、水压致裂和致裂后裂缝的稳定工作,钻孔与裂纹的贯通、人工储留层的设计以及储留层的温度场控制等问题仍待研究。高温下岩体的破裂称作热破裂,为了实际工程应用的需要,必须要研究岩石在三轴应力和高温状态下的破裂规律。
     针对以上问题,论文采用高温三轴应力声发射实验,以及声发射实验和渗透性实验、细观CT扫描实验、其他相关研究的对比研究,对岩石在三轴应力下的热破裂规律进行了研究,得到相应研究成果如下:
     1)利用“20MN伺服控制高温高压岩体三轴试验机”进行了大尺寸(φ200×400mm)花岗岩试样在高温恒定三轴应力(轴压860kN,围压1150kN)下的声发射特征实验,主要成果有:
     (1)通过噪声实验,确定了声发射实验中的噪声,分析了噪声声发射的特征参数大小及变化规律。
     (2)声发射的产生是由于岩石内部局部应力(能量)的积累、释放造成的,在压力和温度作用下岩石内部结构发生了明显的变化,花岗岩发生热破裂的门槛值温度为110℃-120℃左右。
     (3)在实验的第一个阶段(常温(24℃)到60℃)产生的声发射主要是在三轴压力下,原生裂隙整合调整造成的,不是由岩石热破裂产生的。实验中段260℃附近声发射比较剧烈,能量比较集中,岩石内部的结构发生了较大的破坏,或者形成了较大的贯通裂纹。
     (4)恒定三轴压力下随着温度的升高,岩石的声发射现象即破裂规律可分为5个阶段:常温(24℃)到60℃,岩石原生裂隙整合阶段;60℃到120℃,热破裂前声发射静默阶段;120℃到260℃,热破裂声发射阶段;260℃到340℃,大规模热破裂后声发射静默阶段;340℃以后,二次热破裂开始阶段。原岩状态下高温岩体的热破裂是一个持续不断的能量集聚和释放的交替过程。
     2)声发射实验结果与同等实验条件下的渗透性实验进行了对比研究,声发射实验结果与声发射实验后试样切片的细观CT实验进行了对比研究,声发射实验结果与其他相关研究结果进行了对比研究,主要成果有:
     (1)渗透率的变化和岩石内部各个阶段产生的热破裂裂纹、渗流通道和渗流网络的特点有关系,对这些特点进行了详细探讨。实验中出现的“跳跃”和“回吸跳跃”现象的产生是由于渗透通道的堵塞造成的。
     (2)通过声发射实验和渗透性实验的对比,声发射规律和渗透性规律存在一致性,得出了岩石的破裂规律。根据渗透性实验,在所测温度范围内破裂过程可分为三个阶段:常温到120℃,低渗无热破裂阶段;120℃到260℃,渗透性增加频繁热破裂阶段;260℃到300℃,渗透性增大无热破裂阶段。渗透性规律比声发射规律存在滞后性。
     (3)提出了岩石热破裂的三个模型:微小裂纹、单一的宏观裂隙和裂隙网络,对三个模型在热作用下的变化规律和特点作了论述。实验中真实的岩石热破裂是这三个模型一个或者几个的组合。
     (4)通过细观CT实验和陈颙所做工作验证了以上提出的一系列结论的正确性。
The exploration of hot dry rock geothermal—a kind of new cleaning energy resource—involves numerous foundational and technological subjects, such as geonomy, thermodynamics, rock mass mechanics, deep drilling technology, material science, testing technology in deep earth, etc. There are lots of problems in the process of exploring geothermy needing solving and studying, such as high depth holes drill, distortion of holes after drill, hydraulic fracturing,the transfixion between drill holes and cracks, the design of artificial reservoir and the control of the temperature field in it, etc. The rock cracking under high temperature is called the heat cracking. With the need of practical engineering application, the cracking rules of rocks under high temperature and triaxical stress need to be studied.
     Aiming at the above problems, this paper adopted the acoustic emission experiment under triaxical stress, acoustic emission experiment and penetrability experiment, CT scanning experiment and the contrasting studies of the senior scholars' works, the research on the heat cracking rules of the rocks under triaxical stress have been studied and the corresponding research findings are as follow:
     1) Acoustic emission experiment on jumbo sized (φ200×400mm) granitesample has been made under high temperature and invariable triaxical stress(axial pressure 860KN and confining pressurel150KN) by the use of 20MNservo controlled triaxial rock testing system of high temperature and highpressure. The main findings include:
     (1) Through the noise experiment, the noise in acoustic emission experiment has been confirmed, and the size of character parameter and its transformation laws have been analyzed.
     (2) The appearance of the acoustic emission is brought by the partial energy accumulation and release inside of the rocks, the interior structure of which has gained obvious changes with the influence of pressure and temperature. Meanwhile, the temperature's threshold value when heat cracking happens to the granite is around 110℃to 120℃.
     (3) In the first stage of the experiment with the normal temperature from 24℃to 60℃, the acoustic emission was caused mainly by the conformity and adjustment of the original crannies under the triaxical stress rather than by the heat cracking of the rocks. In the middle stage of the experiment with the temperature around 260℃acoustic emission brought about heatedly, when with the relative centralization of the energy the interior structure of the rocks suffered from bigger destruction or there were bigger transfixion crannies coming into being.
     (4) Under the invariable triaxical stress, as the temperature goes up, the acoustic emission phenomenon, so called cracking rules, can be divided into 5 stages: the conformity stage of the original rock crannies at the normal temperature from 24℃to 60℃; Still stage of the acoustic emission before the heat cracking between 60℃and 120; The acoustic emission of heat cracking stage 120℃and 260℃; Still stage of the acoustic emission after the large-scale heat cracking between 260℃and 340℃; Hypo-heat cracking beginning stage after 340℃. In the original rock state, the heat cracking is an alternant and continual process in which the energy centralizes and releases.
     2) The main findings as follow have been revealed by the contrasting research on the acoustic emission experiment and the penetrability experiment under the same conditions, the contrasting research on the results acquired from the acoustic emission experiment and the CT experiment of the sample splice up after the acoustic emission experiment as well as the senior scholars' works.
     (1) The change of the penetrability is linked to the characteristics of the crannies happening in every heat cracking stages inside of the rocks, and those of seepage channels as well as the seepage network. At the same time, these characteristics have been discussed. The phenomena of jump and suck-up in the experiment were produced by the block of the seepage channels.
     (2) By the contrast of acoustic emission and penetrability experiment, it was found that the laws of acoustic emission correspond with that of penetrability and the crack laws of rocks have been concluded. In the scale of the testing temperature, the crack stage can be divided into 3 stages: Low seepage and no heating stage from the normal temperature to 120℃;Heat cracking stage with frequently increasing penetrability between 120℃and 260℃; No heat cracking stage with increased penetrability between 260℃and 300℃. Compared with the laws of acoustic emission, there is hysteresis quality in penetrability laws.
     (3)3 models in the heat cracking of the rocks have been put forward: tiny cranny, single macro cranny and cranny network. The transformation laws and characteristics of the 3 models under the impact of heating have been discussed in details. The real heat cracking of the rocks in this experiment was the combination of one or several of the 3 models.
     (4) The validity of the series of conclusions put forward above has been validated by systematical CT experiment and Chen Yong's study.
引文
[1]郭云涛,应加快我国能源管理体制改革,中国煤炭,2004,30(11),16-18
    [2]郭云涛,我国国家能源安全及能源管理体制面临的挑战与对策,中国煤炭,2002,29(9),5-7
    [3]柳迎红,李文军,席建奋等,煤炭地下气化安全性分析,中国煤炭,2006,5,42-44
    [4]杨泱,钱芬芬,潘多伟,煤的气化及其影响因素综述,煤炭加工与综合利用,2005,5,41-43
    [5]侯子和,范合玉,煤炭地下气化技术的研究与应用,山东煤炭科技,2001,4,33-35
    [6]赵阳升,高温岩体地热开发导论,科学出版社,北京,2004
    [7]杨斯隆,地热资源勘探、开发和利用,北京能源学会,1985
    [8]李虞庚,蒋其垲,杨伍林,关于高温岩体地热能及其开发利用问题,是由科技论坛,2007,1,28-40
    [9]王青海,花岗岩介质中处置中低放核废料的热应力,地质灾害与环境保护,1998,9(2),45-48
    [10]王青海等.中低放核废料地下处置对围岩介质(花岗岩体)温度场的影响,地质灾害与环境保护,1997,8(4),54-58.
    [11]陈墨香,汪集旸,邓孝,中国地热资源及其开发潜力,新能源,1995,17(2),11-16
    [12]万志军,赵阳升,康建荣,高温岩体地热开发的技术经济评价,能源工程,2004,4,30-34
    [13]D.W.Brown著,李濂清译,干热岩热储工程,新能源,1991,13(2),39-43
    [14]陈颙,吴晓东,张福勤,岩石热开裂的实验研究,科学通报,1999,44(8),880-883
    [15]王绳祖,高温高压岩石力学—历史、现状、展望,地球物理学进展,1995,10(4),1-31
    [16]王绳祖,高温高压岩石力学述评—地球科学中的岩石力学,矿山压力与顶板管理,1995,2,2-7
    [17]张元中,楚泽涵,陈颙,岩石热开裂研究现状及其应用前景,特种油气藏,1999,6(2),1-5
    [18]韩学辉,楚泽涵,张元中,岩石热开裂及其在工程学上的意义,石油实验地质,2005,27(1),98-100
    [19]谭启,骆循,李仕雄等,岩石热破裂研究进展评述,露天采矿技术,2006,6,16-19
    [20]Heard,H.C.Thermal expansion and inferred permeability of climax quartz monzonite to 300℃ and 27.6MPa,Int J Rock Mech Min Sci & Geomech Abstr,1980,17,289-296
    [21]Homand- Etienne.F and Honpert.R,Thermally induced micro cracking in granites:characterization and analysis,Int J Rock Mech Min Sci & Geomech Abstr,1989,26(2),124-134
    [22]J.kemeny,A comparson of eight method for measuring grain and boundary cracking in heated quartzite samples,Int J Rock Mech and Min Sci,1998,35(45),506-507
    [23]M.Darot,T.Recuschle,Acoustic wave velocity and permeability evolution during pressure cycles on a thermally cracked granite,Int J Rock Mech & Min Sci,2000,37,1019-1026
    [24]伏拉罗维奇,高温高压下岩石和矿物物理性质的研究,地震出版社,1982
    [25]中国岩石力学与工程学会,高温高压岩石力学专业委员会,第一届高温高压岩石力学学术讨论会论文集,学术期刊出版社,北京,1988
    [26]李纪汉,蔡戴恩,方亚如等,岩石热开裂生发射m值的变化,见,中国岩石力学与工程学会,高温高压岩石力学专业委员会,第一届高温高压岩石力学学术讨论会论文集,学术期刊出版社,北京,1988,54-60
    [27]王子潮,王绳祖,地壳温压条件下的迁安石英岩强度特性,见,中国岩石力学与工程学会,高温高压岩石力学专业委员会,第一届高温高压岩石力学学术讨论会论文集,学术期刊出版社,北京,1988,85-38
    [28]王子潮,王绳祖,中下地壳温度压力条件下岩石关脆性蠕变的实验研究,地震地质,1990,12(4),335-342
    [29]王靖涛、赵爱国、黄明昌,花岗岩断裂韧度的高温效应,岩土工程学报,1989,11(6),113-119
    [30]李力,林睦曾,刘康敏等,岩石受热后的强度、变形破坏特征的微观研究,岩土力学,1990,11(4),51-61
    [31]席道瑛,花岗岩中矿物相变的物性特征,矿物学报,1994,14(3),223-227
    [32]席道瑛,陈普刚,应力或热疲劳对花岗岩凯塞效应的影响,地震地质,1995,17(2),162-166
    [33]席道瑛,程经毅,黄建华,声发射在研究岩石古温度中的应用,中国科学技术大学学报,1996,26(1),97-101
    [34]张宗贤,喻勇,赵清,岩石断裂韧度的温度效应,中国有色金属学报,1994,4(2),7-11
    [35]高平,刘若新,马宝林等,绿泥石片岩和斜长角闪岩在高温高压下的物理力学性质及其应用,地震地质,1994,16(1),83-88
    [36]张晶瑶,马万昌,张凤鹏等,高温条件下岩石结构特征的研究,东北大学学报,1996,17(1),5-9
    [37]张曾荣,何绍勋,奚小双,望湘花岗岩高温高压流变实验,中南工业大学学报,1999,30(3),221-224
    [38]李世愚,刘晓红,刘绮亮等,1999年度中俄合作岩石破裂实验
    [39]吴晓东,岩石热开裂的实验研究,[博士学位论文],中科院地质与地球物理研究所,2000
    [40]周克群,楚泽涵,张元中等,岩石热开裂与检测方法研究,岩石力学与工程学报,2000,19(4),412-416
    [41]蒋海昆,张流,周永胜,不同温度条件下花岗岩变形破坏及声发射时序特征,地震,2000,20(3),87-94
    [42]蒋海昆,张流,周永胜,地壳不同深度文压条件下花岗岩变形破坏及声发射时序特征,地震学报,2000,22(4),395-403
    [43]许锡昌,刘泉声,高温下岩石基本力学性质初步研究,岩土工程学报,2000,22(3),276-278
    [44]刘泉声,许锡昌,山口勉等,三峡花岗岩与温度及时间相关的力学性质试验研究,岩石力学与工程学报,2001,20(5),715-719
    [45]刘泉声,许锡昌,温度作用下脆性岩石的损伤分析,岩石力学与工程学报,2000,19(4),408-411
    [46]Shuqing Zhang,Microcrack growth and healing in deformed calcite aggregates,Tectonophysics,2001,335,17-36
    [47]王颖轶、张宏君、黄醒春、等,高温作用下大理岩应力—应变全过程的试验研究,岩石力学与工程学报,2002,21(增2):2345-2349
    [48]黄炳香,邓广哲,王广地,温度影响下北山花岗岩蠕变断裂特性研究,岩土力学,2003,24(增2),203-206
    [49]杜守继,刘华,职洪涛等,高温后花岗岩力学性能的试验研究,岩石力学与工程学报,2004,23(14),2359-2364
    [50]杜守继,刘华,陈浩华等,高温后花岗岩密度及波动特性的实验研究,上海交通大学学报,2003,37(12),1900-1904
    [51]杜守继,职洪涛,经历高温后花岗岩与混凝土力学性质的试验研究,岩土工程学报,2004,26(4),482-485
    [52]梁冰,高红梅,兰永伟,岩石渗透率与温度关系的理论分析和试验研究,岩石力学与工程学报,2005,24(12),2009-2012
    [53]邱一平,林卓英,花岗岩样品高温后损伤的试验研究,岩土力学,2006,27(6),1005-1010
    [54]赵阳升,万志军,张渊等,20MN伺服控制高温高压岩体三轴试验机的研制,岩石力学与工程学报,2008,27(1),1-8
    [55]张渊,高温三轴应力条件下岩石热破裂机理与实验研究,[博士学位论文],中国矿业大学,2006
    [56]张渊,曲方,赵阳升,岩石热破裂的声发射现象,岩土工程学报,2006,28(1),73-75
    [57]张渊,赵阳升,万志军等,不同温度条件下孔隙压力对长石细砂岩渗透率影响试验研究,岩石力学与工程学报,2008,27(1),53-58
    [58]万志军,非均质岩体热力耦合作用及煤炭地下气化通道稳定性研究,[博士学位论文],中国矿业大学,2006
    [59]万志军,赵阳升,董付科等,高温及三轴应力下花岗岩体力学特性的实验研究,岩石力学与工程学报,2008,27(1),72-77
    [60]刘亚晨,蔡永庆,刘泉声等,岩体裂隙结构面的温度-应力-水力耦合本构关系,岩土工程学报,2001,23(2),196-200
    [61]刘均荣,秦积舜,吴晓东,温度对岩石渗透率影响的实验研究,石油大学学报,2001,25(4),51-53
    [62]吴晓东,刘均荣,岩石热开裂影响因素分析,石油钻探技术,2003,31(5),24-27
    [63]刘均荣,吴晓东,岩石热增渗机理初探,石油钻采工艺,2003,25(5),43-47
    [64]夏小和,陆雅萍,黄醒舂等,高温作用对大理岩强度及变形特性影响的实验研究,上海交通大学学报,2004,38(6),996-998
    [65]夏小和,陆雅萍,黄醒春等,高温后大理岩在不同应力水平下超声波特性的实验研究,上海交通大学学报,2004,38(7),1225-1228
    [66]梁卫国,赵阳升,徐素国,240℃内盐岩物理力学特性的实验研究,岩石力学与工程学报,2004,23(14),2365-2369
    [67]金淑燕,孙天泽,徐实昆等,辉绿岩脆-塑性变形转化的高温高压实验研究,地球科学,2000,25(6),565-572
    [68]高红梅,高温作用下岩石渗透规律的研究,[硕士学位论文],辽宁工程技术大学,2004
    [69]Tapponnier.Paul,Brace,W.F.,Development of Stress-induced Microcracks in Westerly Granite,Int,J.Rock Mech.Min.Sci,1976,13(4),103-112
    [70]M.P.LUONG,Breakage Resistance of a Granite Using New Testing Devices,Int.J.Rock Mech.Min.Sci,1998,35(4/5),621-622
    [71]B.Menendez,C.Dacid and M.Darot,A Study of the Crack Network in Thermally and Mechanically Cracked Granite Samples using Confocal Scanning Laser Microscopy,phys.Chem.Earth,1999,24(7),627-632
    [72]E.GAMBOA,A.ATRENS,Stress corrosion cracking fracture mechanisms in rock bolts,Journal of Materials Science,2003,38,3813-3829.
    [73]赵永红,受压岩石中裂纹发育过程及分维变化特征,科学通报,1995,40(7),621-623
    [74]孙均,凌建明,三峡船闸高边坡岩体的细观损伤及长期稳定性研究,岩石力学与工程学报,1997,16(1),1-7
    [75]刘兴华、郑颖人,岩石损伤的CT实验观测,贵州工业大学学报,1997,26(增1),120-122
    [76]王宝庭,宋玉普,张燕坤,基于刚体—弹簧模型的混凝土微裂纹行为模拟,工程力学,1999,16(2),140-144
    [77]姜崇喜,谢强,大理岩细观破坏行为的实时观察与分析,西南交通大学学报,1999, 34(1),87-92
    [78]尚嘉兰,孔常静,李廷芥等,岩石细观损伤破坏的观测研究,实验力学,1999,14(3),373-383
    [79]葛修润,任建喜,蒲毅彬等,岩石细观损伤扩展规律的CT实时试验,中国科学E 辑,2000,30(2),104-111
    [80]李晓军,张登良,路基填土单轴受压细观CT监测分析,岩土工程学报,2000,22(2),205-209
    [81]林为人,铃木舜一,高桥学等,稻田花岗岩中的流体包裹体及由其导致高温条件下微小裂纹的形成,岩石力学与工程学报,2003,22(6),899-904
    [82]王泽云,刘立,刘保县,岩石微结构与微裂纹的损伤演化特征,岩石力学与工程学报,2004,23(10),1599-1603
    [83]张渊,张贤,赵阳升,砂岩的热破裂过程,地球物理学报,2005,48(3),656-659
    [84]张渊,万志军,赵阳升,细砂岩热破裂规律的细观实验研究,辽宁工程技术大学学报,2007,26(4),529-531
    [85]赵阳升,孟巧荣,康天合等,显微CT试验技术与花岗岩热破裂特征的细观研究,岩石力学与工程学报,2008,27(1),28-34
    [86]任建喜,三轴压缩岩石细观损伤扩展特性CT实时检测,实验力学,2001,16(4),387-395
    [87]仵彦卿,丁卫华,曹广祝,验尸单轴与三轴CT尺度裂纹演化过程观测,西安理工大学学报,2003,19(2),115-119
    [88]E.Sellers,A comparative investigation of micro-flaw models for the simulation of brittle fracture in rock,Computational Mechanics,1997,20(2),164-169
    [89]Chunlin Li,The stress-strain behaviour of rock material related to fracture under compression,Engineering Geology,1998,293-302
    [90]Tan X.C,Application of asplittling fracture model to the simulation of rock indentation subsurface fractures,International Journal of Numerical and Analytical Methods in Geomechanics,1997,1-13
    [91]唐春安,黄明利,张国民等,岩石介质中多裂纹扩展相互作用及其贯通机制的数值模拟,地震,2001,21(2),53-58
    [92]唐春安,傅宇方,朱万成,界面性质对颗粒增强复合材料破坏模式影响的数值模拟分析,复合材料学报,1999,16(4),112-120
    [93]康健,赵明鹏,梁冰,随机固-热耦合模型与岩石热破裂数值试验研究,岩土力学,2005,26(1),135-139
    [94]康健,赵明鹏,赵阳升,随机非均质热弹性力学模型与岩石热破裂门槛值的数值试验研究,岩石力学与工程学报,2004,23(14),2331-2335
    [95]康健,赵明鹏,赵阳升等,非均质细胞元随机分布对高温岩石介质中裂纹扩展影响的数值试验研究,岩石力学与工程学报,2004,23(增2),4898-4901
    [96]康健,赵明鹏,赵阳升等,随机介质固热耦合模型与高温岩体地热开发人工储留层二次破裂数值模拟,岩石力学与工程学报,2005,24(6),969-974
    [97]康健,赵明鹏,赵阳升,高温下花岗岩热物理特性数值试验研究,太原理工大学学报,2004,35(4),396-399
    [98]唐世斌,唐春安,朱万成等,热应力作用下的岩石破裂过程分析,岩石力学与工程学报,2006,25(10),2071-2078
    [99]腾山邦久,声发射(AE)技术的应用,冯夏庭译,冶金工业出版社,北京,1997
    [100]袁振明,马羽宽,何泽云,声发射技术及其应用,机械工业出版社,北京,1985
    [101]孙成栋,岩石声学测试,地质出版社,北京,1981
    [102]戴光,张宝琪,朱国辉,声发射技术的研究进展与趋势,大庆石油学院学报,1995,19(3),95-98
    [103]耿荣生,声发射技术发展现状,无损检测,1998,20(6),151-158
    [104]杨杰,声发射信号处理与分析技术的研究,[硕士学位论文],吉林大学,2005
    [105]梁诚,低频全波形声发射虚拟测试系统的研究与实现,[硕士学位论文],昆明理工大学,2004
    [106]龚仁荣,结构材料中声发射传播特性的研究,[硕士学位论文],江苏大学,2005
    [107]殷正刚,岩石破坏过程中的声发射特征及其损伤实验研究,[硕士学位论文],中南大学,2005
    [108]林睦曾,矿山工程物理方法,重庆大学采矿工程系讲义,1981
    [109]赵阳升,矿山岩石流体力学,北京:煤炭工业出版社,1994
    [110]蔡美峰,岩石力学与工程,科学出版社,北京,2002
    [111]徐芝纶,弹性力学,高等教育出版社,北京,2000
    [112]康厚清,预测突出的AE声发射信号自适应滤噪方法,[硕士学位论文],煤炭科学研究院,2001
    [113]逢焕东,姜福兴,张兴民,剪应力在缺陷体声发射过程中的作用,岩土工程学报,2004,26(6),824-827
    [114]刘晓旭,胡勇,朱斌等.气体低速非达西渗流机理及渗流特征研究.特种油气藏,2006,13(6),43-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700