基于NOAA卫星的冬小麦冠层表面温度估算及初步应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以地面试验为基础,研究冬小麦主要生育期(拔节到灌浆期)冠层表面温度的变化特征及其与土壤含水量的相关关系,并建立了以冬小麦冠层表面温度为自变量估计土壤含水量的经验模型;在区域尺度(邯郸地区)上,筛选不同裂窗算法,并反演了邯郸地区冬小麦主要生育期冠层表面温度;以地面试验建立的冬小麦冠层表面温度与土壤含水量的经验模型为基础,将区域尺度(邯郸地区)反演的地表温度应用于作物旱情和长势监测。
     研究结果表明:五个不同水分处理(淡水充分灌溉、淡水节水灌溉、咸水充分灌溉、咸水节水灌溉和不灌溉)冬小麦冠层表面温度、地温和气温表现为一致的日变化规律性:14:00左右各种温度达到最高,而早晨和傍晚温度较低,表现为明显的中间高两头低形式;各温度随生育阶段的发展也表现为一致规律性:随着生育阶段的发展气温逐渐增高;冬小麦冠层表面温度和地温也在逐渐增高,表现为拔节期和开花期是三个温度升高最快的发育阶段,但不同的水分处理冬小麦冠层表面温度具有一定的差异性(尤其14:00左右差异性最大),表明14:00左右的冬小麦冠层表面温度能反映水分状况信息,同时也可以作为实施灌溉措施的参照指标。不同水分处理冬小麦冠气温差和地冠温差也具有相同的特征:14:00左右的差异幅度比较大,但不同水分处理各温差存在着差异:淡水充分灌溉、淡水节水灌溉、咸水充分灌溉和咸水节水灌溉的冬小麦冠气温差和地冠温差大部分小于零,表明这四种水分处理的冬小麦冠层表面温度小于气温,地温小于冠层表面温度,而不灌溉的冬小麦地冠温差和冠气温差基本上为正;不同高度处的冠气温差以冠层之上的冠气温差14:00的变化差异最大,认为冠层之上14:00的冠气温差表征作物水分状况最佳,从而为区域上应用冠气温差反映作物和土壤的水分状况提供了试验依据。
     田间试验研究了不同水分处理冬小麦冠层表面温度与土壤含水量间的相关性表明:二者有很强的相关性,且二者的回归拟合方程基本上为二次或三次方程,但不同的水分处理表现为不同的差异性,且二者的拟合关系在时间(每天不同时刻)和空间(不同土壤层)上表现出差异性。进一步研究了不同水分处理三个不同高度冬小麦冠气温差与土壤含水量的相关性表明:二者也有很强的相关性,且二者的回归拟合方程基本上也为二次或三次方程,但不同高度处不同水分处理二者的相关性表现为不同的规律性,综合分析结果表明14:00各水分处理在冠层之上的冠气温差与土壤含水量具有相对较好的相关性,这为区域上利用地面试验建立二者间的回归拟合模型结合遥感资料估计土壤含水量奠定了试验基础。
     村级试验尺度上的研究表明:分别在各生育阶段建立冬小麦冠层表面温度和冠气温差与土壤重量含水量间的回归拟合模型效果比较好,且用冠气温差所建立的二者的回归拟合关系要比用冠层表面温度建立二者的拟合关系的效果好。
     通过地面试验比较9种裂窗算法,采用UL92裂窗法反演邯郸地区平原区的地表温度比较成功,尤其到冬小麦基本封垄的孕穗期开始,冬小麦的冠层表面温度基本上可以用地表温度来代替。采用UL92法反演的地表温度的估测结果与实测值比较接近,在冬小麦主要生育期(拔节到灌浆期),反演的地表温度的平均误差为-0.27℃,标准误差为2.66℃。
     将遥感方法反演的冬小麦冠层表面温度应用于作物的旱情和长势监测表明:区域尺度上,采
    
     回
    用地表温度反映作物的水分状况是可行的。以地面试验所建立的冬小麦冠层表面温度与土壤含水
    量间的关系模型为基础,并将UL92裂窗法反演的邯郸地区的地表温度代人该模型,估计邯郸地
    区土壤含水量,是本研究的新思路,用供水植被指数模型验证,表明采用该方法基本能反映作物
    的旱情;采用供水植被指数(NDVTh)能详细反映作物的水分状况,且能表征作物的长势情况,
    但不如本文所提出的方法,它不能计算不同土层土壤含水量来反映作物的水分状况;采用NDVI
    与Ts的特征空间的思想表明该空间能及时反馈作物的长势情况和作物水分状况,分别以裸地与
    麦地两种土地覆盖类型为研究对象,采用Tk-yDVI矢量特征空间生态学内涵思想,证明该空间
    能反映冬小麦在主要生育期(拔节到灌浆期)的长势情况。
Based on field experiments, the change characteristic of CST(canopy surface temperature) and the correlation among CST and SWC(soil water content) in major growth stages(from jointing stage to grain-filling stage) of winter wheat were studied, and the empirical models on estimating SWC with CST as independent variable were established; by comparison among 9 different split window methods using NOAA/AVHRR data in regional scale(Handan district), the optimal retrieval method UL92 for CST in Handan was derived, and LST(land surface temperature) retrieved using UL92 in regional scale was applied in monitoring drought and crop growth on the basis of empirical models between CST and SWC.
    The research results showed, the same daily change characteristic among CST, air temperature and SST (soil surface temperature) of winter wheat under 5 different water treatments(full-fresh-water-irrigation; fresh-saving-water-irrigation; full-salty-water-irrigation; salty saving-water-irrigation; no-irrigation): the highest temperature at 14:00 and the relative lower temperature in the morning and evening. During major growth stages, the similar change dynamic characteristic exists among the above 3 temperatures: with air temperature increasing gradually, CST and SST also increase gradually, and the 3 temperatures increase at the highest rate in jointing stage and anthesis stage. But the differences in CST change are distinct for different water treatments and indicate that CST at 14:00 can reflect crop water condition as a indicator to saving water irrigation capacity. The similar change trend also exists in temperature difference between canopy-air(Tca) and land-canopy(Tlc) of winter wheat in different wa
    ter treatments: the highest temperature difference at 14:00, but the values of temperature difference under different water treatments differ from each other: Tca<0, Tlc<0 mostly with the order of T(LST)0, Tlc>0 basically under no irrigation; the relative bigger fluctuation of Tea lies in the height of 50 cm above canopy at 14:00 between canopy-air temperature differences in three heights. From the above analysis, the Tea above canopy at 14:00 is the best indicator to crop water condition, which presents the support for application of canopy-air temperature differences in reflecting water condition of crop and soil in regional scale.
    The correlation between CST and SWC under different water treatments in field experiments was analyzed. The regression relationship results gave significant correlation of quadratic or cubic equations between CST and SWC and were different in different time and different soil layers, especially among different water treatments. The correlation between Tea in three heights and SWC under different water treatments was also studied and significant with quadratic or cubic regression equations basically, but there were the differences of correlation between Tea in different heights and SWC among different treatments. By comparison, Tea above canopy at 14:00 gave relative better correlation in different water treatments, which provided the experimental support for estimating SWC in regional scale using
    
    
    regression models between Tea above canopy by field experiments and SWC combing with remote sensing data.
    The experimental results in the village scale showed: it was appropriate to establish respectively the regression models between CST, Tea and SWC according to growth stages of winter wheat, the regression results was better between Tea and SWC than between CST and SWC.
    By validating 9 split window methods by field experiments, UL92 can retrieve LST in Handan district more successfully than other retrieval methods, and especially from the beginning of booting stage, the retrieved LST was approximate to CST. During the major growth periods from jointing to g-ain-filling stage, the mean error -0.27℃ and standard error 2.66℃ were deriv
引文
1.班显秀,赵大庆,王虹.利用AVHRR监测一季混栽作物长势初探.沈阳农业大学学报,1996,27(4):278~283
    2.陈怀亮,冯定原,皱春辉,等.用遥感资料估算深层土壤水分的方法和模型.应用气象学报,1999,10(2):232~237
    3.陈良富,徐希孺.热红外遥感中大气下行辐射效应的一种近似计算与误差估计.遥感学报,1999,3(3):165~170
    4.陈良富,庄家礼,徐希儒.热红外遥感中通道间信息相关性及其对陆面温度反演的影响.科学通报,1999,44(19):2122~2127
    5.陈良富,庄家礼,徐希儒,等.非同温混合像元热辐射有效比辐射率概念及其验证.科学通报,2000a,45(1):22~28
    6.蔡焕杰,熊运章,李培德,遥感红外温度估算农田土壤水分状况研究.西北农业大学学报,1994,22(1):113~118
    7.蔡焕杰,唐绍忠.棉花冠层温度的变化规律及其用水缺水诊断研究.灌溉排水,1997,16(1):1~5
    8.蔡焕杰,张振华,柴红敏.冠层温度定量诊断覆膜作物水分状况试验研究.灌溉排水,2001,20(1):1~4
    9.郭铌,陈添宇,雷建勤,等,用NOAA卫星可见光和红外资料估算甘肃省东部农田区土壤湿度.应用气象学报,1997,8(2):2~12
    10.胡和平,雷志栋,杨诗秀.农业水资源的高效利用与可持续发展.中国农村水利水电,1999,1:13~15
    11.胡克林.农田尺度下土壤属性的空间变异性及硝酸盐淋失的随机模拟:[博士学位论文].北京:中国农业大学,2000
    12.黄敬峰.许卫红.王人潮,等.NOAA/AVHRR数据的几何精纠正方法研究.浙江大学学报(农业与生命科学版),2000,26(1):17~21
    13.何永坤.重庆地区大春作物长势监测及产量预测(NOAA/AVHRR资料).四川气象,1999,19(1):51~54
    14.江东,王乃斌,杨小唤,等.NDVI曲线与农作物长势的时序互动规律.生态学报,2002,22(2):247~252
    15.江东,王乃斌,杨小唤,等.植被指数-地面温度特征空间的生态学内涵及其应用.地理科学进展,2001,20(2):146~152
    16.李剑萍.气象卫星作物长势监测及产量预报系统.气象科技,2002,30(2):108~111
    17.李纪人.遥感与水问题.国土资源遥感,1999,41(3):23~27
    18.李召良,H.P.Stoll,张仁华,等.利用ATSR数据分解土壤和植被温度的研究.中国科学(E辑),2000,30(增刊):27~38
    19.李小文,王锦地.地表非同温像元发射率的定义问题.科学通报,1999a,44(15):1612~1616
    
    
    20.李亚春,王志华.我国干旱热红外遥感监测方法的研究进展.干旱地区农业研究,1999,17(2):98~102
    21.李韵珠.麦气象卫星遥感动态监测与估产论文集.北京:气象出版社,1993
    22.刘兴文,冯勇进.应用热惯量编制土壤水分图及土壤水分探测效果.土壤通报,1987,24(3):272~276
    23.刘可群,张晓阳,黄进良。江汉平原水稻长势遥感监测及估产模型.华中师范大学学报(自然科学版),1997,31(4);482~487
    24.刘学著,张连根,周守华.基于冠层温度的冬小麦水分胁迫指数的试验研究.应用气象学报,1995,6(4):449~453
    25.刘学著.冬小麦冠气温差及其与叶水势的相关性试验研究.作物学报,1995,21(5):528~532
    26.刘强.地表组分温度反演方法及遥感像元的尺度结构.[博士学位论文],北京中国科学院遥感应用研究所,2002
    27.刘更另.水·水资源·农业节水.中国工程科学,2000,2(7):39~42
    28.楼秀林,黄韦艮,周长宝,等.遥感图像数据重采样的一种快速算法.遥感学报,2002,6(2):96~101
    29.卢志光,孙京都,卢丽.北京旱情与对策。北京:气象出版社,2002
    30.欧阳进良.农用土地持续利用机制及其农户生产行为研究:[硕士学位论文].北京:中国农业大学,2001
    31.裴浩,敖艳青.极轨气象卫星监测土壤干旱方法的研究.中国草地,1996,5:40~45
    32.裴志远,杨邦杰.多时相归一化植被指数NDVI的时空特征提取与作物长势模型设计.农业工程学报,2000,16(5):20~22
    33.钱正英.中国水资源战略研究中几个问题的认识.河海大学学报,2001,29(3):1~7
    34.乔玉辉.土地利用系统分析模型试验及应用研究-以河北曲周县冬小麦为例:[博士学位论文].北京:中国农业大学,1999
    35.上官周平,邵明安.21世纪农业高效用水技术展望。农业工程学报,1999,15(1);17~21
    36.申广荣,田国良.基于GIS的黄淮海平原旱灾遥感监测研究—作物缺水指数模型的实现.生态学报,2000,20(2):224~228
    37.隋洪智,田国良,热惯量方法监测土壤水分.见:田国良主编.黄河流域典型地区遥感动态研究.北京:科学出版社,1990,122~132
    38.隋洪智,田国良,李付琴.农田蒸散双层模型及其在干旱遥感监测中的应用.遥感学报,1997,1(3):22~28
    39.唐登银.一种以能量平衡为基础的干旱指数.地理研究,1986,6(2):21~31
    40.康绍忠.旱地土壤水分动态模拟的初步研究.农业气象,1987,(2):38~412
    41.覃志豪,ZHANG Ming-hua, Arnon Karnieli.用NOAA-AVHRR热通道数据演算地表温度的劈窗算法.国土资源遥感,2001,2:33—42
    42.田国良,杨希华,郑柯.冬小麦旱情遥感监测模型研究.环境遥感,1992,7(2):83~89
    43.田淑敏.曲周县土地可持续利用旱情分析:[硕士学位论文].北京:中国农业大学,2000
    
    
    44.王宏,于沪宁,邓根云,等.小麦不同生育期水分胁迫对产量的影响及干旱诊断方法初探.华北农学报,1989,4(4):1~4
    45.王宏.作物水分亏缺诊断研究综述:作物与水分关系研究.北京:中国科学技术出版社,1992,229~251
    46.王鹏新,龚健雅,李小文.条件植被温度指数及其在干旱监测中的应用.武汉大学学报(信息科学版),200l,26(5):412~418
    47.武建军,杨勤业.干旱区农作物长势综合监测.地理研究,2002,21(5):593~598
    48.武晓波,阎守邕,田国良.在GIS支持下用NOAA/AVHRR数据进行旱情监测.遥感学报,1998,2(4):280~284
    49.吴炳方.NOAA AVHRR 1B数据的几何精纠正.环境遥感,1994,9(4):288~295
    50.吴炳方.全国农情监测与估产的运行化遥感方法.地理学报,2000,55(1):25~35
    51.肖乾广,陈维英,盛永伟,等.用气象卫星监测土壤水分的试验研究.应用气象学报,1994,5(2):312~317
    52.辛景峰.基于3S技术与作物生长模型的作物长势监测与估产方法研究:[博士学位论文].北京:中国农业大学,2001
    53.熊顺贵主编.基础土壤学.北京:中国农业大学出版社,2001,132~134
    54.徐希孺,陈良富,庄家礼.基于多角度热红外遥感的混合像元组分温度演化反演方法.中国科学,2001,31(1):81~88
    55.杨邦杰,裴志远.农作物长势的定义与遥感监测.农业工程学报,1999,15(3):214~218
    56.杨晓光,陈阜,宋冬梅,等.华北平原农业节水实用措施试验研究.地理科学进展,2000,19(2):162~166
    57.余涛,田国良.热惯量法在监测土壤表层水分变化中的研究.遥感学报,1997,1(1):24~31
    58.于保平.“21世纪粮食安全与农业保护问题国际研讨会”综述.农业技术经济,1999,5:1~3
    59.于沪宁,邓根云,卢振民,等.不同土壤水分条件下冬小麦的生理生态效应及干旱程度判断:作物与水分关系研究.北京:中国科学技术出版社,1992,66~73
    60.袁国富,唐登银,罗毅,等.基于冠层温度的作物缺水研究进展.地球科学进展.2000,16(1):49~54
    61.袁国富,罗毅,孙晓敏,等.作物冠层表面温度诊断冬小麦水分胁迫的试验研究,农业工程学报,2002,18(6):13~17
    62.张仁华.试验遥感模型及地面基础.北京:科学出版社,1996,186~192
    63.张仁华,苏红波,李召良,等.地表受光面和阴影温差的潜在信息及遥感土壤水分的新途径。中国科学(E辑),2000,30(增刊):45~53
    64.张仁华.以红外辐射信息为基础的估算作物缺水状况的新模式.中国科学,1986,B辑,7:776~784
    65.张仁华.土壤含水量的热惯量模型及其应用.科学通报,1991,36(12):9~24
    66.张仁华.真实地表温度的获得及普通水银地面温度表的初步订正,农田水分与能量平衡试验
    
    研究。北京:科学出版社,1987
    67.张世熔.基于GIS的区域水氮行为模拟与管理分析:[博士学位论文].北京:中国农业大学,2002
    68.赵昕奕,刘继韩.黄淮海平原冬小麦生长期旱情分析.地理科学,1999,19(2):181~185
    69.赵玉金.试用极轨气象卫星遥感监测土壤墒情.气象,1994,20(4):37~40
    70.朱希刚.华北平原水资源农业利用问题.决策,1998,9~12
    71.朱永豪,邓仁达,卢亚非,等.不同湿度条件下黄棕壤光谱反射率的变化特征及其遥感意义.土壤学报,1984,21(2):194~197
    72. Alves I, Pereira L S. Non-water-stressed baselines for irrigation scheduling with infrared thermometers: A new approach. Irrigation Science, 2000, 19:101~106
    73. Becket F, Z L Li.Toward a local split window method over land surface. Int. J. Re. Sens., 1990a,11(3): 369~393
    74. Becket F, Z L Li. Surface temperature and emissivity at various scale: definition, measurement, and related problem. Remote Sensing Review, 1995, 12:225~253
    75. Clawson K L, Jackson R D, Pinter P J Jr. Evaluating plant water stress with canopy temperature differences. Agronomy Journal, 1989, 81:858~863
    76. Caselles V, Coll C, Valor E. Land surface emissivity and temperature determination in the whole HAPEX-Sahel area from AVHRR data. International Journal of Remote Sensing, 1997, 18 (5): 1009~1027
    77. Clevers J G P W, Leeuwen H J C van, Van Leeuwen H J C. Combined use of optical and microwave remote sensing data for crop growth monitoring. Remote Sening of Environment, 1996, 56(1): 42~51
    78. Coll C, Caselles V. A split-window algorithm for land surface temperature from advanced very high resolution radiometer data: Validation and algorithm comparison. Journal of Geophysical Research, 1997, 102:16,697~16,713
    79. Coll C, Caselles C, Sobrino J A, et al. On the atmospheric dependence of the split-window equation for land surface temperature. International Journal of Remote Sensing, 1994, 15(1):105~122
    80. Ehrlich L D. The surface temperature-vegetation index space for land cover and land-cover change analysis. International Journal of Remote Sensing, 1996, 17:463~487
    81. England A W, Galanlowica J F, Schreller M S. The radio brightness thermal inertia measure of soil moisture. IEEE Trans. Geosci. Remote Sensing, 1992, 30(1): 132~146
    82. Gillespie A R, Rokugawa S, Matsunaga T, et al. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens., 1998, 36(4): 1113~1126
    83. Gardner B R, Blad B L, Watts D G. Plant and air temperatures in differentially irrigated corn. Agricultural Meteorology, 1981b, 25:207~217
    84. Gardner B R, Nielsen D C, Shock C C. Infrared thermometry and the crop water stress index, Ⅱ:
    
    Sampling procedures and interpretation. Journal of Production Agriculture, 1992, 5:466~475
    85. Gardner B R, Nielsen D C, Shock C C. Infrared thermometry and the crop water stress index Ⅰ: History, theory, and base-lines. Journal of Production Agriculture, 1992,5:462~466.
    86. Goward, Hope. Evaporation from combined reflected solar and emitted terrestrial radiation: Preliminaty FlEE results From AVHRR data. Advances in Space Research, 1989, 9:239~249
    87. Groten S M E. NDVI-crop monitoring and early yield assessment of Burkina Faso. International Journal of Remote Sensing, 1993,14 (8): 1495-1515
    88. Gupta R K, Prasad S, SESA SAI, et al.The estimation of surface temperature over an agricultural area in the state of Haryana and Panjab, India, and its relationship with the Normalized Difference Vegetation Index (NDVI), using NOAA-AVHRR data. International Journal of Remote Sensing, 1997, 18 (18): 3729~3741
    89. Huband N D S, Monteith J L. Radiative surface temperature and energy balance ora wheat canopy: Ⅰ. Comparision of radiative and aerodynamic canopy temperature. Boundary Layer Meteorol., 1986, 36: 107~116
    90. http://wwwz.ncdc.noaa.gov/docs/klm
    91. Ir. Gabriel N. Parodi. AHVRR hydrological analysis system: Algorithms and theory-version1.0.The Neatherlands: ITC,2000
    92. ITC. ILWIS3.0 for Windows, User's Guide. ILWIS Department, International Institute for Aerospace Survey & Earth Sciences. Enschede, The Netherlands.
    93. Jackson R D. Canopy temperature and crop water stress. In: Hille ID, ed. Advances in Irrigation, NewYork: Academic Press, 1982, 1:43~85
    94. Jackson R D, S B Idso, R J Reginato et al. Canopy temperature as a crop water stress indicator. Water Resources Research, 1981, 17:1133~1138
    95. Jones H G, Aikman D, McBurney T A. Improvements to infra-red thermometry for irrigation scheduling in humid climate. Acta Horticulturea, 1997, 449:259~266
    96. Kahle A B, Madura D P, Soha J M. Middle infrared multispectral aircraft scanner data: Analysis for geologic applications, appl. opt., 1980,19:2279-2290
    97. Kealy P S, Hook S J. Separating temperature and emissivity in thermal infrared multispectral scanner data: Implications for recovering land surface temperatures. IEEE Transactions on Geoscience and Remote Sensing, 1993,31:1155-1164
    98. Ken Watson. A Diurnal animation of thermal images from a day-night pair. Remote Sens. Environ., 2000, 72:237~243
    99. Kogan F N. Application of vegitation index and bright temperature for drought detection. Advanced in Space Research, 1995, 15(11): 91~100
    100. Kealy P S, Hook S J. Separating temperature and emissivity in thermal infrared multispectral scanner data: Implications for recovering land surface temperatures. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31:1155~1164
    101. Kerr Y H, Lagouarde J P, Imbernon J. Accurate Land surface temperature Retrieval from AVHRR
    
    Data with Use of an Improved Split Window Algorithm. Remote Sensing of Environment, 1992, 41: 197~209
    102. Labed J, Stoll M P. Spatial variability of land surface emissivity in the thermal infrared band: Spectral signature and effective surface temperature. Remote Sensing of Environment, 1991a, 38: 1~17
    103. Labed J, Stoll M P. Angular variation of land surface spectral emissivity in the thermal infrared: Labor investigations on bare soils. Int. J. Remote Sens., 1991b, 12(11): 2299~2310
    104. Liu Qinhuo, Li Xiaowen, Chen Liangfu et al. Field campaign for quantitative remote sensing in Beijing. Chinese Journal of Remote Sensing, 2001, Vol.6, Special Issue
    105. Li Z L, Becker F, Stoll M P, et al. Evaluation of six methods for extracting relative emissivity spectral from thermal infrared images. Remote Sens. Environ., 1999, 69:197~214
    106. Mcmiilin L M.Estimation of sea surface temperature from two infrared window measurement with different absorption. Journal ofGeophysieal Researeh, 1975, 80:5113~5117
    107. Moran M S, Maas S J, Clarke T R, et al. Modeling Remote sensing approach for irrigation scheduling. In: Camp C R, Sadler E J, Yoder R E, eds. Evapotranspiration and Irrigation Scheduling. Proceeding of the International Conference. Nov3~6, SanAntonio, Texas, 1996, 231~238
    108. Moran M S, Maas S J, Pinter Jr P J. Combing Remote Sensing and Modeling for Estimating Surface Evaporation and Biomass Production. Remote Sensing Reviews, 1995, 12:335~353
    109. Moran M S, Clarke T R, Inoue Y, et al. Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index. Remote Sensing of Environment, 1994, 49:246~263
    110. Nemani, Pierce, Running, et al. Developing satellite derived estimates of surface moisture status. Journal of Applied Meteorology, 1993, 32:548~557
    111. Norman J, Becker F. Terminology in thermal infrared remote sensing of natural surface. Agriculture and Forest Meteorology, 1995, 77:157~167
    112. Ottle C, Vidai-Madjar D. Estimation of Land Surface Temperature with NOAA9 Data. Remote Sensing of Environment, 1992, 40: 27~41
    113. Prata A J. Land surface temperature derived from the Advanced Very High Resolution Radiometer and the Along-Track Scanning Radiometer: 1. Theory. Journal of Geophysical Research Atmospheres, 1993, 98(139): 16,689~16,702
    114. Prata A J, Cechet R P. An Assessment of the Accuracy of Land Surface Temperature Determination from the GMS-5 VISSR. Remote Sensing of Environment, 1999, 67:1~14
    115. Price J C. Land Surface Temperature Measurements From the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer. Journal of Geophysical Research, 1984, 89:7231~7237
    116. Price J C. On the analysis of thermal infrared imagery: the limited utility of apparent thermal inferred. Remote Sensing Environment, 1985, 18(1): 59~69
    
    
    117. Prince S D, Goetz S J, Dubayah R O, et al. Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using Advanced Very High Resolution Radiometer satellite observations: comparison with field observations. Journal of Hydrology, 1998, 212~213&230~240
    118. Roy D P. Investigation of the maximum Normalized Difference Vegetation Index (NDVI) and the maximum surface temperature (T_s) AVHRR compositing procedures for the extraction of NDVI and T_s over forest. International Journal of Remote Sensing, 1997, 18(11): 2383~2401
    119. Rubio E, Caselles V, Badenas C. Emissivity Measurements of Several Soils and Vegetation Types in the 8-14 μm Waveband: Analysis of two Field Methods. Remote Sensing of Environment, 1997, 59:490~521
    120. Sobrino J A, Caselles V. Thermal infrared radiance model for interpreting the directional radiometric temperature of a vegetative surface. Remote Sensing of Environment, 1990b, 33: 193~199
    121. Shibayama M, Takahashi W, Morinaga S, et al. Canopy water deficit detection in paddy rice using a high resolution field spectrodiometer. Remote Sensing of Environment, 1993, 45:117~126
    122. Sobrino J A, Caselles V. A methodology for obtaining the crop temperature from NOAA-9 AVHRR data. International Journal of Remote Sensing, 1991, 12(12): 2461~2475
    123. Ulivieri C, Castronuovo M M, Francioni R, et al. A split window algorithm for estimating land surface temperature from satellites. Advances in Space Research, 1994, 14(3): 59~65
    124. Valor E, Caselles V. Mapping Land Surface Emissivity from NDVI: Application to European, African, and South American Areas. Remote Sensing of Environment, 1996, 57:167~184
    125. Vidal A. Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data. International Journal of Remote Sensing, 1991, 12(12): 2449~2460
    126. Wanjura D F, Upchurch D R. Accounting for humidtity in canopy-temperature-controlled irrigation scheduling. Agricultural Water Management, 1997, 34:217~231
    127. Wan Z, Dozier J. A generalized split-window algorithm for retrieving land surface temperature from space. IEEE Trans. Geosci. Remote Sens., 1996, 34(4): 892~905
    128. Wan Z, Li Z. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS DATA. IEEE Trans. Geosci. Remote Sens, 1997, 35(4): 980~996
    129. Wan Z, Dozier J. Land surface temperature measurements from space: Physical principles and inverse modelling. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27: 268~278
    130. Watson K.Two-temperature method for measuring emissivity. Remote Sensing of Environment,1992, 42:117~121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700