碳纳米管基荧光探针及其在分析化学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管是材料领域的一个重要发现,它的出现丰富了富勒烯研究的内容,成为各国非常关注的纳米材料。但是,碳纳米管在普通溶剂和通常条件下的难溶性,又使对其在化学领域的相关研究陷入困境。因此,增加碳纳米管的溶解性成为目前工作的一大热点。而随之而来的碳纳米管衍生物的合成为研究碳纳米管的特性提供了宝贵的借鉴。
     本文对碳纳米管的物化性质、应用及其溶解性和化学修饰的研究现状进行了综述,同时就胺和醇对碳纳米管-苯胺电荷转移配合物荧光猝灭进行了深入探讨。并首次提出了碳纳米管-苯胺电荷转移配合物作为溶致变色探针测量丙酮中微量水的新方法。另外,本文还对碳纳米管化学修饰开展了初步的实验。
     第一章:本文对碳纳米管的制备、性质及其应用作了综述,并就碳纳米管的顶端开口、化学修饰、水溶性、化学发光等方面作了介绍。根据理论和实验研究,我们将利用顶端开口对碳纳米管进行化学修饰,制作出碳纳米管分子钳,利用氢键和芳环π-πstacking作用来识别分子,并就碳纳米管分子钳的分子识别方式和能力作了预测,为制备新型化学传感器探索道路。
     第二章:由于其独特的结构与性能,碳纳米管成为近几年来备受关注的明星材料。但在各种溶剂中有限的分散性和溶解性在一定程度上限制了它的研究和应用,因此探索碳纳米管溶解性的研究成为碳纳米管科学的主要内容之一。研究表明:单一溶剂直接分散、电子供-受体电荷转移、可溶性聚合物或表面活性剂筒状胶束包裹等非共价键相互作用可以增加碳纳米管在不同有机溶剂或水相中的分散能力。而通过化学修饰(包括顶端开口和化学衍生以及侧壁化学修饰),在碳纳米管管壁或端口连接功能化基团,不仅可以更好地改善其分散性和溶解特性,并且可以提供具有特定功能的碳基新型材料,所以内容丰富的化学修饰方法更受青睐。
     第三章:单壁碳纳米管(SWNT)在苯胺中回流,产生CNT-苯胺电荷转移配合物(CNT-An CTC)。在丙酮稀释液中,用516nm光激发,产生两个荧光发射峰,分别位于564nm和606nm。本文详细分析了不同胺类化合物对CNT-An CTC荧光的猝灭作用,实验结果显示胺所连烷基、烷基数目、胺基数目不同对CNT-An CTC荧光猝灭程度不同,本文同时探讨了其猝灭
    
    中文摘要
    机理。
    第四章:本文首次提出了以碳纳米管电荷转移配合物作为溶致变色荧光探针测定丙酮中微
    量水的新方法。首先详细考察了单壁和多壁碳纳米管与苯胺的反应条件,如回流时间和碳
    纳米管的用量等。苯胺本身对单壁和多壁碳纳米管一苯胺电荷转移配合物的荧光产生碎灭作
    用,所以反应产物经稀释后才能检测到其荧光。该电荷转移配合物的荧光光谱受溶剂极性
    影响显著。随极性增加,发射波长显著红移。基于极性水分子对单壁和多壁碳纳米管一苯胺
    电荷转移配合物荧光的显著碎灭作用,建立了丙酮中微量水的测定方法,线性范围0.4%
    一40%,检出限0.17%。试剂级丙酮样品中微量水的测定结果令人满意。
    第五章:本章应用R印爪an、TEM、IR、NMR、xPS等光谱技术对CNT一An CTC的化学结
    构进行了表征。根据实验结果推测出CNT一n CTC的化学结构。
    第六章:本章讨论了碳纳米管顶端开口的实验条件,并对梭基化的碳纳米管进行了化学衍
    生,得到碳纳米管苯酞胺。并就碳纳米管苯酞胺的荧光与CNT一An CTC荧光的进行了对照
    分析。
Carbon nanotubes (CNTs) are an important discovery in the field of material sciences, and their appearance inspires many scientists interests as well as further enrich the studies on fullerene chemistry. Due to the insolubility of CNTs in common solvents, the relevant researches fall into troubles. Various efforts, therefore, are made to increase the solubility of CNTs. And it is suggested that valuable enlightenment on the properties of CNTs can be got by the subsequent exploring work on synthesis its' derivatives.
    In this thesis, some important respects of CNTs are reviewed, including their optics and electrics properties, applications, solubility as well as chemical modification techniques etc.. Meanwhile, the quenching effects of amine and alcohol are investigated on CNTs-Aniline charge transfer complex (CNT-An CTC). For the first time a new method is developed to determine water content in acetone. Additionally, some preliminary experiments are finished concerning with chemical modification of CNTs.
    Chapter 1 reviews the preparation, characteristics, and applications of carbon nanotube (CNT). Herein tips opening, chemical modification , water-solubilization, and chemical luminescence are shown in detail. According to the theories and experimental studies, we will modify CNT by opening tips and produce CNT molecular tweezers, which can recognise molecule through hydrogen bonds and
    π-π stacking interaction of the aromatic ring. We also predict the way in which CNT molecular tweezers identify molecule and its identification capabilities, questing for the approach that can be used to prepare new type chemical sensors.
    Chapter 2 Owing to their unique structure and special properties, carbon nanotubes (CNTs) recently have attracted much scientific interest in the field of material. However, the low solubility of CNTs in most organic solvents hinders its wide study and application, and the study on the solubilization has become one of hot focus in CNT science. It shows that the solubility of CNTs can be increased in water or organic solvents by straight dispersion in single solvent, charge transfer process between electron donor and acceptor(CNTs), and wrap
    
    
    
    effect of soluble polymers or cylindrical micelle etc.. Chemical functionalization at the end or side-wall of CNTs might play a vital role in improving its dispersion ability, as well as developing new materials with special function group, therefore, it is also really attractive to further investigate more chemical modification methods.
    Chapter 3 After reflux procedures, carbon nanotube (CNT) and aniline (AN) can form the charge transfer complex (CTC) of CNT-AN. The corresponding fluorescence emission peaks lied at 564nm and 606nm, respectively, with the excitation wavelength of 516nm in the acetone solution. Herein we analyze the quenching effects of various amines on CNT-AN CTC fluorescence in detail. The experimental results showed that amines, with different alkyl, alkyl group number as well as amino group numbers, have distinct effects on the CTC fluorescence. In addition, the quenching mechanism is also discussed in this paper.
    Chapter 4 Carbon nanotube-aniline charge transfer complex (CNT-AN CTC) is prepared by refluxing the mixture of single-walled or multi-walled CNT (SWNT or MWNT) with aniline. After removing the unreacted aniline under vaccum, the black solid product is obtained. The structural properties of the product are primarily characterized by various spectral techniques. The stock solution of CNT-AN CTC is prepared with acetone. The concentration self-quenching of its own fluorescence is observed. The solvent polarity has remarkable influence on the fluorescence spectra of CNT-AN CTC, and there appear dramatic shifts towards red region with increasing polarity, especially with dielectric constants or formation of H-bound. Fluorescence of SWNT- or MWNT-AN CTC are quenched more remarkably by microamount of water in acetone, and the isoemission point at 591nm indicates that there exists a good chemical equilibrium between th
引文
[1] Sumio Iijima. Helical microtubules ofgraphitic carbon.. Nature, 1991, 354: 56-58.
    [2] 刘忠范,朱涛,张锦.纳米化学.大学化学,2001,16(5):1-10.
    [3] 邹汉波,董新法,林维明.化工新型材料—碳纳米管.化工新型材料,2002,30:6-8.
    [4] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley. Catalytic growth of single-wallednanotubes by laser vaporization. Chem Phys Letts., 1995, 243: 49-54.
    [5] Andreas Thess, Roland Lee, Pavel Nikolaev, Hongjie Dai, Pierre Petit, Jerome Robert, ChumHui Xu, Young Hee Lee, Seong Gon Kim, Andrew G. Rinzler, Daniel T. Colbert, Gustavo E. Scuseria, David Tomanek, John E. Fischer, Richard E. Smalley. Crystalline Ropes of Metallic Carbon Nanotubes. Science, 1996, 273: 483.
    [6] 杨占红,李新海,李晶.固体碳的新形态—碳纳米管.大学化学,1998,13:30-33.
    
    
    [7] S. Amelinckx, X. B. Zhang, D. Bemaerts, X. E Zhang, V. lvanov, J. B. Nagy. Catalytically Grown Helix-Shaped Graphite Nanotubes. Science, 1994, 256: 635-639.
    [8] 李亚利,于瀛大,梁勇.纳米碳管制备新技术—固相热解法.科学通报,1997,42:1787-1789.
    [9] 胡文平,刘云圻,曾鹏举,周淑琴.朱道本.纳米碳管.化学通报,2000,2:2-6.
    [10] 朴玲钰,李永丹.碳纳米管的研究进展.化工进展,2001,11:18-22.
    [11] M. E Siegal, D. L. Overmyer, and P. E Provencio. Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition. Appl. Phys. Lett., 2002, 80: 2171-2173.
    [12] Anyuan Cao, Bingqing Wei, Y. Jung, Robert Vajtai, P. M. Ajayan, and G. Raman-ath. Growth of aligned carbon nanotubes on self-similar macroscopic templates. Appl. Phys. Lett., 2002, 81: 1297.
    [13] Zhan Hongyan, Hao Qingwu. Solid State Ionics, 2000, 143: 173-180.
    [14] Philip G. Collins, A. Zettl, Hiroshi Bando, Andreas Thess, R. E. Smalley. Nanotube Nanodevice. Science, 1997, 278: 100-102.
    [15] Bezryadin A, Verschueren A R M, Tans S., J. Phys. Rev. Lett., 1998, 80: 4036.
    [16] Walt A. De Heer, A. Chatelain, D. Vgarte. A Carbon Nanotube Field-Emission Electron Source. Science, 1995, 270: 1179-1180.
    [17] Hongjie Dai, Jason H. Hatter, Andrew G. Rinzler, Daniel T. Colbert & Richard E. Smalley. Nanotubes as Nanoprobes in scanning probe microscopy. Nature, 1996, 384: 147-150.
    [18] Hongjie Dai, Eric W. Wong, Charles M. Lieber. Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes. Science, 1996, 272: 523-526.
    [19] E. S. Snow, P. M. Campbell, and J. E Novak. Single-wall carbon nanotube atomic force microscope probes. Appl. Phys. Lett., 2002, 80(11): 2002-2004.
    [20] S. Chopra and A. Pham, J. Galliard, A. Parker, and A. M. Rao. Carbon-nanotube-based resonant-circuit sensor for ammonia. Appl. Phys. Left., 2002, 80: 4632-4634.
    [21] Wu G T, Wang C S, Zhang X B, et al. Journal of Power Sources, 1998, 75: 175-179.
    [22] A C. Dillon, K M. Jones, T A. Bekdahl, C. H. Kiang, D. S. Bethune & M. J. Heben. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 368: 377-379.
    [23] P. Chen, X. Wu, J. Lin, K. L. Tan. High H_2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures. Science, 1999, 285: 91-93.
    [24] 张宇,吴汜昕,张鸿斌,林国栋,袁友珠,蔡启瑞,碳纳米管负栽铑催化剂上丙烯氢甲酰化 物理化学学报,1997,13(12):1057-1060.
    [25] Hongxia Luo, Zujin Shi, Nanqiang Li, Zhennan Gu, and Qiankun Zhuang. Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode. Anal. Chem., 2001, 73: 915-912.
    [26] 王宗花,刘军,颜流水,王义明,罗国安.羧基化碳纳米管嵌入石墨修饰电极对多巴胺和抗坏血酸的电催化.分析化学,2002,9:1053-1057.
    
    
    [27] Jing Kong, Nathan R. Franklin, Chongwu Zhou, Michael G. Chapline, Shu Peng, Kyeongjae Cho, Hongjie Dai. Nanotube Molecular Wires as Chemical Sensors. Science, 2000, 287: 622-625.
    [28] Philip G. Collins, Keith Bradley, Masa Ishigami, A. Zettl. Extreme Oxygen Sensitivity of Electronic properties of Carbon Nanotubes. Science, 2000, 287: 1801-1804.
    [29] 林辉,吴东升,徐元英.碳纳米管.现代物理知识,2002,14(5):30-31.
    [30] 陈久岭.博士论文,1999
    [31] M. M. J. Treacy, T. W. Ebbesen & J. M. Gibson. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996, 381: 678-680.
    [32] 余荣清,程大典,詹梦熊,王育煌,郑兰荪.液相化学腐蚀法用于碳纳米管的纯化及顶端开口研究.化学通报,1996,4:25-26.
    [33] R M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki and H. Hiura. Opening carbon nanotubes with oxygen and implications for filling. Nature, 1993, 362: 522-525.
    [34] 杨占红,李新海,王红强,李天宝,陈志国,李晶.碳纳米管的提纯—重铬酸钾氧化法.化学世界,1999,12:627-630.
    [35] S. C. Tsang, P. J. E Harris and M. L. H. Green. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 1993, 362: 520-522.
    [36] Masahito Sano, Ayumi Kamino, Junko Okamura, Seiji Shinkai. Ring Closure of Carbon Nanotubes. Science, 2001, 293: 1299-1301.
    [37] Philip Kim and Charles M. Lieber. Nanotube Nanotweezers. Science, 1999, 286: 2148-2150.
    [38] Wei Zhao, Chuiho Song, and Pehr E. Pehrsson. Water-Soluble and Optically pH-Sensitive Single-Walled Carbon Nanotubes from Surface Modification. J. Am. Chem. Soc. 2002, 124: 12418-12419.
    [39] Jian Chen, Mark A. Hamon, H. ui Hu, Yongsheng Chen, Apparao M. Rao, Peter C. Eklund, Robert C. Haddon. Solution Properties of Single-Walled Carbon Nanotubes. Science, 1998, 282: 95-98.
    [40] Jian Chen, Apparao M. Rao, Sergei Lyuksyutov, Mikhail E. Itkis, Mark. A. Hamon, Hui Hu, Robert W. Cohn Peter C. Eklund, Daniel T. Colbert, Richard E. Smalley, and Robert C. Haddon. Dissolution of Full-Length Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2001, 105: 2525-2528.
    [41] Yi Sun, Stephen R. Wilson, and David I. Schuster. High Dissolution and Strong Light Emission of Carbon Nanotubes in Aromatic Amine Solvents. J. Am. Chem. Soc. 2001, 123: 5348-5349.
    [42] Jason E. Riggs, Zhixin Guo, David L. Carroll, and Ya Ping Sun. Strong Luminescence of Solubilized Carbon Nanotubes. J. Am. Chem. Soc. 2000, 122: 5879-5880.
    [43] Seiji Akita, Yoshikazu Nakayama, Syotaro Mizooka, Yuichi Takano, Takashi Okawa, Toshikazu Nosaka. Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Appl. Phys. Lett, 2001, 79: 1691-1693.
    
    
    [44] Jason H.Hafner,Chin Li Cheung,Charles M.Liber.Growth of nanotubes for probe microscopytips.Nature,1999,389:761-762.李东红,陈淑华,赵华明.“分子钳”人工受体的研究进展.化学研究与应用,1999,11(3):221-227.
    [45] 陆国元,何卫江,胡宏纹.剪刀分子(2S,8S)’-双(2-萘甲酰氨基甲基)-1,5,9-三氮杂双环[4.4.0]癸-5-烯氯化物的合成和核磁共振研究.化学学报,1996,54:1214-1218.
    [46] Steven C. Zimmerman, Zijian Zeng, Weiming Wu, and David E. Reichert. Synthesis and Structure of Molecular Tweezers Containing Active Site Functionality. J. Am. Chem. Soc. 1991, 113: 183-196.
    [47] Ken D. Shimizu, Torin M. Dewey, and J. Rebek, Jr. Convergent Functional Groups. 15. Synthetic and Structural Studies of Large and Rigid Molecular Clefts. J. Am. Chem. Soc. 1994, 116: 5145-5149.
    [48] Steven C. Zimmerman, Weiming Wu, and Zijian Zeng. Complexation of Nucleotide Bases by Molecular Tweezers with Active Site Carboxylic Acids: Effects of Microenvironment. J. Am. Chem. Soc. 1991, 113: 196-201.
    [49] R A. Risbood, D. M. Ruthven. Molecular Tweezers: A Simple Model of Bifunctional Intercalation. J. Am. Chem. Soc. 1978, 100: 4921-4922.
    [50] Sinnott, Susan B. Chemical functionalization of carbon nanotubes. Journal of Nanoscience and Nanotech-nology, 2002, 2(2): 113-123.
    [51] David T. Mitchell, Sang Bok Lee, Lacramioara Trofin, Naichao Li, Tarja K. Nevanen, Hans Soderlund, and Charles R. Marin. Smart Nanotubes for Bioseparations and Biocatalysis. J. Am. Chem. Soc. 2002, 124: 11864-11865.
    [52] Stanislaus S. Wong, Emesto Joselevich, Adam T. Woolley, Chin Li Cheung and Charles M Liber. Covalently functionalized nanotubes as nanometer-sized probes in chemistry and Biology. Nature, 1998, 394: 52-55.
    [53] Robert J. chen, Yuegang Zhang, Dunwei Wang, and Hongjie Dai. Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization. J. Am. Chem. Soc. 2001, 123: 3838-3839.
    [54] 赵辉,薛翠花,牟其明,李玲,陈淑华.脱氧胆酸类分子钳对氨基酸甲酯的手性识别.应用化学,2001,18(8):614-617.
    [55] 赵志刚,赵辉,陈淑华.脱氧胆酸分子钳人工受体对酚类化合物的识别研究.西南民族学院学报(自然科学版).2001.27:61-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700