岩体加卸荷破坏的力学特性研究及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状岩体卸荷条件下的各向异性规律对于指导工程设计、施工具有重要指导意义。对含显著平行、垂直层理的宜昌砂岩加载、卸载破坏的研究表明:回弹值、纵波波速与岩石强度存在一定的相关性,其基本规律是回弹值或者纵波波速越大,岩石强度越大,平行、垂直层理砂岩的力学特性规律与回弹值、纵波波速公式得出的结论基本一致;无论采用加载破坏还是卸载破坏方式,相同围压下,垂直层理岩体的强度一般大于平行层理岩体;无论是平行还是垂直层理岩体,砂岩卸荷破坏峰值强度在低围压下高于加载破坏强度,而高围压下低于加载破坏强度;卸载和加载条件下的岩体抗剪强度参数有较大差异,且和岩体的各向异性密切相关,对于平行层理岩体,卸荷后岩体黏聚力c较加载条件下增加,而内摩擦角降低,对于垂直层理岩体与之相反;加卸载破坏形式主要是剪切破坏,几乎未见轴向和环向裂纹,这可能与荷载控制方式(加轴压卸围压)、卸载速率较慢和卸荷后残余围压较高有关,Mohr-Coulomb准则岩样的预测破坏角和实测值非常接近,平行层理和垂直层理的加卸载破坏的破裂面均贯穿了沉积弱面,从实际的破裂线的形态来看,破裂迹线并未受到沉积弱面的影响。
     采用卸荷试验方案,对高温后砂岩的纵波波速—温度和力学特性—温度的变化规律进行研究。试验结果表明:随着烘烤温度的升高,砂岩的纵波波速降低,而且经历的温度越高,波速下降的幅度越大;随着烘烤温度的升高,砂岩的回弹值并非简单的单调递增或递减;加载段弹性模量随围压变化规律具有一定离散性,但从基本趋势上看,随着围压增大,砂岩的弹性模量逐渐增大,同等围压下,高温烘烤后砂岩弹性模量有所降低;砂岩的强度力学特性是在摩擦和胶结特性共同主导下变化,砂岩高温烘烤后摩擦特性大大加强,在较大围压下,由于摩擦作用其强度得到显著提高;高温烘烤后纵波速度、回弹值和强度不具备必然规律;自然风干岩样在低围压下卸载破坏,依然表现出了明显的压剪破坏形式,300℃,600℃,900℃烘烤岩样的轴向劈裂现象却逐渐增强,分析认为高温烘烤后岩样的抗拉强度出现了明显降低,热处理后砂岩内部产生热应力,由此诱发表面热开裂及内部微裂纹是造成抗拉强度降低的本质原因。
     卸荷条件下的岩石强度特性研究对于分析开挖作用下岩石工程的安全性具有极为重要的意义。依据三峡花岗岩和宜昌砂岩两类典型岩石的加卸荷试验,得到以下结论:根据三峡花岗岩卸荷试验,无论从拟合相关性,还是包络线的吻合情况看,Hoek-Brown准则比Mohr-Coulumb准确, Hoek-Brown准则描述拉剪破坏和压剪破坏,均显示了良好的适用性;根据层状和高温后宜昌砂岩卸围压破坏试验,Hoek-Brown准则拟合相关性较高,Hoek-Brown曲线比Mohr-Coulumb曲线与离散点的吻合度也更高。基于加卸荷强度准则,研究岩体的变形、破坏特征及其演化机制,建立了加卸荷条件下岩体的本构模型。
     结合深溪沟水电站窑洞式安装间开挖工程,采用RMR法对围岩进行分级,基于最新的Hoek-Brown准则岩体参数,建立有限差分计算模型进行洞室的稳定性分析,并将计算结果和监测值进行了对比。结果表明:RMR分类法显示各硐段岩体中既有Ⅳ类围岩,也有Ⅲ类围岩,其中岩层Zbdn1基本属于Ⅳ类围岩,岩体质量差,岩层Zbdn2、Zbdn3都属于Ⅲ类围岩,岩体质量一般;基于Hoek-Brown准则估算岩体参数,充分考虑了岩体结构、岩块强度、应力状态等多种因素的影响,十分高效、快捷和经济;采用FLAC3D对安装间开挖施工过程进行仿真,将计算结果和监测结果进行对比,发现计算结果和监测结果能取得良好的一致。
The anisotropy regular of banding rock mass in unloading conditions is significant in guiding the engineering design and construction.The research on loading and unloading failure of sandstones with notable parallel bedding or vertical bedding in Yichang shows that there is dependence in rebound data,longitudinal wave velocity and strength of rock mass.The basic law is that,the larger of the rebounding data or longitudinal wave velocity,the higher strength of the rock ,and the mechanical property regular of the sandstones with parallel bedding or vertical bedding is basical in accordance to the conclusions from formula of rebounding data and longitudinal velocity. Whether in the failure mode of loading or unloading, the strength of rock mass with vertical bedding is normally higher than that with parallel bedding in the same confining pressure, and whether sandstone with parallel bedding or vertical bedding, when in low confining pressure, the unloading failure peak strength of which is higher than that in loading condition,but in high confining pressure, it is opposite. There is a big difference between shear resistance parameters of the rock mass in unloading condition and that in loading condition,which is closely related to the anisotropy property of the rock mass.For parallel bedding rock mass, the cohesion c of the rock mass after unloading is larger,while the internal friction angle is lower than those in loading condition,but for vertical bedding rock mass,the property is opposite. The loading and unloading failure modes of the sandstone are mainly shear failure, practically without axial or circumferential cracks, which is likely related to the load controlling mode(loading axial pressure and unloading confining pressure), low velocity of unloading and the high survival confining pressure after unloading.The forecast failure angle of the rock specimens in Mohr-Coulomb criterion is largely close to the measured value.Loading and unloading failure planes of the sandstones with parallel bedding or vertical bedding are all running through the sedimentary weak plane, but seen from the form of actual fracture line, the fracture trace is not affected by the sedimentary weak plane.
     Using the pilot program of unloading, this paper have researched the longitudinal wave velocity-temperature and mechanical properties- temperature variation of the sandstone after high temperature.The results show that: with the increasing of baking temperature, the velocity of longitudinal wave of the sandstone become lower, and the velocity decrease more while the temperature becomes higher. With the increasing of baking temperature, rebound value of the sandstone is not a simple monotone increasing or decreasing. The rule about the elastic modulus of loading section with the change of confining pressure has a discrete variation. But from the basic trend, the elastic modulus of sandstone increases with the increasing of confining pressure. Under the same confining pressure, the elastic modulus of sandstone after high temperature baking decreased. Mechanical properties of sandstone strength are changing under interaction between frictions and cement properties, and friction characteristics strengthened greatly after high temperature baking. Due to the friction, its strength increased significantly in the larger confining pressure. Longitudinal wave velocity, rebound value and strength don’t have inexorable law after high temperature baking. Under low confining pressure, natural air-dried rock samples are unloading damage, it still showed a significant compression and shear failure modes. The axial splitting phenomenon of 300℃, 600℃, 900℃baked rock samples strengthens gradually, and analysts believe that tensile strength of rock samples after high-temperature baking decrease significantly. The sandstone interior produce the thermal stress after heat treatment, that inducing thermal cracking of the surface and internal micro-cracks is the essential reason that caused the tensile strength decreased.
     Analysis of rock mass strength under unloading condition has great significance for the security of projects. Based on loading and unloading test of two typical rocks which are Three Gorges granite and Yichang sandstone, the following conclusions are obtained: For unloading test of Three Gorges granite, Hoek-Brown criterion is accurate than Mohr-Coulumb, in terms of fitting correlation or coincidence of envelope. Hoek-Brown criterion has shown a good applicability of describing the tension shear failure and compression and shear failure. For test of confining pressure unloading of layer or high temperatured Yichang sandstone, the curve of Hoek-Brown is more consistent with the discrete points than Mohr-Coulumb. According to the prediction of Hoek-Brown criterion, with the confining pressure increasing, the differences between rock mass with parallel and vertical layer gradually weakened. Based on strength criterion of loading and unloading of rock mass, constitutive model of rock mass was established by research of deformation, failure characteristics and mechanisms.
     Surrounding rock of the cavern erecting bay of Shenxigou Hydropower Station was classified with the“RMR”method. A finite difference model based on the newest Hoek-Brown criterion was used to analysis the stability of the erecting bay and the calculation results was compared with the monitoring data. It was demonstrated that according to the RMR classify method there was surrounding rock of classⅣandⅢin every section of the erecting bay. Terrane Zbdn1 belonged to surrounding rock of classⅣwhich was of poor quality, and terrane Zbdn2、Zbdn3 belonged to surrounding rock of classⅢwhich was of average quality. Based on the Hoek-Brown criterion, the parameter of rock mass was estimated, in which the influence of the structure of the rock mass、the strength of rock block、state of stress and other factors were taken into account. It was efficient, fast and economic. Digging process of the erecting bay was simulated using finite difference technique FLAC3D, whose calculation results was compared with the monitoring data and showed to be compatible with the monitoring data.
引文
[1]哈秋舲,李建林,张永兴,等.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社, 1998
    [2]李建林.卸荷岩体力学[M].北京:中国水利水电出版社, 2003
    [3]李建林,王乐华,刘杰,等.岩石边坡工程[M].北京:中国水利水电出版社,2006
    [4]谢红强,何江达,徐进.岩石加卸载变形特征及力学参数试验研究[J].岩土工程学报,2003,25(3):335~338
    [5]H.Q.XIE,CH.HE,Study of the unloading characteristics of a rock mass using the triaxial test and damage mechanics[J]. Imitational Journal of Rock Mechanics and Mining Science,March,2004:13~18
    [6]王贤能,黄润秋.岩石卸荷破坏特征与岩爆现象[J].山地研究,1998,16(4): 281~285
    [7]沈军辉,王兰生,王青海等.卸荷岩体的变形破裂特征,岩石力学与工程学报[J]. 2003,22(12) : 2028~2031
    [8]陈景涛,冯夏庭.高地应力下岩石的真三轴试验[J].岩石力学与工程学报, 2006,25(8):1537~1543
    [9]吴刚.岩体在加卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13~16
    [10]吴刚.卸荷应力状态下裂隙岩体的变形和强度特征[J].岩石力学与工程学报,1998,17(6):615~621
    [11]李建林,孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报,2001,20(3):338~341
    [12]李建林,王乐华.卸荷岩体的尺寸效应研究[J].岩石力学与工程学报,2003,22(12):2032~2036
    [13]周维垣主编.高等岩石力学[M].北京:中国水利水电出版社,1989
    [14]郑颖人,龚晓南.岩土塑性力学基础[M].北京:煤炭工业出版社,1988
    [15]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002
    [16]郑雨天.岩石力学的弹塑黏性理论基础[M].北京:煤炭工业出版社,1988
    [17]吴刚,孙钧.复杂应力状态卜完整岩体卸荷破坏的损伤力学分析[J].河海大学学报,1997,25(3) :44~49
    [18]周小平,哈秋聆,张永兴.峰前围压卸荷条件下岩石的位移一应变全过程分析和变形局部化研究[J].岩石力学与工程学报,2005,24(18) :3236~3244
    [19]黄润秋,黄达.卸荷条件下岩石变形特征及本构模型研究[J].地球科学进展,2008,23(5):442~447
    [20]鲜学福.层状岩体破坏机理[M].重庆:重庆大学出版社,1989
    [21]邓涛,杨林德.各向异性岩石纵、横波的波速比特性研究[J].岩石力学与工程学报,2006,25(10) :2023~2 029
    [22]继新,史謌 ,刘瑞珣,等.泥岩、页岩声速各向异性及其影响因素分析[J].地球物理学报,2004,47(5) :862~868
    [23]HOMAND F, MOREL E, HENRY J P, et a1. Characterization of the moduli of elasticity of an anisotropic rock using dynamic and static methods[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts,1993,30(5):527~535
    [24]Tien Y M, Kuo M C. A failure criterion for transversely isotropic rocks[J]. International Journals of Rock Mechanics & Mining Science, 2001, 38(3): 399~412
    [25]Tien Y M, Tsao P F. Preparation and mechanical properties of artificial transversely isotropic rock[J]. Journals of Rock Mechanics & Mining Science, 2000, 37(6) : 1001~1012
    [26]何沛田,黄志鹏.层状岩石的强度和变形特性研究[J].岩土力学, 2003, 24(S1): 1~5
    [27]苏志敏,江春雷, Ghafoori M.页岩强度准则的一种模式[J].岩土工程学报, 1999, 21(3) :311~314
    [28]冒海军,杨春和.结构面对板岩力学特性影响研究[J].岩石力学与工程学报,2005,24(20) :3 651~3 656
    [29]张亚非,建筑结构检测[M].武汉:武汉工业大学出版社,1995
    [30]丁黄平,佴磊,张振营.岩石抗压强度点荷试验与回弹试验相关性研究[J].路基工程,2008,(5) :70~71
    [31]赵明阶,徐蓉.岩石声学特性研究现状及展望[J].重庆交通学院学报,2000,19(2):80~85
    [32]颜峰,姜福兴.爆炸冲击载荷作用下岩石的损伤实验[J].爆炸与冲击,2009,29(3):275~279
    [33]朱合华,周治国,邓涛.饱水对致密岩石声学参数影响的试验研究[J].岩石力学与工程学报,2005,24(5) :823~828
    [34]姚孝新,耿乃光,陈顺.应力途径对岩石脆性和延性的影响[J].地球物理学报,1980,23(3) :312~319
    [35]陈顺,姚孝新,耿乃光.应力途径、岩石的强度和体积膨胀[J].中国科学,1979,(11) :1093~1100
    [36]黄润秋,黄达.卸荷条件下花岗岩力学特性试验研究[J].岩石力学与工程学报,2008,27(11) :2205~2213
    [37]尤明庆,苏承东,周英.不同煤块的强度变形特性及强度准则的回归方法[J].岩石力学与工程学报,2003,22(12) :2081~2085
    [38]高春玉,徐进,何鹏,等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3) :456~460
    [39]李宏哲,夏才初,闫子舰,等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10) :2104~2109
    [40]裴建良,刘建锋,徐进.层状大理岩卸荷力学特性试验研究[J].岩石力学与工程学报,2009,28(12) :2496~2502
    [41]黄润秋,黄达.高地应力条件下卸荷速率对锦屏大理岩力学特性影响规律试验研究[J].岩石力学与工程学报,2010,29(1) :21~33
    [42]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报, 1993, 12(4) : 321~327
    [43]吕颖慧,刘泉声,江浩.基于高应力下花岗岩卸荷试验的力学变形特性研究[J].岩土力学, 2010,31(2) :337~344
    [44]陈卫忠,刘豆豆,杨建平,等.大理岩卸围压幂函数型Mohr强度特性研究[J].岩石力学与工程学报, 2008,27(11) :2214~2220
    [45]邱士利,冯夏庭,张传庆,等.不同卸围压速率下深埋大理岩卸荷力学特性试验研究[J].岩石力学与工程学报, 2010,29(9) :1807~1817
    [46]杨永杰,宋扬,陈绍杰.三轴压缩煤岩强度及变形特征的试验研究[J].煤炭学报, 2006,31(2) :150~153
    [47]吴玉山.应力路径对凝灰岩力学特性的影响[J].岩土工程学报,1983,5(1) :112~120
    [48]母润昌,高平,刘若新等,华北地区韧性剪切带几种岩石的波速各向异性高温高压实验研究[J],地球物理学报,1995, 38(2):213~219
    [49]朱合华,闫治国,邓涛,等. 3种岩石高温后的力学性质的试验研究[J].岩石力学与工程学报,2006,25(10) :1 945~1 950
    [50]何国梁,吴刚,黄醒春,等.砂岩高温前后超声特性的试验研究[J].岩土力学, 2007, 28(4): 779~784
    [51]夏小和,王颖轶,黄醒春,等.高温作用对大理岩强度及变形特性影响的实验研究[J].上海交通大学报,2004,38(6):996~998,1 002
    [52]夏小和,陆雅萍,黄醒春,等.高温后大理岩在不同应力水平下超声波特性的实验研究[J].上海交通大学学报, 2004, 38(7) :1 225~1 228.
    [53]Oda M. Modern developments in rock structure characterization [J].In Comprehensive Rock Engineering. 1993, 1:185~200
    [54]Alm O, et al. The influence of micro crack density on the elastic and fracture mechanical properties of stropa granite [J].Physics of the Earth and Planetary Interiors, 1985, 40:61~179
    [55]寇绍全,Alm O.微裂隙和花岗岩的抗拉强度[J],力学学报,1987, 19(4):366~373
    [56]林睦曾.岩石热物理学及其工程应用[M].重庆:重庆大学出版社,1991
    [57]桑祖南,周永胜,何昌容,金振民,辉长岩脆—塑性转化及其影响因素的高温高压实验研究[J],地质力学学报,2001,7(2) :130~137
    [58]王颖轶,张宏君,黄醒春等,高温作用下大理岩应力—应变全过程的试验研究[J],岩石力学与工程学报,2002,21(S2):2345~2349
    [59]康健.岩石热破裂的研究及应用[M].大连:大连理工大学出版社,2008
    [60]苏承东,郭文兵,李小双.粗砂岩高温作用后力学效应的试验研究[J].岩石力学与工程学报,2008, 27(6) :1162~1170
    [61]尤明庆,苏承东,李小双.损伤岩石试样的力学特性与纵波速度关系研究[J].岩石力学与工程学报,2008, 27(3) :458~467
    [62]赵洪宝,尹光志,李小双.烧变后粗砂岩抗拉特性试验研究[J].岩土力学. 2010,31(4) :1143~1146,1275
    [63]张渊,张贤,赵阳升.砂岩的热破裂过程[J].地球物理学报,2005,48(3):656~659
    [64]秦本东,罗运军,门玉明,等.高温下石灰岩和砂岩膨胀特性的试验研究[J].岩土力学. 2011,32(2) :417~422
    [65]谌伦建,吴忠,秦本东,等.煤层顶板砂岩在高温下的力学特性及破坏机理[J].重庆大学学报. 2005,28(5) :123~126
    [66]Mohr O. Welche Um stande bedingen die Elastizitatsgrenze undden bruch eines materials[J]. Zeitschrif t des Vereins Deutscher Ingenieure, 1900, 44: 1524~1530
    [67]D.C. Drucker and W. Prager. Soil mechanics and plastic analysis or limit design. Q. Appl. Math, 1952:157~175
    [68]Hoek E,Brown E. T. The Hoek-Brown failure criterion-a 1988 update [C]//Proc 15th Canadian Rock Mech Symp,Toronto,Civil Engineering University of Toronto,1988:31~38.
    [69]Griffith AA. Theory of rupture. In: Proceeding of the 1st International Conference onApplied Mechanics, Delft, Holland, 1924:55~63
    [70]Salcedo DA. Macizos Rocosos: Caracterizacion, Resistencia al Corte y Mecanismos de Rotura. In: Proc 25 aniv conf soc Venezolana de Mecanica del Sueloe Ingenieria de Fundaciones, Caracas, 1983:143~172.
    [71]YOU M. Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(2) :195~204
    [72]Hoek E,Brown E.T.Underground excavations in rock [M].Hereford:Austin&Sons Ltd,1988
    [73]Hoek E,Brown E. T. Empirical strength criterion for rock masses[J].Journal of the Geotechnical Engineering Division,ASCE,1980,(9):1013~1035
    [74]Hoek E.Strength of jointed rock masses [J].Gdotechnique,1983,33 (3):87~223.
    [75]Hoek E,Wood D,Shah S. A modified Hoek-Brown criterion for jointed rock masses[C]//Proc Rock Characterization,Symp Int Soc Rock Mech:Eurock 92.London:Brit Geotech Soc,1992:209~213
    [76]Hoek E.Strength of rock and rock masses [J].ISRM News Joumal,1994,2 (2 ) :4~1 6
    [77]Hoek E,Marinos P,Benissi M.Applicability of the geological strength index(GSI) classification for very weak and sheared rock masses [J ].The Case of the Athens Schist Formation Bull Engg Geol Env,1998,57 (2) :151~160
    [78]Hoek E,Carranza-Torres C,Corkum B.Hoek-Brown failure criterion:2002 Edition
    [79]//Proc NARMS—TAC Conference,Toronto,2002:267~273
    [80]黄宜胜,李建林,常晓林.基于抛物线型D-P准则的岩质边坡稳定性分析.岩土力学,2007,28(7):1448~1452
    [81]王成虎,何满潮. Hoek-Brown岩体强度估算新方法及其工程应用[J].西安科技大学学报,2006,26(4) :456~459
    [82]陈沅江,吴超,傅衣铭,等.基于修正RMR法的深部岩体工程围岩质量评价研究[J].防灾减灾工程学报,2007,27(2) :141~146
    [83]盛佳,李向东.基于Hoek-Brown强度准则的岩体力学参数确定方法[J].采矿技术,2009,9(2) :12~14
    [84]林杭,曹平,李江腾,等.基于广义Hoek-Brown准则的边坡安全系数间接解法[J].煤炭学报,2008,33(10) :1147~1150
    [85]蒋青青.基于Hoek-Brown准则点安全系数的边坡稳定性分析[J].中南大学学报(自然科学版),2009,40(3) :786~790
    [86]柳群义,朱自强,钟正强,等.基于Hoek-Brown准则的隧道围岩屈服接近度分析[J].岩土力学,2009,30(8) :2447~2450
    [87]黄高峰,李宗利,牟声远. Hoek-Brown准则参数在边坡工程中的敏感性分析[J].岩土力学,2009,30(7) :2163~2167
    [88]Itasca Consultingn Group Inc. FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions),Version 2.00,Users Manual(VolumeⅤ) [R].USA:Itasca Consulting Group Inc,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700