地表组分温度反演方法及遥感像元的尺度结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面温度是地表能量平衡中的重要输入参数,自然状态下地表温度的分布极不均匀,像元尺度的平均温度缺乏对真实温度分布的代表性,很多关于地表能量平衡过程的模型都需要输入组分温度以提高精度。利用多角度或多光谱热红外遥感数据,在有地面实验数据支撑的重点实验区域实现组分温度反演的条件已经具备,本文从实践上证明这一套算法的可行性。
     在前向模型上,本文指出热红外波段分辨率的遥感像元通常是多种覆被类型的混合,混合像元的分解应采用“像元-端元-组分”这样的层次结构。现有的辐射方向性模型通常针对单一的覆被类型,是端元模型。根据像元的尺度结构,端元模型复合成为像元模型可以采用线性组合的形式。另外,组分温度反演需要以最简洁的形式刻画地表辐射方向性,本文通过直接改写辐射传输方程的方式把一个典型的BRDF模型——SAIL模型扩展到热红外波段,可以用于计算水平均匀冠层的热辐射方向性或组分有效发射率。
     反演算法上,本文首先以像元结构参数和材料参数为媒介把可见光/近红外波段的信息引入组分温度反演,并且利用了可见光/近红外波段与热红外波段分辨率的差异实现“像元-端元”这一层次的分解,利用BRDF模型反演实现“端元-组分”这一层次的分解。接下来,在组分有效发射率模型及其矩阵表示的基础上,结合贝叶斯反演理论,实现了组分温度反演,反演结果以后验概率均值和标准差的形式给出,并且以后验标准差相对于先验标准差的减小作为参数在反演中获得信息量的度量。对一个典型案例做的误差和敏感度分析表明:(A)多角度数据比单一角度的多光谱数据更适于组分温度反演;(B)在数据或模型参数有误差的情况下,增强先验知识约束能明显改善反演结果;(C)如果有先验知识的支持则单一角度的多光谱数据也可以用于反演组分温度。因此本文提出利用参数的空间相关性改进先验知识的迭代反演方法,新先验知识的生成过程需要用到上一次反演的后验均值和标准差。
     为了将组分温度反演用于实测遥感数据,本文在第四章中先用一定篇幅介绍数据的基本处理,尤其重点介绍了多角度遥感图像的自动配准算法。该算法针对机载多角度遥感图像的特点而设计,结合了金字塔式配准框架和小波变换、多元变量的相关系数、B-样条等数学工具,可在图像间有复杂局部形变以及光谱差异的条件下实现配准。接下来,文中重点介绍了用多角度和多光谱数据反演典型农业区组分温
    
     中国科学院遥感应用研究所博士学位论文
     度的实践。AMTIS是我国自行研制的机载多角度成像系统,其数据采集和处理全部
     是课题组完成的;ASTER是Terra上唯一的高分辨率多光谱传感器,其标准数据产
     品己包含基本的几何和大气校正。这两种数据分别用于组分温度反演,组分温度的
     分离都基本成功。我们还给出地面同步测量数据对反演结果的验证,结果虽然不很
     完整,但还是可以借此分析存在的问题。
     最后,本文在可见光/近红外波段分辨率足够高的假设下,通过人为降低热红外
     波段分辨率的方式,分析了热红外波段分辨率对组分温度反演结果以及像元平均温
    一
     度的影响,指出数据的空间分辨率对反演结果的影响是渐变的,而组分温度相对于
     像元平均温度则有质的区别。本文结果与MODIS-LST、ASTER-TES标准产品的做
     了对比,存在的差别一部分来源于大气校正或地表发射率的处理方法的差异,但最
     主要还是因为数据分辨率的差异以及组分温度与像元平均温度的不同。
Land surface temperature (LST) is an important parameter in the study of energy balance/exchange over land surface. Because natural land surface is usually heterogeneous and not isothermal, the pixel-mean temperature cannot adequately represent the actual thermal state of the surface. Many applications will appreciate component temperature input for better results. With the support of ground-based experiments and other auxiliary information, it is possible to retrieve component temperature from multi-angular or multi-spectral thermal infrared (TIR) remote sensing data. Presented in this paper is the theory, as well as practice, of component temperature inversion.
    Because a remote sensing pixel in TIR band is usually a mixture of several land cover types, the "pixel-subpixel-component" structure was chosen to be the framework of forward model and inversion strategy in this paper. Here, a "subpixel" was defined as the fraction inside one pixel that is of pure land cover type instead of its usual meaning that is ambiguous between "component" and "endmember". It was pointed out that the "subpixel-component" structure is usually complex and should be modeled with 3-D model, while "pixel-subpixel" structure can be approximated with 2-D model. So, most complex models that describe the directionality of land surface are subpixel models, and they can be integerated into pixel models with linear combination. In the component temperature inversion algorithm, the "pixel-subpixel" decomposition was done by exploiting resolution difference between TIR and VNIR (visible and near infrared) data; and the decomposition of "subpixel-component" was done by inverting BRDF model with VNIR data.
    It is important that the forward models used in inversion should be effective as well as simple. So, a well-known BRDF model, the SAIL model, was adapted and extended to thermal bands by directly modifying its RT differential equations. The extended SAIL model can be used to predict directional thermal radiance or to derive component equivalent emissivity for horizontally homogeneous canopy.
    Inversion algorithm was built on the concept of component equivalent emissivity and its matrix representation. Bayes inference was also incorporated into the frame so that a priori knowledge could be introduced to be constraint of result. It was also shown in the error analysis that a priori information was very critical for inversion of those unknown variables that are not sensitive to observation. A priori information was
    
    
    
    expressed as mean and std. deviation and the result of inversion was expressed as posterior mean and posterior std. deviation. The gained information for a variable could be measured with the decrement of its std. deviation before and after inversion. Based on this measurement, it was shown that (1) component temperature got more information with multi-angular data set than with single-angle and multi-spectral data set; (2) single-angle and multi-spectral data set could be used to retrieve component temperature only if a priori information is enhanced. Because component temperature varies much throughout a scene of remote sensing image, globally defined a priori information can never be very precise. So it is necessary to give separate a priori mean and std. deviation for each pixel. Exploiting spatial correlation of the unknown variables, an iterative upgrade method is proposed to extract new a priori mean and std. deviation from a neighborhood of previous inverted posterior mean and std. deviation.
    As part of work in component inversion practice, chapter 4 gave some details for basic data processing and correction. Mainly introduced here was an automatic image registration algorithm, which was specially designed for airborne multi-angular remote sensing images. It cooperated with wavelet decomposition, multi-variant correlation coefficient and B-spline warping function in the frame of pyramidal resolution matching; and it performed well with images that contain localized distortion and spectral change. After registration, su
引文
[1] Asrar, G., Myneni, R.B., and Choudhury, B.J., 1991, "A 3-D RT method for optical remote sensing of vegetation land surface," Proc. 5th Intern. Colloq. Physical Measurement and Signatures in Remote Sensing, Courchevel, France, 361-367.
    [2] Barnsley, M.J., and Muller, J.P., 1991, "Measurement, simulation and analysis of the directional reflectance properties of earth surface materials," Proc. 5th Intern. Colloq. Physical Measurement and Signatures in Remote Sensing, Courchevel, France, 375-382.
    [3] Bartels, Beatty, Barsky, 1987, "An Introduction to Splines for Use in Computer Graphics & Geometric Modeling," Morgan Kaufmann.
    [4] Barton I.J., and T.Talashima, 1986, "An AVHRR investigation of surface emissivity near lake Eyre, Australia," Remote Sens. Environ., 20, 153-163.
    [5] Balick, L.E. and Hutchinson, B.A.. 1986, "Directional thermal infrared exitance distributions from a leafless deciduous forest," IEEE Transactions on Geoscience and Remote sensing, 24. 693-698.
    [6] Becker. F., Z. L. Li., 1990a, "Toward a local split window method over land surface," Int. J. Re. Sens., Vol. 11, No. 3, 369-393.
    [7] Becker F., Li Z-L, 1990b, "Temperature independent spectral indices in thermal infrared bands," Remote Sens. Environ., 32:17-33.
    [8] Becker, F. and Li Z.. 1995, ''Surface temperature and emissivity at various scale: definition, measurement, and related problem," Remote Sensing Review, 12:225-253.
    [9] Collins E.F., Roberts D.A., and Borel C.C., 2001, "Spectral mixture analysis of simulated thermal infrared spectrometry data: an initial temperature estimate bounded TESSMA search approach," IEEE Trans. Geosci. Remote Sens., 39(7) :1435-1446.
    [10] Dauzat, J., and Hautecoeur, O.. 1991, "Simulation des transfers radiatifs sur marquettes informatiques de couverts vegetaus," Proc. 5th Intern. Colloq. Physical Measurement and Signatures in Remote Sensing, Courchevel, France, 415-418.
    [11] Deng Ru-Ru, Liu Qin-Huo, Tian Guo-Liang, et al., 2002, "An applied vegetation canopy model and its application in inversion of vegetation coverage and water content", Proc. IGARSS'02, Toronto, Canada.
    [12] Dozier, J. and Warren, S. G., 1982, "Effect off viewing angle on Infrared Brightness Temperature of Snow," Water Resources Research, 18:1424-1434.
    [13] Egbert, D.D., 1976, "Determination of optical bidirectional reflectance from shadowing parameters," PhD Dissertation, Univ. of Kansas.
    [14] Etienne Muller, Henri Decamps, 2000, "Modeling soil moisture-reflectance," Remote Sensing of Environment, 76:173-180.
    
    
    [15] Francois, C., Ottle, C. and Prevot, L., 1997, "Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared: Application on the retrieval of soil and foliage temperatures using two directional measurements," International Journal of Remote sensing, 18,2587-2621.
    [16] Fuchs, M, Kunenm E T., Ker J P and TANNER C B., 1967, "Effect of viewing angle on canopy temperature measurements with infrared thermometers," Agron. J., 59:494-496.
    [17] Geoffrey J. Hay and Danielle J. Mareau, 1998, "A multiscale object-specific approach to upscaling," Proceedings of Scaling and Modeling in Forestry: Applications in Remote Sensing and G1S, International Workshop, Montreal, Canada.
    [18] Gillespie A R, Rokugawa S, Matsunaga T, et al,, 1998, "A temperature and emissivity separation algorithm for Advanced Spaccbome Thermal Emission and Reflection Radiometer (ASTER) images," IEEE Trans. Geosci. Remote Sens., 36(4) : 1113-1126.
    [19] Goel, N.S., Thompson, R.L., 1984, "Inversion of vegetation canopy reflectance models for estimating agronomic variables IV: total inversion of SAIL model," Remote Sensing of Environment, 15:237-253.
    [20] Goel. N.S. and Rozehnal, I., 1992, "An architectural realistic model for radiation regime in vegetation canopies," Proceeding of IGARSS'92, 1:48-50.
    [21] Hapke, B., 1981, "Bidirectional reflectance spectroscopy 1: Theory," Journal of Geophysical Research, 1981, 86(B4) :3039-3054.
    [22] Hatfield, J L., 1979, "Canopy temperatures: the usefulness and reliability' of remote measurements," Agron. J., 71:889-892.
    [23] Heilman J L, Heilman W E and Moore D G. 1981, "Remote sensing of canopy temperature at incomplete cover," Agron. J., 73:403-406.
    [24] Huband, N D S and Monteith. J L., 1986, "Radiative surface temperature and energy balance of a wheat canopy: I. comparison of radiative and aerodynamic canopy temperature," Boundary Layer Meteorol., 36:107-116.
    [25] Jackson, R.D., S.B. Idso. R.J. Reginato, and PJ. Pinter Jr., 1981, "Canopy temperature as a crop water stress indicator," Water Resources Research. 17:1133-1138.
    [26] Ken Watson, 2000, "A diumal animation of thermal images from a day-night pair," Remote Sens. Environ., 72:237-243.
    [27] Kimes, D. S., Smith, J.A. and Link, L.E., 1981a, "Thermal IR exitance model of a plant canopy," Applied Optics, 20:623-632.
    [28] Kimes D. S., 1981b, "Azimuthal radiometric temperature measurements of wheat canopies," Applied Optics, 20(7) : 1119-1121.
    [29] Kimes, D.S. and Kirchner, J.A., 1982, "Radiative transfer model for heterogeneous 3-D scenes," Appl. Opt., 21:4119-4129.
    [30] Kimes, D.S. and Kirchner, J.A., 1983a. "Directional radiometric measurements of row-crop temperatures," International Journal of Remote Sensing, 4:299-311.
    
    
    [31] Kimes D. S., 1983b, "Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques," Remote Sensing of Environment, 13: 33-55.
    [32] Kimes, D.S., Norman, J.M. and Walthall, C.L., 1985, "Modeling the radiant transfer of sparse vegetation canopies," IEEE Trans. Geosci. Remote Sens., GE-23:659-704.
    [33] Kneizys, F. X., Abreu, L. W., Anderson, G. P. et al., 1996, "The MODTRAN 2/3 Report and LOWTRAN 7 model," Ontar Corpration, North Andover, Mass,
    [34] Kortum, G, 1969, "Reflectance Spectroscopy," New York: Springer-Verlag.
    [35] Kubelka, P. and Munk, F., 1931, "Ein Beitrag zur Optik der Farbanstriche, Z, Tech. Physik," 12:593.
    [36] Kustas W P, Choudhury B J, Inoue Y. et al.. 1990. "Ground and aircraft infrared observations over a partially-vegetated area," Int. J.Remote Sens., 11:409-327.
    [37] Labed, J. and Stoll, M. P.,1991a, "Spatial variability of land surface emissivity in the thermal infrared band: Spectral signature and effective surface temperature," Remote Sensing of Environment, 38. 1-17,
    [38] Labed J, Stoll M P., 1991b, "Angular variation of land surface spectral emissivity in the thermal infrared: Labor investigations on bare soils," Int. J. Remote Sens., 12(11) :2299-2310.
    [39] Lagouarde, J.P., Kerr, Y. H. and Bmnet, Y., 1995, "An experimental study of angular effects on surface temperature for various plant canopies and bare soils," Agricultural and Forest Meteorology, 77:167-190.
    [40] Levin, S.A., 1992, "The problem of pattern and scale in ecology," Ecology. 73:1943-1967.
    [41] L. F. Chen, Q. H. Liu, Z. L. Li and X. R. Xu, 2002, "The Couple-inversion of Atmospheric Profile and Surface Temperature and Emissivity from MODIS Data," Proc. IGARSS'02, Toronto, Canada.
    [42] Liu Qinhuo, Liu Qiang, Xin Xiaozhou et at., 2001, "Experimental study on directionality in thermal infrared observations of corn canopy," Proc. IGARSS'Ol, Sydney, Australia.
    [43] Liu Qinhuo. Li Xiaowen. Chen Liangfu et al., 2002, "Field Campaign for Quantitative Remote Sensing in Beijing". Chinese Journal of Remote Sensing, Vol. 6. Special Issue.
    [44] Li Xiaowen. A. Strahler, 1985, "Geometric-optical modeling of conifer forest canopy." IEEE Trans. Geosci. Remote Sensing, GE-23(5) :705-721.
    [45] Li Xiaowen and A. H. Strahler, 1992, "Geometric-optical bidirectional reflectance modeling of mutual shadowing effects of crown in a forest canopy," IEEE Trans. Geosci. Remote Sens., 30(2) :276-292.
    [46] Li, X., Yan, G., Liu, Y., Wang, J., Zhu, C., 1997, "Uncertainty and Sensitivity Matrix of Parameters in Inversion of Physical BRDF Models", Chinese J. Remote Sensing, vol. 1 (Suppl.):! 13-122.
    [47] Li. Xiaowen, A. Strahler and M. Friedl. 1999. "A conceptual model for effective directional emissivity from non-isothermal surface," IEEE Trans. Geosci. Remote Sensing, 37(5) :2508-2517,
    [48] Li Z-L, Becker F., 1993, "Feasibility of land surface temperature and emissivity determination from AVHRR data," Remote Sens. Environ., 43:67-85.
    [49] Li Z-L, Becker F, Stoll M P, et al, 1999, "Evaluation of six methods for extracting relative emissivity spectral from thermal infrared images," Remote Sens. Environ., 69:197-214.
    
    
    [50] McMillin L.M., 1975, "Estimation of sea surface temperature from two infrared window measurement with different absorption," Journal of Geophysical Research, 80:5113-5117.
    [51] Menenti, M., Li, Z. L., Djepa, V. et al., 1999, "Estimation of soil and vegetation temperatures with directional thermal infrared observations: The HEIFE, SGP97 and IMGRASS experiments, 1999," Second International Workshop on Multiangular Measurements and Models, Ispra, Italy.
    [52] Monteith, J.L., and Szeicz, G., 1962, "Radiative temperature in the heat balance of natural surfaces," Quart. J. Roy. Meteorol. Soc., 88:496-507.
    [53] Myneni R.B., J. Ross and G. Asrar, 1989, "A review on the theory of transport in leaf canopies," Agricultural and Forest Meteorology, 45:1-153.
    [54] Myneni, R.B. and Ross, J., 1991, "Photo-vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology," Spring-Verlag, Berlin Heidelberg, New York.
    [55] Nilson, T. and Kuusk, A., 1989, "A reflectance model for the homogeneous plant canopy and its inversion," Remote Sens. Environ., 27:157-167.
    [56] Norman, L, Becker, F., 1995, "Terminology in thermal infrared remote sensing of natural surface," Agriculture and Forest Meteorology, 77:153-176.
    [57] Otterman, J. and Weiss, G.H., 1984, "Reflectance from a field of randomly located vertical protrusions," Appl. Opt., 23:1931-1936.
    [58] Paw U, K T., Ustin S L and Zhang C., 1989, "Anisotropy of thermal infrared exitance in sunflower canopies," Agric. For. Meteorol., 48:45-48.
    [59] Pinty, B., Verstraete, M.M. and Dickinson, R.E., 1989, "A physical model for predicting bidirectional reflectance over bare soil," Remote Sens. Environ,, 27:273-288.
    [60] Qin Wenhan, 1993, "Modeling bi-directional reflectance of multicomponent vegetation canopy," Remote Sens. Environ., 46:235-245.
    [61] Running, S.W., Justice, C., Salomonson, V., Hall, D., Barker, J., Kaufman, Y.. Strahler. A., Huete. A.. Muller. J.P., Canderbilt, V., Wan, Z. and Teillet, P.. 1994, "Terrestrial remote sensing science and algorithms planned for EOS/MODIS," International Journal of Remote sensing, 15, 3587-3620.
    [62] Sobrino, J. A. and Caselles, V., 1990a, "Thermal infrared radiance model for interpreting thermal radiation from a terrestrial surface," Journal of Applied Meteorology, 18, 759-763.
    [63] Sobrino J A, Caselles V., 1990b, "Thermal infrared radiance model for interpreting the directional radiometric temperature of a vegetative surface," Remote Sensing of Environment. 33:193-199.
    [64] H., Suit, 1972, "The calculation of the directional reflectance of vegetative canopy," Remote Sensing of Environment, 2(2) .117-125.
    [65] Tarantola A., 1987, "Inverse Problem theory: Method for Data Fitting and Model Parameter Estimation," Amsterdam: Elservier Science Publishers.
    [66] Tang, S., Zhu, Q., Li, X., Sun, R., Yan, G., 2001, "Inversion of Li-Strahler GOMS Model for Component Signatures and Fractions," Proc. IGARSS'Ol , Sydney, Australia.
    
    
    [67] Turitzin S.N., 1978, "Canopy structure and potential light competition in two adjacent annual plant communities," Ecology, 59:161-167.
    [68] T. Yu, X.F. Gu, G. Tian J.F. Hanocq, M. Legrand, R. Bosseno, Q.H. Liu, 2002, "Research on the sampling depended variance of brightness temperature over corn field at local noon time," Chinese Journal of Remote Sensing, Vol. 6, Special Issue.
    [69] Valerie I. Cullinan, Mary Ann Simmons, and John M. Thomas, 1997, "A Bayesian test of hierarchy theory:scaling up variability in plant cover from field to remote sensed data." Landscape Ecology, 12:273-285.
    [70] Verhoef, W., 1984, "Light scattering by leaf layers with application to canopy reflectance modeling:the SAIL model," Remote Sensing of Environment, 16:125—141.
    [71] Wan Z. Dozier J., 1996, "A generalized split-window algorithm for retrieving land surface temperature from space," IEEE Trans. Geosci. Remote Sens., 34(4):892-905.
    [72] Wan, Z., Li, Z., 1997, "A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data," IEEE Trans. Geosci. Remote Sens., 35(4):980-996.
    [73] William Menke, 1984, "Geophysical Data Analysis: Discrete Inverse Theory," Academic Press.
    [74] William C. Snyder, and Zhengmin Wan, 1998, "BRDF models to predict spectral reflectance and emissivity in thermal infrared," IEEE Trans. Geosci. Remote Sens., 36(1):214-225.
    [75] Woodcock, C.E. and Strahler, A.H., 1987, "The factor of scale in remote sensing," Remote Sensing of Environment, 21:311-332.
    [76] Xiao Qing, Liu Qinhuo,Li Xiaowen, Chen Liangfu, 2002, "A Field Measurement method of Spectral Emissivity based on ISSTES Algorithm," Chinese Journal of Remote Sensing, 2002, Vol. 6, Special Issue.
    [77] Yah, G., Wang, J., Li, X., 2001, "Making Use of A Priori Knowledge of Vegetation Spectrum in Inversion for Canopy Structure Parameters," IGARSS'01 , Sydney, Australia.
    [78] 陈良富,庄家礼,徐希孺,1999,“热红外遥感中通道间信息相关性及其对陆面温度反演的影响”,科学通报,44(19):2121-2127.
    [79] 陈良富,庄家礼,徐希孺,牛铮,张仁华,项月琴,2000a,“非同温混合像元热辐射有效比辐射率概念及其验证”。科学通报,45(1):22-28.
    [80] 陈良富,庄家礼,柳钦火,徐希孺,田国良,2000b,“行播作物热辐射方向性规律探讨”,中国科学(E),30(增):77-88。
    [81] 陈良富,庄家礼,徐希孺等,2000c,“用Monte Carlo方法模拟连续植被热辐射方向性”,遥感学报,4(4):261-265.
    [82] 陈良富,庄家礼,徐希孺等,2000d,“非同温离散体热辐射方向性模拟与验证”,遥感学报,4(增):48-52.
    [83] 陈良富,范闻捷,柳钦火,2001,“地表热辐射方向性研究进展”,地理科学进展,10(3):262。267。
    [84] 陈良富,柳钦火,范闻捷等,2002,“行播作物热辐射方向性孔隙率模型”,中国科学(D),32(4):290-298.
    [85] 范闯捷,徐希孺,柳钦火,刘强,肖青,2002,“利用AMTIS数据反演植被和土壤温度”,待刊
    [86] 何立明,阎广建,王锦地,李小文,2002,“利用ATSR-2数据提取地表组份温度”,遥感学报,待刊.
    
    
    [87] 胡宝新等,1996,“一种大气订正的方法:BRDF——大气订正环”,环境遥感,11(2):151-160.
    [88] 李小文,王锦地,1995,“植被光学遥感模型于植被结构参数化”北京:科学出版社.
    [89] 李小文,王锦地,胡宝新,A.H.Strahler,1998,“论先验知识在遥感反演中的作用”,中国科学(D),28(1):67-72.
    [90] 李小文,王锦地,1999a,“地表非同温像元发射率的定义问题”,科学通报,44(15):1612-1616.
    [91] 李小文,王锦地,A.H.Strahler,1999b,“非同温黑体表面上Plank定律的尺度效应”,中国科学(E),29(5):422-426.
    [92] 李小文,王锦地,A.H.Strahler,2000,“尺度效应及几何光学模型用于尺度纠正”,中国科学(E),2000,30(增刊):12-17.
    [93] 李召良,F.Petitcolin,张仁华,2000a,“一种从中红外和热红外数据中反演地表比辐射率的物理算法”,中国科学(正),30(增刊):18-26.
    [94] 李召良,M.P.Stoll,张仁华等,2000b,“利用ATSR数据分解土壤和植被温度的研究”,中国科学(E),30(增刊):27-38.
    [95] 刘强,李小文,项月琴,王锦地,2000,“水平均匀植被结构参数的贝叶斯反演”,遥感学报,4(增刊):53-58.
    [96] 刘强,柳钦火,肖青,田国良,2002a,“机载多角度遥感图像的几何校正方法研究”,中国科学(D),32(4):299-306.
    [97] 刘强,陈良富,柳钦火,肖青,2002b,“作物冠层的热红外辐射传输模型”,遥感学报,已投稿。
    [98] 柳钦火,顾行发,李小文等,2000a,“地表热红外辐射方向特性的航空飞行实验研究”,中国科学(E),30(增):99-105.
    [99] 柳钦火,顾行法,田国良等,2000b,“机载多角度热红外图像的相关分析与自动配准”,遥感学报,4(增刊):111-116.
    [100] 牛铮,柳钦火,高彦春等,2000,“零散射近似的冠层热红外辐射间隙率模型”,中国科学(E),30(增):89-98。
    [101] 苏红波,张仁华,唐新斋等,2000,“像元尺度离散植被的热模型及其数字图象解”,中国科学(E),30(增):61~65.
    [102] 苏理宏,2000a,“地表热辐射方向性和尺度效应研究”,中国科学院遥感技术应用研究所博士学位论文,中国科学院图书馆.
    [103] 苏理宏,李小文,王锦地,2000b,“水平均匀冠层热辐射的计算机模拟和模型验证”,遥感学报,4(增刊):53-58.
    [104] 唐世浩,朱启疆,李小文,王锦地,阎广建,2001,“遗传算法及其在GOMS模型反演中的应用效果分析”,遥感学报,5(5):327-333.
    [105] 王锦地,李小文,孙晓敏,刘强,2000,“用热辐射方向性模型反演非同温像元组分温度”,中国科学(E),30(增刊):54-60。
    [106] 阎广建,朱重光,王锦地,李小文,2002a,“遥感反演中约束最优化方法的拓展”,遥感学报,6(2):81-87.
    [107] 阎广建,蒋玲梅,王锦地,陈良富,李小文,2002b,“行播作物热辐射双向间隙率模型及验证”,中国科学(D),待刊。
    
    
    [108] 虞芳芳,1994,“用NOAA-AVHRR数据迭代反演地面温度”,北京大学硕士学位论文,北京大学图书馆.
    [109] 项月琴,王锦地,李小文,郑兰芬,林忠辉,李俊,莫兴国,2000,“二向反射遥感中冬小麦植被组分和土壤特性的季相变化”,遥感学报,4(增刊):90-100.
    [110] 徐希孺,陈良富,庄家礼,2001a,“基于多角度热红外遥感的混合像元组分温度演化反演方法”,中国科学(D),31(1):82-88.
    [111] 徐希孺,范闻捷,陈良富,2001b,“开放的复杂目标热辐射特性的矩阵表达式”,中国科学(D),31(12):1046-1051.
    [112] 徐希孺,范闻捷,2002,“论热红外多角度遥感数据的相关性及视角优选配置”,待发表.
    [113] 杨华等,2002,“定量遥感正则化反演中的信息流及其控制”,中国科学,已投稿.
    [114] 杨文采,1997,“地球物理反演的理论与方法”,地质出版社.
    [115] 张仁华,孙晓敏,李召良等,2000,“地物热辐射方向性影响主因子的揭示——提高辐射温度方向性观测精度的新途径及数据剖析”,中国科学(E),30(增):39-44.
    [116] 朱重光,郭军,虞芳芳,1997,“机载模拟POLDER多角度图像配准”,遥感学报,1(增刊):198-202.
    [117] 庄家礼,陈良富,徐希孺,2000,“利用遗传算法优化神经网络实现混合像元组分温度的反演”,遥感学报,4(增刊):31-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700