硬质合金上火焰法沉积复合结构的碳材料表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文重点对原始态、抛光态硬质合金表面火焰法沉积碳材料的复合结构进行表征,率先对火焰内焰中不同的高度位置所沉积的碳材料的形貌、相组成、晶粒尺寸等进行了系统探讨。主要开展了以下几方面的研究工作:(1)碳材料的扫描电镜表征与探讨;(2)碳材料的X射线衍射表征与探讨;(3)碳材料的Raman光谱表征与探讨。
     选用原始脱钴YG8硬质合金作为基体,采用C_2H_2-O_2火焰法沉积复合结构的碳材料。火焰内焰不同高度位置所沉积的碳材料主要是由球状颗粒组成。随着喷嘴到基体表面距离的增加,形貌由“片层状组织”向“针杆状组织”变化,沉积碳材料的致密度和厚度相应降低。横截面观察结果表明,靠近外焰区域沉积碳材料时,观察到基体表层呈明显的超细化、纳米化现象。XRD和Raman光谱综合表征结果表明,沉积碳材料主要由纳米晶石墨和金刚石相复合而成。
     抛光脱钴YG8硬质合金作为基体,采用C_2H_2-O_2火焰法沉积复合结构的碳材料。火焰内焰中不同高度位置所沉积的碳材料生长趋势与原始脱钴火焰法沉积产物相似,随喷嘴到基体表面距离的增加,高倍形貌由“片状组织”向纳米尺寸颗粒变化。XRD和Raman光谱综合表征结果表明,采用火焰法在抛光脱钴硬质合金基体上的沉积产物,主要是以纳米晶石墨、金刚石为主相,金刚石相以8H金刚石为主,同时还出现了6H、15R的金刚石。
     同时,在两种预处理条件下硬质合金基体表面沉积的碳材料中,都能观察到以下规律:
     (1)随着喷嘴到基体表面距离的增加,L_a值变化趋势是先变大后变小。
     (2)在514.5nm激光波长激发的拉曼光谱中,随着喷嘴到基体表面距离增加,沉积碳材料的二级拉曼峰呈现出从尖峰状向宽峰状转变趋势,与原始脱钴沉积样品有相似规律。
     (3)比较514.5nm、785nm激光波长激发拉曼谱线,在石墨G峰位置观察到反常的色散现象,该现象值得进一步验证。
In this paper, the composited carbon materials deposited on the cemented carbide surface by Combustion Flame method were studied. The influence of height between spray nozzle and cemented carbide and the morphology , phase composite, and grain size have been investigated, for the first time. The following investigations are mainly taken: (1) SEM inspection of deposited carbon material; (2) XRD inspection of deposited carbon material; (3) Raman spectrum inspection of deposited carbon material.
    The cemented carbides before and after polish were used as substrate respectively. After deposition, nanocrystalline graphite and polytyies of diamond were found on both substrates by both XRD and Raman. Increasing the height between spray nozzle and substrate, the value of La would increase firstly and then decrease.the second order Raman peak would also become widely and weakly. An abnormal dispersion of the Raman peak near G peak was found in this article.
    The shape of the particles deposited on the initial cemented carbide was spheral. Increasing the height between spray nozzle and substrate, the morphology of the particle surface will change from sheet to pin. it has been observed that the size of cemented carbide particles was finer after depositing using near - outer flame.
    On the other hand, the shape of carbon would change from sheet to sphere, when the distance of the height between spray nozzle and substrate was increasing.
引文
[1] 谭平恒,余国滔,黄福敏等.碳纳米管和高取向热解石墨的拉曼光谱对比研究.光散射学报.1996,8(3):125-130
    [2] PingHeng Tan, YuanMing Deng, Qian Zhao, et al. The intrinsic temperature effect of the Raman spectra of graphite. APPLIED PHYSICS LETTERS. 1999,74(13):1818-1820
    [3] 梁奇.碳纳米管的催化制备、结构及其电磁波吸收性能研究:[博士学位论文]北京.中国科学院图书馆.2001
    [4] 陈晓红,沈曾民.气相流动法制备纳米炭纤维X射线衍射的研究.炭素技术.2000(3):4-6
    [5] Y. Lifshitz. Diamond-like carbon—present status. Diamond and Related Materials, 1999, (8): 1659-1676
    [6] 马国佳,邓新绿.类金刚石膜的应用及制备.真空,2002,(10):27-31
    [7] J. Robertson. Diamond-like amorphous carbon. Material Science and Engineering, 2002(37): 129-281
    [8] 程宇航,吴一平,陈建国等.类金刚石膜的结构与性能研究.硅酸盐学报,1997,25(4):452-457
    [9] 王维洁,才勇,王天民.电子能量损失谱在类金刚石碳膜结构表征中的应用.微细加工技术,1993,(4):13-22
    [10] 王永瑞,邹骥,卢觉吾.电子能量损失谱学及其在材料科学中的应用.微细加工技术,1998,23(4):350-356
    [11] 沈曾民主编.新型碳材料.北京:化学工业出版社,2003
    [12] 梁奇.碳纳米管的催化制备、结构及其电磁波吸收性能研究:[博士学位论文].成都:中国科学院成都有机化学研究所,2001
    [13] J. Robertson. Diamond-like amorphous carbon. Material Science and Engineering, 2002(37): 129-281
    [14] Y. Lifshitz. Pitfalls in amorphous carbon studies. Diamond and Related Materials, 2003, (12):130-140
    [15] Steven Prawer. The Use and Abuse of Raman Spectroscopy in the Analysis of Diamond and Diamond-Like Films. School of Physics, University of Melbourne Parkville,
    
    Victoria, Australia, 1999: 1-29
    [16] S. Prawer a, K.W. Nugent a, Y. Lifshitz etc. Systematic variation of the Raman spectra of DLC films as a function of sp2: sp3 composition. Diamond and Related Materials, 1996, (5): 433-438
    [17]] Walter A. Yarbrough, Russell Messier. Current Issues and Problems in the the chemical vapor deposition of diamond. Science. 1990, 247(9): 688-696
    [18] M. Endo, Z. Takeuchi, T. Hiraoka, et al. Stacking Nature of Graphene Layers in Carbon Nanotubes and Nanofibres. 1997, 58(11); 1707-1712.
    [19] 陈晓红,李安邦,刘朗.气相生长炭纤维.新型炭材料.1999(1):11-16
    [20] 陈晓红,沈曾民.气相生长炭纤维形态及微观结构的研究.炭素技术.2000(1):5-8
    [21] 陈久岭,李永丹.气相生长碳纤维.天然气化工.1998,23.50-54
    [22] 胡平安,王贤保,刘云圻.碳纳米管的最新制备技术及生长机理.化学通报.2002(12):794-799
    [23] 胡文平,刘云圻,曾鹏举等.纳米碳管.化学通报.2000,2:2-6
    [24] 王玉芳,曹学伟,蓝国祥.单壁碳纳米管制备的最新进展.功能材料.2000,31:3-5
    [25] Anyuan Cao, Cailu Xu, Ji Liang, et al.X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chemical Physics Letters. 2001(344):13-17.
    [26] 张宏志,姚英学,陈朔冬.乙炔一氧气火焰沉积高质量、致密金刚石厚膜.新技术新工艺,2000,(4):40
    [27] 张岩,李公,方勤方,陈代璋.火焰法合成金刚石薄膜中晶体的组织结构研究.现代地质,1999,13(1):79-82.
    [28] 黄树涛,杜玉波,姚英学,袁哲俊.燃焰法沉积金刚石薄膜涂层刀具时的生长均匀性研究.金刚石与磨料磨具工程,2000,(1):17-21.
    [29] 张贵锋,郑修麟.火焰法在硬质合金上合成金刚石薄膜.功能材料,1996,27(2):163-165.
    [30] Ravi, K V, Olson, D.S, Koch, C.A High rate, high quality, diamond synthesis by the combustion flame process, Materials Research Society Symposium-Proceedings,, Novel Forms of Carbon, 1994, 349: 373-383.
    [31] 唐德文,匡同春,白晓军,李喜峰.燃烧火焰法合成金刚石薄膜的机理探讨.有色金属(冶炼部分),2003:(4):48-51.
    [32] 匡同春,白晓军,成晓玲,刘正义,邱万奇.金刚石膜与硬质合金刀片间界面Co相的研究.
    
    金属学报,1999:35(6):643-647
    [33] 匡同春,成晓玲,白晓军,刘正义.硬质合金基体上金刚石膜粘附性能的影响因素探讨.稀有金属,2001;25(2):108-113
    [34] Kuang Tongchun, Cheng Xiaoling, Bai Xiaojun, Liu Zhengyi, Dai Mingjiang, Zhou Kesong. Study on Morphologies and Structures of Diamond Films Synthesized on cemented carbide substrates[J]. Rare Metals, 1999; 18(3): 167-174.
    [35] 唐德文.YG系列硬质合金表面沉积复合碳材料:[硕士学位论文].广州,广东工业大学图书馆,2003.
    [36] Vander Wal, R.L.,Hall, L.J.,Berger, G.M. Optimization of flame synthesis for carbon nanotubes using supported catalyst. Journal of Physical Chemistry B, 2002, 106(51): 13122-13132.
    [37] Vander Wal, R. L. Flame synthesis of Ni-catalyzed nanofibers. Carbon, 2002,40(12): 2101-2107.
    [38] 潘春旭,Liming Yuan,Kozo saito.扩散火焰合成碳纳米管研究.新型炭材料.2001,16(3):24-27.
    [39] Chunxu Pan, XiaorongXu. Synthesis of carbon nanotubes from ethanol flame. Journal of Materials Science Letters, 2002, 21(15): 1207-1209.
    [40] I Doi, M S Haga, Y E Nagai. Propoties of DLC films deposited by an oxyacetylene flame. Diamond and related Materials, 1999, 8: 1682-1685.
    [41] R.Kapil,B.R.Mchta,V.D.Vankar et al. Growth of diamond thin films in a cyclic growth-etch oxy-acetylene flame process. Thin Solid Films. 1998, 322: 74-84
    [42] 吕反修.具有广阔应用前景的纳米金刚石膜.物理学和高新技术.2003,32(6):383-390
    [43] 阎研,屈田,张树霖等.MPCVD金刚石膜的拉曼光谱学.科学通报.2003,48(19):2020-2030
    [44] A, C. Ferrari, J. Robertson. Resonant Raman spectroscopy of disorder, amorphous, and diamondlike carbon. Physical Review B, 2001(64): 075414-1-075414-13
    [45] M. Endo, Y. A. Kim, Takeda, et al. Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis. Carbon. 2001(39): 2003-2010
    [46] A.C. Ferrari, J. Robertson. interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 2000(61): 14095-14107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700