寒冷地区江河溢油污染团风化迁移规律与时空分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着北方河流沿岸能源石化工业的迅速发展和原油航运及穿越河道的输油管道的布设,江河溢油已成为生态环境和居民用水安全的严重威胁,制约北方经济发展的重要隐患,建立突发溢油污染事故后的预警预报和应急处置系统是减小环境危害和降低经济损失的重要措施。因此,本文开展了针对低温江河水域突发溢油污染时,油团在水面风化和迁移扩展的模拟预测研究,在获知溢油水域环境参数和溢油量的条件下,即可迅速预测油团位置、岸边吸油量与水面残油量,以期为溢油拦截点的选取及截油方式和吸油材料数量的确定提供理论指导,并为同类水域溢油的预测提供参考数据。
     本文详尽分析了目前较为流行的溢油风化和扩展预测模型各自适应条件与预测效果,针对低温江河溢油特点,选取适宜模型进行改进,通过模拟试验确定了模型中的相应参数,建立了适于模拟低温江河溢油风化和迁移扩展的预测模型,以松花江流域突发溢油污染为例,预测了不同季节,油团的蒸发、乳化及溢油性质的改变等风化过程,岸边及冰层对油团的吸附情况,沿江迁移扩展行为,水面残油量。
     分析原油蒸发机理可知:低温条件下,油膜蒸发主要受体相易挥发组分向液体表相的迁移过程控制,挥发组分液相阻力随温度的降低而增加,挥发组分所处油膜的厚度随温度的降低而减小,进而导致蒸发量的降低。在Fingas提出的蒸发模型上增加1个与温度有关的衰减因子e~(-k/Δθ),建立了低温溢油蒸发模型。通过浅盘蒸发试验,确定了当环境温度与溢油凝点温差小于10℃时应采用低温溢油蒸发模型,0#柴油和大庆原油的阻力增加系数k分别为1.07和2.64。对于有冰江面,溢油蒸发受暴露于大气中的油膜面积A_f影响较大,引入衰减系数(A_f h_oe~(-k/Δθ))/V改进Fingas模型以模拟有冰水面溢油蒸发过程,并通过浅盘蒸发试验对改进模型进行了验证。
     采用水槽吸附试验研究了河岸对水面浮油的吸附过程,顺直河道细沙、粘土和毛石型河岸对水面浮油的吸附符合二级吸附动力学方程,吸附等温性能符合Langmuir型吸附等温式。泥、沙等多孔颗粒材质型河岸对水面浮油的吸附机理为物理吸附,是粘附作用、活性离子吸附作用和毛细吸附综合作用的结果,此外,泥沙颗粒相互堆积,内部空隙为吸附的油滴提供了巨大的“贮油空间”。毛石型河岸主要依靠柴油的粘滞力使其附着在粗糙的表面之上。
     随着浪高的增大,细沙和粘土型河岸的吸油量先增大而后降低,波高在30~60 mm时吸油量最大,毛石型河岸吸油量则逐渐降低。随岸边坡度(θ)的增大,河岸的吸油量均逐渐降低,当θ从5°增至30°时,毛石型河岸吸油量降幅最大,高、低水力条件下分别为63.4%和73.3%。比较了转弯河道内侧、外侧和顺直河道河岸的吸油量,大小顺序为:外侧河岸>顺直河岸>内侧河岸,建立了沿江河岸对浮油吸附量的计算模式。考察了冰层对浮油的吸附特性,结果表明冰层的吸油速率较高,吸附平衡时间约为15 min,符合二级吸附速率模型。高、低水力条件下,光滑冰层的平衡吸油量分别为0.0008 ml/cm~2和0.00117 ml/cm~2,吸油等温吸附性能符合Langmuir-Freundlich型吸附等温方程。
     采用粘性流体边界层运动方程描述了油膜扩展,得出了流动水面上油膜的运动由依靠水流拖曳产生的等压流动和静止水面上油膜自身扩展两种运动形式组成的结论,给出了以无量纲压力梯度p*为参变量的油膜内速度分布公式。结果表明:泄油中心前部油膜为顺压流动,后部油膜为逆压流动,压力梯度的绝对值随时间与扩展半径的增加而减小。添加油膜离散尺度改进Fay模型,建立了预测油膜扩展初期的扩展-离散模型,通过循环水槽试验确定了离散系数K_x:随着流速的增加,无冰水面上油膜的K_x从5.04 cm~2/s增至22.08 cm~2/s,有冰水面上油膜的K_x从2.80 cm~2/s增至5.64 cm~2/s。并考察了浪高和温度对K_x的影响,并通过试验对对模型进行了验证,藉此,提出了江河溢油二阶段扩展迁移模型。
     以拟发生在松花江哈尔滨上游段的10 t级溢油污染事件为例,采用本文建立的河岸吸油模式和二阶段扩展模型,分别模拟了丰水期、平水期、枯水期和冰封期溢油在48 h内流经模拟江段时的时空分布情况,预测了模拟终期的水面残油量。结果表明:枯水期河岸吸油量最大:10 t,50 t,100 t和200 t等级溢油的岸边吸油量分别是溢油总量的2.45%,1.39%,1.03%和0.61%。冰层吸油量不大,分别为溢油总量的0.39%,0.23%,0.16%和0.084%。冰封期水面残油量最大,接近9.5 t;盛行东南风向的丰水期水面残油量最小,低于2.2 t。江河流速、风场和河段宽度的差异都会影响油膜扩展长度。本文还模拟了江心岛和支流汇入口附近等复杂水域油膜的扩展情况。
With the development of petrochemicals industry along the Songhua River and crude oil transportation as well as the laying of oil pipes through the river, potamic oil spill accidents have already become a threat to the security of the entironment and water drinking of inhabitants. It is an important measure to establish the forecast and lash-up treatment system to emergent oil spill accidents for reducing the harm to environment and economic loss. Although many researchers have done some study on the oil weathering and spreading, the oil spills in low-temperature rives still have their own characteristics such as the fast oil spreading due to the high flow velocity, and the contaminative area would be lager; the influence on oil spreading from the interaction between oil and banks; the great difficulty in the tracing and counteraction to the oil spill due to he ice cover on the river in winter. Therefore, this paper developed the study on the oil weathering, spreading and drifting on the low-temperature river in order to provide the guidance on the prediction of polluted area and counteraction to an emergent oil spill.
     On the base of exhaustive analysis about the applied conditions and predictive effects of the prevalent mathematic models on the oil weathering and spreading, this paper improved the most condign model with considering the characteristics of potamic oil spills. And the parameters in the models were determined via the experimental simulation tests. It was the fist time to establish the oil weathering, spreading and drifting models in the low-temperature river. And they were used to predict the oil evaporation, dissolving, the changing process of oil qualities, oil spreading, remnant oil on the water surface and the oil adsorption on river banks in different seasons and the interaction between oil and ice cover.
     It can be concluded that the evaporation process is mainly controlled by the moving of volatile component from main body to the surface of liquid at low-temperature condition from the academic analyses about the evaporation mechanism of mixed liquid. The liquid resistance would become larger as the temperature gets lower, and the slick where the volatile component exists would be thinner, and the evaporation amount is smaller. Therefore, the environmental temperature is an important factor for the oil evaporation. An attenuation coefficient e~(-k/Δθ) related to the temperature was added to the Fingas’model. It was the first time to establish the evaporation model for the high-viscosity or semiliquid oil at the temperature close to the solidifying point. It was found that the improved model should be adopted when the temperature difference between environmental temperature and solidifying point was smaller than 10℃via the shallow pan evaporation test. The resistance coefficients of 0# diesel oil and Daqing crude oil were 1.07 and 2.64, respectively. The slick area exposed to the air A_f played an important role on the oil evaporation in river with ice cover. In this condition, an attenuation coefficient (A_f h_oe~(-k/Δθ))/V was added to Fingas’model to simulate the oil evaporation, and these model were all validated via the shallow pan evaporation tests.
     It was the fist time to study the oil sorption on sand, clay and rubble type river banks via the flume tests. They all accorded with the second order kinetics equation and the Langmuir isotherm equation. The sorption mechanism of porous granule banks such as sand and clay is the synthetical action of physical sorption, conglutination, active ion sorption and capillarity sorption. Besides, the holes among the cumulated granules provide the huge“oil storage space”. And the oil sorption on the rubble bank mainly depends on the viscous force.
     The sorption amount of oil on sand and clay banks would increase at fist and then decrease as the wave height increasing. The amount reached the maximal value while the wave height is at the range of 30~60 mm. The oil sorption amount on rubble bank would decrease as the wave height increasing. And the sorption amounts for these there kinds of banks all decreased as the bank gradient (θ) increases. Whenθrises from 5°to 30°, the amplitude reduction of the rubble bank is the largest, are 63.4% and 73.3% in high and low hydraulic conditions, respectively. We also compared the oil sorption amount among the inboard, outboard and straight banks. And results are: sorption amount of outboard bank > sorption amount of straight bank > sorption amount of inboard bank. It was the fist time to establish the oil sorption calculated mode for river banks. It was also the fist time to discuss the sorption behave of floating oil on the ice cover. The results sh_owed that sorption velocity was very high, and the time of adsorption was less than 15 min and it accorded with the second order kinetics equation. The saturated adsorption amount was 0.0008 ml/cm~2 and 0.00117 ml/cm~2 in high and low hydraulic conditions, respectively. And it accorded with the Langmuir-Freundlich isotherm equation.
     The transportation of oil on moving water is the combination of isotonic flow due to the daggle action of the current and the mechanical spreading on the calm water due to the asymmetry in the oil slick thickness. The velocity profile across the vertical section within the slick with dimensionless pressure gradient p* being the parameter was also given. The first half part before the slick center was down-pressure flow and the other part behind the slick center was called against-pressure flow. As the slick was spreading, the absolute value of dp/dx decreased gradually. The dispersion dimension was added into the Fay’s model to establish the oil spreading-dispersion model for the early stage. The dispersion coefficient K_x was determined via the circulating flume test. With the increasing of flow velocity, K_x increased from 4.34 cm~2/s to 20.08 cm~2/s in the open wager and increased from 2.80 cm~2/s to 5.64 cm~2/s under ice. The effect of wave height and temperature on K_x was also investigated. The improved model was validated by using the experimental results, on the base of which a new two-phase oil spill model made up of improved Fay’s model and oil particle theory was put forward.
     Emergent oil spills of 10 t were pretended to occur at upriver reach of Harbin in Songhua River. The oil sorption mode and the two-phase oil spill model in this paper were used to simulate oil spreading and space-time distribution for 48 h during the high water period, average water period, low water period and icebound period, respectively. The rudimental oil amount on the water was predicted. The study showed that the oil sorption amount on banks during low water period was the largest: 2.45%, 1.39%, 1.03% and 0.61% for 10 t, 50 t, 100 t and 200 t, respectively. The sorption amount on the ice cover was small: 0.39%, 0.23%, 0.16% and 0.084%. The rudimental oil on water surface during the icebound period was as more as 9.5 t. And the rudimental oil amount during the high water with SE wind was the smallest, less than 2.2 t. The flow velocity, wind field and width of river would affect the length of oil slick. The oil spreading in waters near islands and anabranch collection was also simulated.
引文
[1]许艳,王海潮.我国溢油应急综合实力显著提升[J].中国海事, 2007, 6: 12-15.
    [2]姜卫星.黄浦江溢油事故的数值模拟研究[D].上海:同济大学环境科学与工程学科硕士学位论文,2007:1-2.
    [3] Maure A., Cerrolazat M., Berrios R. Modelling the behavior of crude oil spills in shallow bodies of water[J]. Environ. Software, 1995, 10(4): 241-249.
    [4] Dousglas G. S., Owens E. H., Hardenstine J., et al. The OSSA II Pipeline Oil Spill:the Character and Weathering of the Spilled Oil[J]. Spill Sci. Tech. Bull., 2002, 7(3-4): 135-148.
    [5]高清军.多钟海况下的水下溢油数值模拟[D].大连:大连海事大学环境工程学科硕士学位论文,2008:1-6.
    [6]周训华.湖泊溢油数值模拟的研究[D].南京:河海大学环境工程学科硕士论文,2005: 15-18.
    [7]黑龙江统计年鉴2003.北京:中国统计出版社,2003, 131-135.
    [8]吉林统计年鉴2003.北京:中国统计出版社,2003, 90-99.
    [9]程聪.黄浦江突发性溢油污染事故模拟模型研究与应用[D].上海:东华大学环境科学与工程学科硕士论文,2006:11-22.
    [10]郭运武,刘栋,钟宝昌,等.感潮河道溢油扩展、漂移特性实验[J].水动力学研究与进展, 2008, 23(4): 446-452.
    [11] Yapa D., Shen H. T. Modeling river oil spill: a review[J]. J. Hyd. Res., 1994, 32(5): 765-782.
    [12] Fingas M. F., Hollebone B. P. Review of behaviour of oil in freezing environments[J]. Mar. Pollut. Bull., 2003, 47(9-12): 333-340.
    [13]李志军,布鲁斯·霍利本,莫夫·菲格斯,等.波浪作用下油脂冰内溢油行为物理模拟实验技术[J].大连海事大学学报, 2007, 33(4):91-95.
    [14] Hallett W.L.H., Clark N.A. A model for the evaporation of biomass pyrolysis oil droplets[J]. Fuel, 2006, 85: 532-544.
    [15] Fingas M. F. A literature review of the physics and predictive modeling of oil spill evaporation[J]. J. Hazard. Mater., 1995, 42: 157-175.
    [16] Martinez R. G., Tovar H. F. Computer Modeling of Oil Spill Trajectories With a High Accuracy Method[J]. Spill Sci. Tech. Bull., 1999, 5(5/6): 323-330.
    [17]赵云英,杨庆霄.溢油在海洋环境中的风化过程[J].环境海洋科学, 1997, 16(1): 45-52.
    [18]严志宇.海上溢油风化过程的研究及模拟[D].大连:大连海事大学轮机工程学科博士论文, 2001:16-33.
    [19] Sebasti?o P., Soares G. C. Modeling the Fate of Oil Spills at Sea[J].Spill Sci. Tech. Bull., 1995, 2(2/3): 121-131.
    [20]吕馨.海洋中重度风化溢油指纹鉴别技术的研究[D].大连海事大学, 2004.
    [21] Nielsen F., Olsen E., Fredenslund A. Prediction of isothermal evaporation rates of pure volatile organic compounds in occupational environments-a theoretical approach based on laminar boundary layer theory[J]. Annual occupation hygiene, 1995, 39 (4): 497-511.
    [22] Boehm P. D., Neff J. M., Page D. S. Assessment of poly aromatic hydrocarbon exposure in the waters of Prince William Sound after the Exxon Valdez oil spill: 1989-2005[J]. Mar. Pollut. Bull., 2007, 54(3), 339-56.
    [23] Fingas M. F. Modeling evaporation using models that are not boundary-layer regulated[J]. J. Hazard.Mater., 2004, 107: 27-36.
    [24] Berger D., Mackay D. The evaporation of viscous or waxy oil-when is a liquid-phase resistance significant[C]// Proceedings of the seventeenth arctic marine oil spill program technical seminar, OTTAWA: ENVIRONMENT CANADA, 1994, 1: 77-92.
    [25] Jokuty P., Whitiear S., Fingas M., et al. Hydrocarbon groups and their relationships to oil properties and behaviour[C]. Proeeedings of the Eighteenth Aretie and Marine oil Spill Program Technical Seminar, Environment Canada. Ottawa,Ontario.1995: 1-21.
    [26]杨庆宵.海上石油蒸发过程的研究[J].海洋学报, 1990, 12(2): 187-193.
    [27] Nielsen F., Olsen E., Fredenslund A. Prediction of isothermal evaporation rates of pure volatile organic compounds in occupational environments-a theoretical approach based on laminar boundary layer theory[J]. Annual Occupation Hygiene. 1995, 39(4): 497-511.
    [28] Payne J. R., Driskell W. B., Short J. W., et al. Long term monitoring for oil in the Exxon Valdez spill region[J]. Mar. Pollut. Bull., 2008, 56: 2067-2081.
    [29] Ri1ey R. G.., Thomas B. L., Anderson J. W. Changes in the volatile hydrocarbon content of Prudhoe bay crude oil Treated under different simulated weathering conditions[J]. Marine Environmental Researeh.1980, 4(2):109-119.
    [30] Harrison. Crude oil spills-Disappearance of aromatic and aliphatic components from small sea-surface slicks[J]. Environ. Sci. Tech, 1975, 9(3): 231-234.
    [31] Bu1ter J. N. Transfer of petroleum residues from sea to air: Evaporative weathering[M]. Marine pollutant transfer .Ed. windom H L, DuceR. A.Lexington Books.Toronto, 1976: 201-212.
    [32] Yang W. C., Wang H. Modelling of Oil Evaporation in Aqueous Environment. Water Researeh.1977, 11: 879-887.
    [33] Blokker P. C. Spreading and evaporation of petroleum products on water. Proceedings of the Fourth International Harbour Conferenee. Antwerp,Reigium, 1964: 911-919.
    [34] Stiver W., Mackay D. Evaporation rate of spills of hydrocarbons and petroleum mixtures[J]. Environ. Sci. Tech., 1984, 18(11): 834-840.
    [35] Hamoda M. F., Hamam E. M., .Shaban. H. I. Volatilization of crude oil from saline water[J]. Oil and Chemieal Pollution, 1989, 5: 321-331.
    [36] Fingas M. F. Studies on the evaporation of crude oil and petroleum products: I. the relationship between evaporation rate and time[J]. J. Hazard. Mater., 1997, 56: 227-236.
    [37] Bobra M. Study of the evaporation of petroleum oils[C]. Environmental Protection Directorate Report, 1992, EE-135.
    [38]刘彦呈,殷佩海,林建国,等.基于GIS的海上溢油扩散和漂移的预测研究[J].大连海事大学学报. 2002, 28(3): 41-44.
    [39] Brovchenko I., Kuschan A., Maderich V., et al. The modeling system for simulation of the oil spills in the Black Sea[J]. Elsevier Oceanography Series, 2003, 69: 586-591.
    [40]张智存,窦振兴,韩康,等.三维溢油动态预报模式[J].海洋环境科学, 1997, 16(1): 22-29.
    [41] Guo W. J., Wang Y. X. A numerical oil spill model based on a hybrid method[J]. Mar. Pollut. Bull., 2009, 58(5): 726-734.
    [42] Korotenko K. A., Mamedov R. M., Mooers C. N. K. Prediction of the Dispersal of Oil Transport in the Caspian Sea Resulting from a Continuous Release[J] Spill Sci. Tech. Bull., 2001, 6(5/6): 323-339.
    [43] Fingas M., Fieldhouse B., Mullin J. Water-in-oil Emulsions Results of Formation Studies and Applicability to Oil Spill Modelling[J]. Spill Sci. Tech. Bull., 1999, 5(1): 81-91.
    [44]杨庆霄,徐俊英,李文森.海上石油蒸发过程的研[J].究海洋学报, 1990, 12(2): 187-193.
    [45] Delvigne G.., Sweeney C. Natural dispersion of oil[J]. Oil & Chem. Pollut., 1988, 4: 281-310.
    [46] Stiver W., Mackay D. Evaporation rate of spills of hydrocarbons and petroleum mixtures[J]. Environ. Sci. Tech.. 1984, 18(11): 834-840.
    [47] Mackay D., Paterson S., Trudel K. A mathematical model of oil spillbehavior[J]. Environment Canada Report, 1980: 1-7.
    [48] Kirstein B. E., Redding R. T. Ocean-Ice Oil-Weatheing Computer Program User’s Manual, Outer Continental Shelf Environmental Assessment Program, Vol. 59. U.S. Department of Commeree,National Oceanic and Atmospheric Administration and U.S. DePartmentoftheInterior, Washington D.C.1988.
    [49] Xie H., Yapa P. D., Nakata K. Modeling emulsification after an oil spill in the sea[J]. J. of Marine Systems, 2007, 68: 489-506.
    [50] Ezra S., Feinstein S., Pelly I., et al. Weathering of fuel oil spill on the east Mediterranean coast, Ashdod, Israel[J]. Organic Geochemistry, 2000, 31: 1733-1741.
    [51] Prince R. C., Owens E. H., Sergy G. A. Weathering of an Arctic oil spill over 20 years: the BIOS experiment revisited[J]. Mar. Pollut. Bull., 2002, 44: 1236-1242.
    [52] Brandvik P. J., Faksness L. G. Weathering processes in Arctic oil spill: Meso-scale experiments with different ice conditions[J]. Cold Reg. Sci. Tech., 2008, 55(1): 1-7.
    [53] Katsuhiro O., Norimichi W., Yasuaki H., et al. Changes in evaporation rate and vapor pressure of gasoline with progress of evaporation[J]. Fire Safety J., 2009, 44: 756-763.
    [54] Hua J. Fate of dispersed marine fuel oil in sediment under pre-spill application strategy[J]. Ocean Engin., 2004, 31: 943-956.
    [55]严志宇,殷佩海,肖井坤.溢油蒸发过程的研究[J].大连海事大学学报, 2000, 26(4): 21-24.
    [56] Reed M., Daling P., Lewis A., et al. Modelling of dispersant application to oil spills in shallow coastal waters[J]. Environ.Modell. & Sof., 2004, 19: 681-690.
    [57] Faksness L. G., Brandvik P. J. Distribution of water soluble component from oil encapsulated in sea ice, Summary of results from three different field seasons[J]. Cold Region. Sci. and Tec., 2008, 54(2): 106-114.
    [58] Brandvik P. J., Faksness L. G. Distribution of water soluble components from Arctic marine oil spills-A combined laboratory and field study[J].Cold Reg. Sci. Tech., 2008, 54: 97-105.
    [59] Payne J. R., Kirstein B. E., et al. Multivariate analysis of petroleum weathering in the marine environment-subarctic[C]. Spill Conference, 1983: 423-434.
    [60]杨庆宵,徐俊英,李文森.海上溢油溶解过程的研究[J].海洋环境学报, 1989, 8(4): 56-60.
    [61] Brandvik P. J., Faksness L. L. G. Weathering processes in Arctic oil spill: Meso-scale experiments with different ice conditions[J]. Cold Reg. Sci. Tech.,2008, 55(1): 1-7.
    [62] Garrett, Robert M. Photooxidation of crude oils[J].Environ. Sci. Teehnol., 1998, 32: 3719-3723.
    [63] Yang, L., Lai, C. T., & Shieh, W. K. (2000). Biodegradation of dispersed diesel fuel under high salinity conditions. Water Res., 34(13): 3303-3314.
    [64] Nikolopouloua M., Pasadakisb N., Kalogerakisa N. Enhanced bioremediation of crude oil utilizing lipophilic fertilizers[J]. Desalination, 2007, 211: 286-295.
    [65] Lehr W. J., Overstreet R. ADIOS-Automated Data Inquiry for oil spills[C]. Proceedings of the Fifteenth Arctic and Marine oi1 Spill Program Technical Seminar, 1992: 31-45.
    [66] Shen H. T., Yapa P. D. Oil Slick Transport in Rivers[J]. J. Hyd. Engineer., 1988, 114(5), 529-543.
    [67] Wang S. D., Shen Y. M., Zheng Y. H. Two-dimensional numerical simulation for transport and fate of oil spill in seas[J]. Ocean Engineer., 2005, 32(13): 1556-1571.
    [68] Fay J. A., Hoult D. P. The Spread of Oil Slicks on a Calm Sea, in oil on the sea[M]. Plenum Press, New York, 1969: 53-63.
    [69]赵文谦,武周虎.海面瞬时溢油油膜扩延范围确定[J].成都科技大学学报, 1988, 5: 63-71.
    [70]黄礼贤,张观希,万肇中.石油在海洋中的扩散[J].环境科学丛刊, 1982, 3(1): 7-12.
    [71]赵文谦,武周虎,周克钊.石油在海面的扩展、迁移与离散—海域油污染研究评述[J].成都科技大学学报, 1987, 33(1): 141-149.
    [72] Hibbs D. E., Gulliver J. S., Voller V. R., et al. An aqueous concentration model for riverine spills[J]. J. Hazard. Mater., 1999, 64(1): 37-53.
    [73] Nazir M., Khan F., Amyotte P., et al. Multimedia fate of oil spills in a marine environment—An integrated modelling approach[J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2008, 86: 141-148.
    [74] Lehr W. J., Beatty D. S. The Relation Langmuir Circulation Processes to the Standard Oil Spill Spreading, Dispersion, and Transport Algorithms[J]. Sci. Tech. Bull., 2000, 6(3/4): 247-253.
    [75] Wang S. D., Shen Y. M., Guo Y. K., et al. Three-dimensional numerical simulation for transport of oil spills in seas[J]. Ocean Engin., 2008, 35: 503-510.
    [76] Muscheneim D. K., Lee K., Oil–Particle Interactions in Aquatic Environments: Influence on the Transport, Fate, Effect and Remediation of Oil Spills[J]. Spill Sci. Tech. Bull., 2003, 8(1): 3-8.
    [77] Lee K., Egli P. S., Owens E. H. The OSSA II Pipeline Oil Spill: Natural Mitigation of a Riverine Oil Spill by Oil–Mineral Aggregate Formation[J]. Spill Sci. Tech. Bull., 2002, 7(3-4): 149-154.
    [78] Khelifa A., Egli P. S., Hill P., et al. Characteristics of Oil Droplets Stabilized by Mineral Particles: Effects of Oil Type and Temperature[J]. Spill Sci. Tech. Bull., 2003, 8(1): 19-30.
    [79] Chao X. B., Shankar N. J., Cheong H. F. Two- and three-dimensional oil spill model for coastal waters[J]. Ocean Engin., 2001, 28: 1557-1573.
    [80] Sebasti?o P., Soares C. G. Uncertainty in predictions of oil spill trajectories in open sea[J]. Ocean Engin., 2007, 34: 576-584.
    [81] Zhang D. F., Easton A. K., Steiner J. M. Simulation of Coastal Oil Spills using the Random Walk Particle Method with Gaussian Kernel Weighting[J]. Spill Sci. Tech. Bull., 1997, 4(2):71-88.
    [82]王鹏,李志军.冰区溢油行为的初步数值模拟[J].冰川冻土, 2003, 25(2): 334-337.
    [83] Yapa D., Chowdhury T. Spreading of oil spilled under ice[J]. J. Hyd. Engineer., 1991, 116(12): 1468-1483.
    [84]余加艾,张波,陈伟斌,等.渤海结冰海区溢油行为数值模拟[J].海洋与湖沼, 1999, 30(5): 552-557.
    [85]余加艾,王仁树,陈伟斌,等.有冰海区中的溢油行为[J].海洋环境科学, 1997, 16(1): 72-78.
    [86] Gj?steen J. K. ?. A model for oil spreading in cold waters[J]. Cold Region. Sci. and Tech., 2004, 38(2-3): 117-125.
    [87]郭光臣,董文兰,张志廉.油库设计与管理[M].北京:石油大学出版社, 2006:25-38.
    [88] Owens E. H., Robilliard. Shoreline sensitivity and oil spills-a re-evaluation for the 1980’s[J]. Mar. Pollut. Bull., 1981, 12(3): 75-78.
    [89]潘旭海,华敏,蒋军成,等.石脑油及原油边界层蒸发特性的实验研究[J].石油化工高等学校学报, 2006, 19(3): 64-67.
    [90] Gong J. S., Fu W. B. A study on the effect of more volatile fuel on evaporation and ignition for emulsified oil[J]. Fuel, 2001, 80: 437-445.
    [91] Brandvik P. J., Faksness L. G. Weathering processes in Arctic oil spills: Meso-scale experiments with different ice conditions[J]. Cold Reg. Sci. Tech., 2008: 1-7.
    [92] Martin, S., 1979. A field study of brine drainage and oil entrainment in first-year sea ice. Journal of Glaciology, 1979, 22: 473-502.
    [93] Fingas M., Brown C. A review of the status of advanced technologies for the detection of oil in and with ice[J]. Spill Sci. Tech. Bull., 2000, 6(5/6): 295-302.
    [94] Fingas M F, Hollebone B P. Review of behavior of oil in freezing environments[J]. Mar. Pollut. Bull., 2003, 47(2003): 333-340.
    [95] Ross S.L., Dickins, D.F. Field research spills to investigate the physical and chemical fate of oil in pack ice[J]. Environmental Studies Resolving Funds Report, 1987, No: 062.
    [96]李志军,王鹏.低温和结冰区溢油清理技术展望[J].中国海洋平台, 2001, 17(4): 1-6.
    [97] Yapap D., Weerasuriya S. A. SPREADING of OIL SPILLED UNDER FLOATING BROKEN ICE[J]. J. Hyd. Eng., 1997, 123(8): 278-288.
    [98]蒋发林,林建国.有冰海区溢油清理技术及对策研究[J].交通环保, 2004, 25(4): 1-4.
    [99] Yapa P D, Chowdhury. Spreading of Oil Spreading under Ice[J]. J. Hyd. Eng., 1990, 116(45): 1468-1483.
    [100]夏定武,徐继祖.有冰海域溢油运动数值模型研究[J].海洋学报, 1998, 20(1): 113-122.
    [101]Shen H. T., Poojitha D. Yapa P. D. OIL SLICK TRANSPORT IN EIVERS[J] J. Hyd. Eng., 1988, 114(5): 529-543.
    [102]Cox J. C., Schultz L. A. The containment of oil spilled under rough ice[C]. Proceedings of the 1981 Oil Spill Conference, American Petroleum Institute. Washington, D.C., 1981: 203-208.
    [103]刘伟峰,孙英兰.海上溢油运动数值模拟方法的讨论与改进[J].华东师范大学学报(自然科学版), 2009, 3: 90-97.
    [104]Reed M., Daling P., Lewis A., ea al. Modelling of dispersant application to oil spills in shallow coastal waters[J]. EnvironmentalModell. & Sof., 2004, 19: 681-690.
    [105]刘生宝.中文题名基于POM的长江感潮河段溢油数值模拟研究[D].南京:河海大学环境水力学学科硕士论文,2007: 30-41.
    [106]汪守东.基于Lagrange追踪的海上溢油预报模型研究[D].大连:大连理工大学港口、海岸及近海工程博士论文,2008:26-37.
    [107]郑彤,陈春云.环境系统数学模型[M].化学工业出版社, 2003: 29-30.
    [108]Crawford W.R., Cherniawsky J.Y., Hannaht C. G., et al. Current Predictions for Oil Spill Models[J]. Spill Sci. Tech. Bull., 1996, 3(4): 235-239.
    [109]Boufadel M. C., Du K., Kaku V., et al. Lagrangian simulation of oil droplets transport due to regular waves. Environ. Modell. & Sof., 2007, 22(7): 978-986.
    [110]Elliott A. J. A probabilistic description of the wind over Liverpool Bay with application to oil spill simulations[J]. Estuarine Costal and Shelf Sci., 2004, 61(4): 569-581.
    [111]Boehm Paul. D., Neff J. M., Page D. S. Assessment of polycyclic aromatic hydrocarbon exposure in the waters of Prince William Sound after the Exxon Valdez oil spill: 1989–2005[J]. Mar. Pollut. Bull., 2007, 54: 339-367.
    [112]纪召启,马启敏.海洋悬浮颗粒物对重质原油的吸附研究[J].环境化学,2008, 27(3): 360-362.
    [113]Curran K. J., Hill P. S., Milligan T.G. Time variation of floc properties in a settling column[J]. Journal of Sea Research, 2003, 49: 1-9.
    [114]Page D. S.,. Brown J. S., Boehm Paul. D., et al. A hierarchical approach measures the aerial extent and concentration levels of PAH-contaminated shoreline sediments at historic industrial sites in Prince William Sound, Alaska[J]. Mar. Pollut. Bull., 2006, 52: 367-379.
    [115]Sergy G. A., Gueenette C. C., Owens E. H. In-situ Treatment of Oiled Sediment Shorelines[J]. Spill Sci. Tech. Bull., 2003, 8(3): 237-244.
    [116]Owens E. H., Robilliard. Shoreline sensitivity and oil spills-a re-evaluation for the 1980’s. Mar. Pollut. Bull., 1981, 12(3): 75-78.
    [117]Owens E. H., Henshaw T. The OSSA II Pipeline Oil Spill: Cleanup Criteria, and Cleanup Operations[J]. Spill Sci. Tech. Bull., 2002, 7(3/4): 119-134.
    [118]李崇明,赵文谦,罗麟.河流泥沙对石油的吸附、释放规律及影响因素的研究[J].中国环境科学, 1997, (1): 23-26.
    [119]赵文谦,晁晓波,黄勤生.泥沙吸附石油的数学模型与试验研究[J].水利学报, 1997, (2): 50-57.
    [120]夏文香,李金成,郑西来等.溶解性石油烃在砂上的吸附和解吸研究[J].中国海洋大学学报, 2005, 35(5): 881-884.
    [121]尹海龙,武周虎.石油在水中悬浮物上的吸附研究[J].海洋环境科学, 2001, 20(3): 34-37.
    [122]郑西来,王秉忱,佘宗莲.土-水系统石油污染机理与应用研究[M].北京:地质出版社, 2004: 36-54.
    [123]李海明,马杰,顾晓明,等.渤海滩涂湿地沉积物胶体对石油污染物的吸附特征[J].湿地科学,2008, 6(2): 218-222.
    [124]孙娟,郑西来,吴俊文.滨海砂土对可溶性油的吸附作用和影响因素研究[J].中国海洋大学学报,2007, 37(4): 363-366.
    [125]郑西来,吴俊文,胡志峰.滨海沙滩石油污染物吸附与释放的实验研究[J].中国海洋大学学报,2008, 38(1): 147-150.
    [126]张季如,朱瑞赓,祝文化.用粒径的数量分布表征的土壤分形特征[J].水力学报,2004, (4): 1-7.
    [127]胡松青,李琳,郭祀远,等.现代颗粒粒度测量技术[J].现代化工,2002, 22(1): 58-61.
    [128]国家石油天然气行业标准SY/T7500-2004,原油中蜡、胶质、沥青质含量测定法,1-6.
    [129]国家标准GB 6925-1986,玻璃电极法测定水质的PH值.
    [130]水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002: 490-491.
    [131]国家标准GB 9834-1988,土壤有机质测定法.
    [132]江泽慧,于文吉,叶克林.探针法测量与分析竹材表面粗糙度[J].木材工业,2001, 1(5): 14-16.
    [133]李粉兰,唐文彦,段海峰,等.非接触式表面粗糙度测量研究新进展[J].激光与红外, 2007, 37(6): 498-502.
    [134]Sayre W. W., Chang F. M. A laboratory investigation of open channel dispersion processes for dissolved, suspended, and floating dispersants[J]. United States Geological Survey, 1969, 11(51): E1-E71.
    [135]Riazi M. R., Edalat M. Prediction of the rate of oil removal from seawater by evaporation and dissolution[J]. J. of Petroleum Sci. and Eng., 1996, 16: 291-300.
    [136]Riazi M. R., Al-Enezi G. A. Modelling of the rate of oil spill disappearance from seawater for Kuwaiti crude and its products[J]. Chem. Eng. J., 1999, 73: 161-172.
    [137]Fingas M. F., Fieldhouse. B. Studies of Water-in-Oil Emulsions: Stability Studies. In Proceedings of the Twentieth Arctic Marine Oilspill Program Technical Seminar, Environment Canada, Ottawa, Ontario. 1997: 1-20.
    [138]范志杰.海洋溢油预测模型中的几个问题的研究[J].交通环保, 1994, 15(2): 12-27.
    [139]Reed M. The physical fates component of the natural resource damage assessment model system[J]. Oil Chem. Pollut. 1989, 5(2-3): 99-123.
    [140]赵云英,杨庆霄.溢油在海洋环境中的风化过程[J].环境海洋科学, 1997, 16(1): 45-52.
    [141]Braddock J. F., Lindstrom J. E., Prince R. C. Weathering of a subarctic oil spill over 25 years: the Caribou-Poker Creeks Research Watershed experiment[J].Cold Reg. Sci. Tech., 2003, 36: 11-23.
    [142]Owens C. K., Belore R. S. Dispersant effectiveness testing in cold water and brash ice[C]. Proceedings of the 27th Arctic and Marine Oil spill Program Technical Seminar. Edmonton: Environment Canada, 2004: 819-842.
    [143]Gj?steen J. K. ?., L?set S. Laboratory experiments on oil spreading in broken ice[J]. Cold Reg. Sci. Tech., 2004, 38: 103-116.
    [144]Hazra A., Dollimore D., Alexander K. Thermal analysis of the evaporation of compounds used in aromatherapy using thermogravimetry[J]. Thermochimica Acta, 2002, 392-393: 221-229.
    [145]Daling P. S., Singsaas I., Reed M., et al. Experiences in Dispersant Treatment of Experimental Oil Spills[J]. Spill Sci. Tech. Bull., 2002, 7(5-6): 201-213.
    [146]Reed M., Johansen ?., Brandvik P. J., et al. Oil spill modeling towards the 20th century: overview of the state of the art[J]. Spill Sci. & Tec. Bull., 1999, 5(1): 3-16.
    [147]Xu R., Lau A. N. L., Lim Y. G., et al. Bioremediation of oil-contaminated sediments on aninter-tidal shoreline using a slow-release fertilizer and chitosan[J]. Mar. Pollut. Bull., 2005, 51: 1062-1070.
    [148]Ajijolaiya L. O., Hill P. S., Khelifa A., et al. Laboratory investigation of the effects of mineral size and concentration on the formation of oil-mineral aggregates[J]. Mar. Pollut. Bull., 2006, 52: 920-927.
    [149]Sijm D. T. H. M., Haller M., Faber J. A. J., INFLUENCE OF CARRIER AND BACTERICIDE ON SORPTION COEFFICIENTS OF HYDROPHOBIC ORGANIC COMPOUNDS FOR TWO LAKE SEDIMENTS[J]. Water Res., 32(10): 3134-3142.
    [150]李文森,杨庆霄,徐俊英.影响海水中矿物颗粒对石油烃吸附过程的因素研究[J].海洋环境科学,1991, 10(2):42-45.
    [151]郭长城,喻国华,王国祥.河流泥沙对污染河水中污染物的吸附特性研究[J].生态环境,2006, 15(6): 1151-1155.
    [152]郝恩良,祝陈坚,李铁.浅海原油净化过程的模拟实验—悬浮物对油的吸附作用[J].海洋与湖沼,1998, 29(2): 156-162.
    [153]Hir M. L., Hily C. First observations in a high rocky-shore community after the Erika oil spill (December 1999, Brittany, France)[J]. Mar. Pollut. Bull., 2002, 44: 1243-1252.
    [154]Chen D. Y., Xing B. S., Xie W. B. Sorption of phenanthrene naphthalene and o-xylene by soil organic matter fractions[J]. Gendarme, 2007, 139: 329-335.
    [155]傅献彩,沈文霞,姚天扬.物理化学(第四版)[M].高等教育出版社,2001:936-942.
    [156]Fingas M., Brown C. A Review of the Status of Advanced Technologies for the Dectection of Oil in and with Ice[J]. Sci. Tech. Bull., 2000, 6(5/6): 295-302.
    [157]Sayed, M., L?set, S. 1993. Laboratory experiments of oil spreading in brash ice[C]. Proceedings of 3rd International Offshore and Polar Engineering Conference, 1993: 224-231.
    [158]松花江年鉴,北京:中国统计出版社,1994,185-207.
    [159]Kirby M. F., Law R. J. Oil spill treatment products approval: The UK approach and potential application to the Gulf region[J]. Mar. Pollut. Bull., 2008, 56: 1243-1247.
    [160]Li Z. J., Kaj R. Index for estimating physical and mechanical parameters of model ice[J] . Journal of Cold Regions Engineering, 2002, 16(2): 72-82.
    [161]Lu P., Li Z. J., Dong X. L., et al. Sea ice thickness and concentration in Arctic obtaining from remote sensing images[J]. Chin. J.l of Polar Sci., 2004, 15(2): 91-97.
    [162]Reed M., Johansen ?., Brandvik P. J., et al. Oil Spill Modeling towards the Close of the 20th Century: Overview of the State of the Art[J]. Spill Sci. Tech. Bull., 1999, 5(1): 3-16.
    [163]王船海,程文辉.河道二维非恒定流场计算方法研究[J].水利学报, 1991, 1: 10-17.
    [164]Thompson J. F. Numerical solution of flow problems using body-fitted coordinate systems. Computational Fluid Dynamics[M]. Woflyang Kollmann, Hemisphere Publishing Corporation, 1980: 34-86.
    [165]Willemse J. B. T. M. Slowing the shallow water equations with an orthogonal coordinate transformation[J]. Delft Hydraulics Communication, 1986, 356-357.
    [166]汪德灌.计算水力学理论与应用[M].南京:河海大学出版社, 1989:9-38.
    [167]谭维炎.计算浅水动力学—有限体积法的应用[M].北京:清华大学出版社, 1998: 38-55.
    [168]江春波,张永良,丁则平.计算流体力学[M].北京:中国电力出版社, 2007:28-37.
    [169]褚克坚,华祖林,王惠民.二维浅水水流的一种新型三角网格FVM计算格式[J].河海大学学报, 2003, 31(4): 370-373.
    [170]程文辉,王船海.用正交曲线网格及“冻结”法计算河道流速场[J].水力学报, 1988, 6: 18-25.
    [171]Thompson J. F., Thames F. C., Mastin C. W. Automatic numerical generationof body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies[J].J. Compute Phys, 1974, 15: 299-319.
    [172]Deltf3D—PART User Manual, W. L. Delft Hydraulics,the Netherlands,2003: 4.11-4.25.
    [173]李孟国,曹祖德.海岸河口潮流数值模拟的研究与进展[J].海洋学报, 1999, 21(11): 111-125.
    [174]季顺迎,岳前进,王瑞学.海冰动力学数值方法研究进展[J].地球科学进展, 2004, 19(6): 963-970.
    [175]陈丕翔.基于有限体积法的二维水流水质模拟[D].南京:河海大学城市水务学科硕士学位论文,2007:8-16.
    [176]吕秀英.二维浅水方程的数值模拟[D].济南:山东师范大学应用数学学科硕士论文,2007:10-20.
    [177]于晋兵.二维浅水水流数值模拟技术研究—无结构网格有限体积法[D].南京:南京水利科学研究院水力学及河流动力学学科硕士学位论文,2006: 38-44.
    [178]李继选.基于有限体积法的二维水流水质模拟及其可视化研究[D].合肥:合肥工业大学市政工程硕士学位论文,2005:1-2.
    [179]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社, 1998: 58-101.
    [180]郭永怀,边界层理论讲义[M].合肥:中国科学技术大学出版社,2008: 29-55.
    [181]杨小庆,沈洪道,汪德胜.油在河流中传输的双数学模型[J].水利学报, 1996, 8: 71-76.
    [182]Hibbs D. E., John S. GULLIVER DISSOLUTION RATE COEFFICIENTS FOR SURFACE SLICKS ON RIVERS[J]. Water. Res., 1999, 33(8): 1811-1816.
    [183]Li Z. K., Lee K., King T., et al. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions[J]. Mar. Pollut. Bull., 2009: 1-10.
    [184]Thorpe S. A. Langmuir Circulation and the Dispersion of Oil Spills in Shallow Sea[J]. Spill Sci. Tech. Bull.,2000,6(3/4): 213-223.
    [185]Korotenko K .A., Mamedov R. M., Kontar A. E. Particle tracking method in the approach for prediction of oil slick transport in the sea: Modelling oil pollution resulting from river input[J]. J. Mar. Systems, 2004, 48(1-4): 159-170.
    [186]Izumiyama K., Konno A. Experimental study on the spreading of oil under ice covers[C]. In: Proc. of the Twelfth (2002) Int. Offshore and Polar Engineer,May. Kitakyushu, Japan, 2002: 26-31.
    [187]Zhao W Q, Wu Z H, 1988. A model of spreading, dispersion and advection caused by an oil slick on the unstable sea surface[C]. Proc. of 6th Cong. of APR-IAHR, Kyoto, Japan, 153-160.
    [188]Sayre, W. W., Chang F. M. A laboratory investigation of open channel dispersion processes for dissolved, suspended, and floating dispersants[C]. United States Geological Survey, 1968: 433-E.
    [189]Mccleneghan K., Reiter G., Hardwick J. A., et al. Management of Oil Spill Response and Cleanup in a River Under Severe Winter Conditions[J]. Spill Sci. Tech. Bull., 2002, 7(3-4): 163-172.
    [190]Shahriari M., Frost A. Oil spill cleanup cost estimation—Developing a mathematical model for marine environment[J]. PROCESS SAFETY AND ENVIRONMENT, 2008, 86: 189-197.
    [191]李志军,王永学,邱大洪.渤海低温和结冰条件下溢油基础理论实验室研究规划[J].冰川冻土, 25(增刊2): 338-343.
    [192]Palazzi E., CurròF., Fabiano B. SIMPLIFIED MODELLING FOR RISK ASSESSMENT OF HYDROCARBON SPILLS IN PORT AREA[J]. Process Safety and Environmental Protection, 2004, 82(B6): 412-420.
    [193]赵文谦,江洧.石油以油滴形式向水下扩散的研究[J].环境科学学报, 1990, 10(2): 173-182.
    [194]Hanlin A. L. A review of large-scale LNG spills: Experiments and modeling[J]. J. Hazard.Mater., 2006, A132: 119-140.
    [195]Sotillo M. G., Fanjul E. A., Castanedo S., et al. Towards an operational system for oil-spill forecast over Spanish waters: Initial developments and implementation test[J]. Mar. Pollut. Bull., 2008, 56: 686-703.
    [196]Chen F., Yapa P. D. Three-dimensional visualization of multi-phase (oil/gas/hydrate) plumes[J]. Environ.Modell. & Sof., 2004, 19: 751-760.
    [197]郭运武,刘栋,钟宝昌,等.风对河道溢油扩展、漂移影响的实验研究[J].水动力学研究与进展, 2008, 23(4): 446-452.
    [198]Poulton B. C., Callahan E. V., Hurtubise R. D., et al. Effects of an oil spill on leafpack-inhabiting macroinvertebrates in the Chariton River, Missouri[J]. Environ. Pollut., 1998, 99: 115-122.
    [199]宋小燕,穆兴民,高鹏,等.松花江哈尔滨站近100年来径流量变化趋势[J].自然资源学报,2009, 24(10): 1083-1089.
    [200]娄丹. 2002年嫩江水文情况概述[J].黑龙江水利科技,2004, 4: 79-82.
    [201]伍悦滨,贾艳红,范宝山.松花江中下游造床流量分析[J].哈尔滨工业大学学报,2008, 40(4): 880-883
    [202]高铁英,王红星,李晓涛.松花江哈尔滨四方台断面的最小环境流量[J].黑龙江水专学报,1999, 26(1): 52-53.
    [203]李帅,白人海,陈莉.嫩江、松花江流域夏季降水与水位变化分析[J].黑龙江气象,2002, 3: 7-11.
    [204]金铁鑫,唐国田,夏万年.松花江水文站实测流量资料的分析[J].水文,1999, 20(3): 53-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700