Ni基双金属催化的CH_4/CO_2重整反应中积碳问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ni基催化剂作用下的CH4/CO2重整是煤化工过程中的一个重要反应。Ni催化剂由于低廉的价格、良好的活性和选择性成为应用和研究的重点,但也存在积碳严重的明显缺点。使用负载型Ni基双金属催化剂实现对反应机理的调控,是解决积碳问题的可行途径。本文主要采用量子化学DFT理论计算的方法,研究了积碳生成的微观动力学,在电子水平上描述了积碳问题的微观原因,描述了催化剂的成分和表面结构等主要因素与抗积碳性能的构效关系;建立了简化金属-载体相互作用的电子气模型,描述了载体对催化剂活性的影响;针对Ni基催化剂的积碳问题,本文阐述了解决Ni基催化剂上积碳问题的方法,为筛选、改性和设计新型双金属催化剂提供了一些较为可靠的理论线索。
     本文提出了从积碳的抑制、消除和阻止等方面多途径解决积碳问题的思路和方法,构建了一系列单金属(Fe,Co,Ni,Cu)及NiM(M=Fe,Co,Cu)双金属合金催化剂模型,基于这些模型研究了CH4/CO2重整反应体系的积碳问题,得到了与实验相吻合的结果。构建了物种在催化剂表面的迁移模型,详细描述了原子O和热解C在催化剂表面的迁移过程,明确了在Ni基催化剂中添加第二种金属以增加原子O的迁移能力,从而消除热解C的方法在理论上不具备可行性,也明确了在Ni催化剂中添加第二种金属以降低原子C的迁移能力,从而阻止热解C集聚的方法在理论上具备可行性。详细分析了催化剂上CH4解离路径,明确了各类催化剂上的速控步骤和活化能变化的规律。详细分析了催化剂表面热解C消除反应机理,明确了不同的催化剂表面C+O生成CO反应的微观机理。详细分析了热解C集聚的微观反应机理,明确了热解C的集聚反应在不同催化剂表面的难易程度。提出了基于金属-载体有相互作用的负载型催化剂的电子气模型,明确了通过使电子从金属流向载体的微观因素来调变金属-载体间的相互作用进而抑制积碳形成的基本原理。综合分析了各活性组分表面有关积碳问题的各步反应,明确了当CH4解离时决速步骤的活化能比在Ni表面解离的活化能(1.36eV)提高15-50%时,CH4在催化剂表面解离的速率得到了适度的抑制,可以实现对热解C生成的抑制进而抑制积碳的形成,通过比较得出Fe, Ni, NiFe, NiCo和均相的NiCu表面容易形成积碳,而偏聚的NiCu表面不容易产生积碳。综合分析并提出了抗积碳性能催化剂的理论线索,明确了催化剂金属d带中心远离Fermi能级,是抑制反应体系中热解C生成的微观因素,明确了通过调变载体结构使电子从金属流向载体,即可实现提高催化剂抗积碳性能的目的,明确了添加不同的金属可以实现阻止热解C在表而的迁移进而阻止其聚集生成积碳的方法。
CH4/CO2reforming catalyzed by supported Ni-based catalysts is a key reaction in the process of coal chemical engineering. Because of its good initial activity and low cost, Ni-based catalysts have been widely applied and investigated. However, a fatal shortcoming exists for Ni catalyst, i.e., the serious carbon deposition. Therefore, to solve the problem of carbon deposition using supported Ni-based bimetal catalysts, it is necessary to systematically investigate the formation mechansim of carbon deposition. In this study, based on quantum chemical DFT calculations combined with experimental characterization methods, all possible mechanisms of carbon deposition formation are firstly proposed and disscussed in order to illustrate micro-dynamic of carbon deposition formation at the electronic level, the structure-activity relationship of the catalysts is elucidated, and the simplified electron-gas model of metal-support interaction is proposed to clarify the effect of support on the activity of catalyst. Focusing on the problem of carbon deposition on Ni-based catalysts, the methods of solving the carbon deposition are proposed, which can provide the basic theoretical clues for filtration, modification and design of the new supported catalysts.
     In this work, the ideas to solve carbon deposition from muti-path view, i.e., suppressing, eliminating and inhibiting carbon deposition, were proposed, and a series of models including of single metal(Fe,Co,Ni,Cu) and NiM(M=Fe,Co,Cu) bimetallic alloys were built. Based on the models, the carbon deposition were investigated in CH4/CO2reforming, and the results are in line with those from experimental observation. At the same time, the models of species migration on the surfaces also were built, on which the process of migration of C and O were investigated. The results show that elimination of carbon deposition by increasing the migration ability of O is found to be infeasible in theory. Whereas, that by decrease the migration ability of C is found to be feasible. Then, the dissociation pathway of CH4on catalysts are systematically investigated to illustrate the change rule of rate-determining and activation barrier, meanwhile, the mechanism of pyrolytic C elimination is analyzed to obtain the microscopic mechanism of C plus O reaction. Further, the mechanism of pyrolytic C accumulation are analyzed to clarify the reaction on different catalyst surfaces.
     On the basis of the metal-support interaction, the electron-gas model of supported catalyst are provided to adjust the metal-support interaction by making the electron transfer from metal to support, in which the basic principle of inhibiting the carbon deposition are obtained. The elementary reaction involving carbon deposition on different catalysts are synthetically analyzed, which show that when the activation barrier (1.36eV) of rate-determining step for CH4dissociation increase by15-50%in comparison with that on Ni surface, the formation of pyrolytic C can be inhibited in the expense of decreasing the rate of CH4dissociation to some extent, further the formation of carbon deposition is inhibited.
     Our results show that the carbon deposition is easily formed on Fe, Ni, NiFe, NiCo and uniform NiCu surfaces, whereas, the carbon deposition is hard to form on segregate NiCu surface. As a result, the theoretical clues for the design of anti-carbon deposition are provided, in which the d-band center away from Fermi level is the microscopic factor to inhibit the formation of pyrolytic C in reaction systems. Meanwhile, the electrons transfer from metal to support by adjusting the metal-support interaction can be used to realize the inhibitation of carbon deposition. Finally, adding different metal into Ni can inhibit the migration of pyrolytic C, further inhibit the accumulation of pyrolytic C to form carbon deposition.
引文
[1]谢克昌,李忠.煤基燃料的制备与应用[J].化工学报,2004,55:1393-1399.
    [2]倪维斗,李政,薛元.以煤气化为核心的多联产能源系统-资源/能源/环境整体优化与可持续发展[J].中国工程科学,2000,2:59-68.
    [3]李忠,郑华艳,谢克昌.甲醇燃料的研究进展与展望[J].化工进展,2008,27:1684-1695.
    [4]Ashcroft A T, Cheetham A K, Green M L H, Vernon P D F. Partial oxidation of methane to synthesis gas using carbon dioxide [J]. Nature,1991,352:225-226.
    [5]黄伟,王晓红,高志华,阴丽华.谢克昌.甲烷二氧化碳低温直接转化的可能性[J].煤炭转化,2000,23(3):32-35.
    [6]魏俊梅,李文英,谢克昌.二氧化碳重整甲烷过程中催化剂积炭现象的探讨[J].煤炭转化,1997,20(1):32-39.
    [7]谢克昌,张永发,赵炜.“双气头”多联产系统基础研究——焦炉煤气制备合成气[J].2008,(2):10-12.
    [8]Zhang G, Dong Y, Feng M, Zhang Y, Zhao W, Cao H. CO2 reforming of CH4 in coke oven gas to syngas over coal char catalyst [J]. Chem. Eng. J.,2009,156(3):519-523.
    [9]Zhang G, Zhang Y, Guo F, Sun Y, Xie K. CH4-CO2 reforming to syngas and comsumption kinetics of carbonaceous catalyst [J]. Energy Procedia,2011,11: 3041-3046.
    [10]章日光,黄伟,王宝俊.CH4和C02合成乙酸中C02与·H及·CH3相互作用的理论计算[J].催化学报,2008,28(7):641-645.
    [11]章日光,黄伟,王宝俊Co/Pd催化剂上CH4/CO2等温两步反应直接合成乙酸的热力学[J].催化学报,2008,29(9):913-920.
    [12]Bradford M C, Vannice M A. CO2 reforming of CH4 over supported Ru catalysts [J]. J. CataL,1999,183(1):69-75.
    [13]Wei J, Iglesia E. Reaction pathways and site requirements for the activation and chemical conversion of methane on Ru-based catalysts [J]. J. Phys. Chem. B,2004, 108(22):7523-7262.
    [14]Portugal U L, Santos A C S F, Damyanova S, Marques C M P, Bueno J M C. CO2 reforming of CH4 over Rh-containing catalysts [J]. J. Mol. Catal. A,2002,184(1-2): 311-322.
    [15]Nagaoka K, Seshan K, Aika K-I, Lercher J A. Carbon deposition during carbon dioxide reforming of methane-comparison between Pt/Al2O3 and Pt/ZrO2 [J]. J. Catal.,2001, 197(1):34-42.
    [16]Portugal U L, Marques C M P, Araujo E C C, Morales E V, Giotto M V, Bueno J M C. CO2 reforming of methane over Zeolite-Y supported ruthenium catalysts [J]. Appl. Catal. A,2000,193(1-2):173-183.
    [17]Stevens R W, Chuang S S C. In situ IR study of transient CO2 reforming of CH4 over Rh/Al2O3 [J]. J. Phys. Chem. B,2004,108(2):696-703.
    [18]Abbott H L, Harrison L. Methane dissociative chemisorption on Ru(0001) and comparison to metal nanocatalysts [J]. J. Catal.,2008,254(1):27-38.
    [19]Carrara C, Munera J, Lombardo E A, Cornaglia L M. Kinetic and stability studies of Ru/La2O3 used in the dry reforming of methane [J]. Topic Catal.,2008,51(1-4): 98-106.
    [20]Solymosi F, Kutsan G, Erdohelyi A. Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals [J]. Catal. Lett.,1991,11(2):149-156.
    [21]Chen Y-Z, Liaw B-J, Kao C-F, Kuo J-C. Yttria-stabilized zirconia supported patinum catalysts(Pt/YSZs) for CH4/CO2 reforming [J]. Appl. Catal. A,2001,217(1-2):23-31.
    [22]Schulz P G, Gonzalez Ma G., Quincoces C E, Gigola C E. Methane reforming with carbon dioxide. The behavior of Pd/α-Al2O3 and Pd-CeOx/α-Al2O3 catalysts [J]. Ind. Eng. Chem. Res.,2005,44(24):9020-9029.
    [23]Yamaguchi A, Lglesia E. Catalytic activation and reforming of methane on supported palladium clusters [J]. J. Catal.,2010,274(1):52-63.
    [24]Pan W, Song C. Using tapered element oscillating microbalance for in situ monitoring of carbon deposition on nickel catalyst during CO2 reforming of methane [J]. Catal. Today,2009,148(3-4):232-242.
    [25]Rostrup-Nielsen J R, Bak Hansen J H. CO2 reforming of methane over transition metals [J]. J. Catal.,1993,144(1):38-49.
    [26]Tomishige K, Himeno Y, Matsuo Y, Yoshinaga Y, Fujimoto K. Catalytic performance and carbon deposition Behavior of a NiO-MgO solid solution in methane reforming with carbon dioxide under pressurized conditions [J]. Ind. Eng. Chem. Res.,2000, 39(6):1891-1897.
    [27]孙希贤,李新民,李建华,范业梅,徐恒泳,苏玉,史克英,徐国林,黄仁才,周佩珩,刘金香.甲烷二氧化碳制备富含一氧化碳合成气[J].高等学校化学学报,1992,13(10:1302-1306.
    [28]Calvin H. B. Carbon deposition in steam reforming and methanation [J]. Catal. Rev. Sci. Eng.,1982,24(1):67-112.
    [29]Abild-Pedersen, F, Norskov, J K, Rostrup-Nielsen, J R, Sehested J, Helveg S. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations [J]. Phys. Rev. B,2006,73(11):115419-1-13.
    [30]Lercher J A, Bitter J H, Hally W, Niessen W, Seshan K. Design of stable catalysts for methane-carbon dioxide reforming [J], Stud. Surf. Sci. & Catal.,1996,101:463-473.
    [31]Tang S, Ji L, Lin J, Zeng H C, Tan K L, Li K. CO2 reforming of methane to synthesis gas over sol-gel-made Ni/γ-Al2O3 catalysts from organometallic precursors [J]. J. Catal.,2000, 194(2):424-430.
    [32]Kim J H, Suh D J, Park T J, Kim K L. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts [J]. Appl. Catal. A,2000,197(2): 191-200.
    [33]Zhang J, Wang H, Dalai A K. Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4 [J]. Appl. Catal. A,2008,339(2):121-129.
    [34]Zhang Y, Xiong G., Kou Y, Yang W, Sheng S. Influence of the sol-gel method on a NiO/Al2O3 catalysts for CH4/O2 to syngas reaction [J]. React. Kinet. Catal. Lett.,2000, 69(2):325-329.
    [35]Zhang Y, Xiong G, Sheng S, Yang W. Deactivation studies over NiO/γ-Al2O3 catalysts for partial oxidation of methane to syngas[J]. Catal. Today,2000,63(2-4):517-522.
    [36]Cheng D, Zhu X, Ben Y, He F, Cui L, Liu C. Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma [J]. Catal. Today,2006,115(1-4):205-210.
    [37]Rostrup-Nielsen J R. Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane [J]. J. Catal.,1984,85(1):31-43.
    [38]Osaki T, Mori T. Role of Potassium in carbon-free CO2 reforming of methane on K-promoted Ni/Al2O3 catalysts[J]. J. Catal.,2001,204(1):89-97.
    [39]Hu Y H. Adcances in catalysts for CO2 reforming of methane, charpter 10, ACS symposium Series [M]. Washington, DC:American Chemical Society,2010:156-174.
    [40]Hu Y H, Ruckenstein E. Binary MgO-based solid solution catalysts for CH4 conversion to syngas [J]. Catal. Rev.,2002,44(3):423-453.
    [41]Wang Y H, Liu H M, Xu B Q. Durable Ni/MgO catalysts for CO2 reforming of methane: Activity and metal-support interaction [J]. J. Mol. Catal. A,2009,299(1-2):44-52.
    [42]Stagg-Williams S M, Noronha F B, Fendley G, Resasco D E. CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides [J]. J. Catal.,2000,194(2):240-249.
    [43]Song C S; Wei P. Tri-reforming of methane:A novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios [J]. Catal. Today,2004,98(4): 463-484.
    [44]Ruckenstein E, Hu Y H. Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts [J]. Appl. Catal. A,1995,133(1):149-161.
    [45]Gwathmey A T, Cunningham R I. The influence of crystal aace in catalysis [J]. Adv. Catal., 1958,10:57-95.
    [46]Yates J T. Surface chemistry at metallic step defect sites [J]. J. Vac. Sci. Technol. A,1995, 13(3):1359-1367.
    [47]Zambelli T, Wintterlin J, Trost J, Ertl G. Identification of the "Active Sites" of a surface-catalyzed reaction [J]. Science,1996,273:1688-1690.
    [48]Dahl S, Logadottir A, Egeberg R C, Larsen J H, Chorkendorff I, Tornquist I, Norskov J K. Role of Steps in N2 Activation on Ru(0001) [J]. Phys. Rev. Lett.,1999,83(9):1814-1817.
    [49]Hardeveld R V, Montfootr A V. Infrared spectra of nitrogen adsorbed on nickel-on-aerosil catalysts:Effects of intermolecular interaction and isotopic substitution [J]. Surf. Sci.,1969,17(1):90-124.
    [50]Bengaard H S, N(?)rskov J K, Sehested J, Clausen B S, L. Nielsen P, Molenbroek A M, Rostrup-Nielsen J R. Steam reforming and graphite formation on Ni catalysts [J]. J. Catal., 2002,209(2):365-384.
    [51]Xu J, Saeys M. Improving the coking resistance of a Ni-based catalyst by promotion with subsurface boron [J]. J. Catal.,2006,242(1):217-226.
    [52]Xu J, Saeys M. First principles study of the coking resistance and the activity of a boron promoted Ni catalyst [J]. Chem. Eng. Sci.,2007,62(18-20):5039-5041.
    [53]Greely J, Mavrikakis M. Alloy catalysts designed from first principles [J]. Nature Mater., 2004,3:810-815.
    [54]Min M-K, Cho J, Cho K, Kim H. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications [J]. Electrochimica Acta,2000,45(25-26):4211-4217.
    [55]Zhang J-N, You S-J, Yuan Y-X, Zhao Q-L, Zhang G-D. Efficient electrocatalysis of cathodic oxygen reduction with Pt-Fe alloy catalyst in microbial fuel cell [J]. Electrochem. Commun,2011,13(9):903-905.
    [56]Mei D, Neurock M, Smith C M. Hydrogenation of acetylene-ethylene mixtures over Pd and Pd-Ag alloys:First-princeples-based kinetic Monte Carlo simulations [J]. J. Catal., 2009,268(2):181-195.
    [57]Singh S K, Xu Q. Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine [J]. Chem. Commun.,2010,46,6545-6547.
    [58]Martins R L, Baldanza M A S, Alberton A L, Vasconcelos S M R, Moya S F, Schmal M. Effect of B and Sn on Ni catalysts supported on pure-and on WO3/MoO3-modified zirconias for direct CH4 conversion to H2 [J]. Appl. Catal. B,2011,103(3-4):326-335.
    [59]Hou Z, Yokota O, Tanaka T, Yashima T. Surface properties of a coke-free Sn doped nickel catalyst for the CO2 reforming of methane [J]. Appl. Surf. Sci.,2004,233(1-4):58-68.
    [60]Stagg S M, Romeo E, Padro C, Resasco D. Effect of promotion with Sn on supported Pt catalysts for CO2 reforming of CH4 [J]. J. Catal.,1998,178(1):137-145.
    [61]Choi J S, Moon K I, Kim Y G, Lee J S, Kim C H, Trimm D L. Stable carbon dioxide reforming of methane over modified Ni/Al2O3 catalysts [J]. Catal. Lett.,1998,52(1-2): 43-47.
    [62]Nichio N N, Casella M L, Santori G F, Ponzi E N. Ferretti O A. Stability promotion of Ni/a-Al2O3 catalysts by tin added via surface organometallic chemistry on metals: Application in methane reforming processes [J]. Catal. Today,2000,62(2-3):231-240.
    [63]Seoka S-H, Choia S H, Parka E D, Hanb S H, Leea J S. Mn-Promoted Ni/Al2O3 Catalysts for Stable Carbon Dioxide Reforming of Methane [J]. J. Catal.,2002,209(1):6-15.
    [64]Suljo L, Jerome J, Mark A B. Selectivity driven design of bimetallic ethylene exploitation catalysts from first principles [J]. J. Catal.,2004,224(2):489-493.
    [65]Boronat M, Conception P, Corma A, Gonza L S, Ⅲas F, Serna P. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of Gold on TiO2 catalysts:A cooperative effect between Gold and the support [J]. J. Am. Chem. Soc,2007,129(51):16230-16237.
    [66]Boronat M, Corma A. Origin of the different activity and selectivity toward hydrogenation of single metal Au and Pt on TiO2 and bimetallic Au-Pt/TiCO2 catalysts [J]. Langmuir,2010,26(21):16607-16614.
    [67]Hugon A, Delannoy L, Krafft J-M, Louis C. Selective hydrogenation of 1,3-butadiene in the presence of an excess of alkenes over supported bimetallic Gold-Palladium catalysts [J]. J. Phys. Chem. C,2010,114 (24):10823-10835.
    [68]Kratzer P, Hammer B, N(?)rskov J K. A theoretical study of CH4 dissociation on pure and gold-alloyed Ni(111) surfaces [J]. J. Chem. Phys.,1996,105(13):5595-5604.
    [69]Holmblad P M, Larsen J H, Chorkendorff I. Modification of Ni(111) reactivity toward CH4, CO, and D2 by two-dimensional alloying [J]. J. Chem. Phys.,1996,104(18):7289-7295.
    [70]Besenbacher F, Chorkendorff I, Clarsen B S, Hammer B, Molenbroek A M, Norskov J K, Stensgaard I. Design of a surface alloy catalyst for steam reforming [J]. Science,1998, 279:1913-1915.
    [71]Lee J-H, Lee E-G, Joo O-S, Jung K-D. Stabilization of Ni/Al2O3 catalyst by Cu addition for CO2 reforming of methane [J]. Appl. Catal. A,2004,269(1-2):1-6.
    [72]Zhang J, Wang H, Dalai A K. Development of stable bimetallic catalysts for carbon dioxide reforming of methane [J]. J. Catal.,2007,249(25):300-310.
    [73]Zhang J, Wang H, Dalai A K.19th Canadian Symposium on catalysis, Saskatoon, Saskatoon, Canada, May 14-17,2006, P.159.
    [74]Zhang J, Wang H, Dalai A K. Effect of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4 [J]. Appl. Catal. A,2008,339(2):121-129.
    [75]Nikolla E, Schwank J, Linic S. Promotion of the long-term stability of reforming Ni catalysts by surface alloying [J]. J. Catal.,2007,250(1):85-93.
    [76]Nikolla E, Schwank J W, Linic S. Hydrocarbon steam reforming on Ni alloys at solid oxide fuel cell operating conditions [J]. Catal. Today,2008,136(3-4):243-248.
    [77]Nikolla E, Schwank J, Linic S. Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts:the impact of the formation of Ni alloy on chemistry [J]. J. Catal.,2009,263(2):220-227.
    [78]Wang S, Lu G Q. Effect of promoters on catalytic activity and carbon deposition of Ni/γ-Al2O3 catalystsin CO2 reforming of CH4 [J]. J. Chem.. Technol. Biotechnol.,2000, 75(7):589-595.
    [79]Wang S, Lu G Q M. CO2 refoming of methane on Ni catalysts:Effect of the support phase and preparation technique [J]. Appl. Catal. B,1998,16(3):269-277.
    [80]Takayasu O, Sato F, Ota K, Hitomi T, Miyazaki T, Osawa T, Matsuura Ⅰ. Separate production of hydrogen and carbon monoxide by carbon dioxide reforming reaction of methane [J]. Energ. Convers. Manag.,1997,38(supplement):S391-S396.
    [81]Zhang Z, Verykios X E, Macdonald S M, Affrossman S. Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts [J]. J. Phys. Chem.,1996,100(2):744-754.
    [82]Zhang Z, Verykios X E. Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts [J].Appl. Catal. A,1996,138(1):109-133.
    [83]Chang J-S, Park S-E, Chon H. Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts [J]. Appl. Catal. A,1996,145(1-2):111-124.
    [84]许峥,李玉敏,张继炎,张鎏.甲烷二氧化碳重整制合成气的镍基催化剂性能:Ⅱ.碱性助剂的作用[J].催化学报,1997,18(5):364-367.
    [85]Xu Z, Li Y, Zhang J. Bound-state Ni species-a superior form in Ni-based catalyst for CH4/CO2 reforming [J]. Appl. Catal. A,2001,210(1-2):45-53.
    [86]李基涛,陈明旦,严前古.高稳定度CH4/CO2重整Ni/MgO催化剂的研究[J].高等学校化学学报,2000,21(9):1445-1447.
    [87]Ruchenstein E, Hu Y H. Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts [J]. Appl. Catal. A,1995,133(1):149-161.
    [88]Bodrov N. N, Apelbaum L O, Temkin M I. Kinetics of the reaction of methane with steam on the surface of nickel [J]. Kinet. Catal.,1964,5:614-621.
    [89]Bodrov N. N, Apelbaum L O, Temkin M I. Reaction kinetics of methane and carbon dioxide on a nickel surface [J]. Kinet. Catal.,1967,8:326-332.
    [90]Rostrupnielsen J R, Hansen J H B. CO2-reforming of methane over transition metals [J]. J. Catal.,1993,144(1):38-49.
    [91]Osaki T, Masuda H and Mori T. Intermediate hydrocarbon species for the CO2-CH4 reaction on supported Ni catalysts [J]. Catal. Lett.,1994,29(1-2):33-37.
    [92]Wei J M, Iglesia E. Isotopic and kinetic assessement of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts [J]. J. Catal.,2004, 224(2):370-383.
    [93]Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts II. reaction kinetics [J]. App1. Catal. A,1996,142(1):97-122.
    [94]Kroll V C H, Swann H M, Lacombe S, Mirodatos C. Methane reforming reaction with carbon dioxide over Ni/SiO2 catalyst:II. A mechanistic study [J]. J. Catal.,1996,164(2): 387-398.
    [95]Erdohelyi A, Cserenyi J, Papp E, Solymois F. Catalytic reaction of methane with carbon dioxide over supported palladium [J]. Appl. Catal. A,1994,108(2):205-219.
    [96]Rostrup-Nielsen J R, Hansen J H Bak. CO2-reforming of methane over transition metals [J]. J. Catal.,1993,144(1):38-49.
    [97]Osaki T, Masuda H, Mori T. Intermediate hydrocarbon species for the CO2-CH4 reaction on supported Ni catalysts [J]. Catal. Lett.,1994,29(1-2):33-37.
    [98]Solymosi F, Kutsan G, Erdohelyi A. Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals [J]. Catal. Lett,1991,11(2):149-156.
    [99]Walter K, Buyevskaya O V, Wolf D, Baerns M. Rhodium-catalyzed partial oxidation of methane to CO and H2: In situ DRIFTS studies on surface intermediates [J]. Catal. Lett., 1994,29(1-2):261-270.
    [100]Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts Ⅱ. Reaction kinetics [J]. Appl. Catal. A,1996,142(1):97-122.
    [101]Wei J, Iglesia, E. Isotopic and kinetic assessenment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts [J]. J. Catal., 2004,224(2),370-383.
    [102]Wang S-G, Liao X-Y, Jia H, Cao D-B, Li Y-W. Wang J, Jiao H. Kinetic aspect of CO2 reforming of CH4 on Ni(111):A density functional theory calculation [J]. Surf. Sci., 2007,601(5):1271-1284.
    [103]Rostrup-Nielsen J. Mechanisms of carbon formation on nickel-containing catalysts [J]. J. Catal.,1977,48(1-3):155-165.
    [104]郭芳,储伟,黄丽琼,谢在库.载体酸碱性对CO2/CH4重整反应用镍基催化剂的影响[J].合成化学,2008,16(5):495-498.
    [105]Wang S B, Lu Q M. Effects of promoters on catalytic activity and carbon depositon of Ni/y-Al2O3 catalysts:I. CO2 reforming of CH4 [J]. J. Chem. Technol. Biotechnol.,2000, 75(7):589-595.
    [106]Tsipouriari V A, Verykios X E. Carbon and oxygen reaction pathways of CO2 reforming of methane over Ni/La2O3 and Ni/Al2O3 catalysts studied by isotopic tracing techniques [J]. J. Catal.,1999,187(1):85-94.
    [107]Wang S, Cao D, Li Y, Wang J, Jiao H. CO2 reforming of CH4 on Ni(111):A density functional theory calculation [J]. J. Phys. Chem. B,2006,110(20):9976-9983.
    [108]Ferrando R, Jellinek J, Johnston R L. Nanoalloys:From theory to applications of alloy clusters and nano particles [J]. Chem. Rev.,2008,108(3):845-910.
    [109]王亮,王毅,宋树芹,沈培康Pd.YNi/C催化剂增强机理的密度泛函理论研究[J],催化学报,2009,30(5):433-439
    [110]Bromley S T, Sankar G, Catlow C R A, Maschmeyer T, Johnson B F G, Thomas J M. New insights into the structure of supported bimetallic nanocluster catalysts prepared from carbonylated precursors:A combined density functional theory and EXAFS study [J]. Chem. Phys. Lett.,2001,340(5-6):524-530.
    [111]Chen F Y, Jolmston R L. Energetic, electronic and thermal effects on structural properties of Ag-Au Nanoalloys [J]. ACS Nano,2008,2(1):165-175.
    [112]Chen F Y, Curley B C, Rossi Q, Johnston R L. Structure, melting and thermal stability of 55 atoms Ag-Au nanoalloys [J]. J. Phys. Chem. C,2007,111(26):9157-9165.
    [113]Oviedo J, Sanz J F, Lopez N, Ⅲas F. Molecular Dynamics Simulations of the Structure of Pd Clusters Deposited on the MgO(001) Surface [J]. J Phys Chem. B,2000,104(18): 4342-4348.
    [114]Jung C H, Tsuboi H, Koyama M. Kubo M, Broclawik E, Miyamoto A. Different support effect of M/ZrO2 and M/CeO2 (M=Pd and Pt) catalysts on CO adsorption: A periodic density functional study [J]. Catal. Today,2006,111(3-4):322-327.
    [115]Wang Y, Florez E, Mondragon F, Truong T N. Effects of metal-support interactions on the electronic structures of metal atoms adsorbed on the perfect and defective MgO (100) surfaces [J], Surf. Sci.,2006,600(9):1703-1713.
    [116]Raupp G B, Dumesic J A. Effect of varying Titania surface coverage on the chemisorptive behavior of nickel [J]. J. Catal.,1985,95(2):587-601.
    [117]Sarapatka T J. XPS-XAES study of charge transfers at Ni/Al2O3/Al systems [J]. Chem. Phys. Lett.,1993,212(1-2):37-42.
    [118]Kang J H, Shin E W, Kim W J, Park J D, Moon S H. Selective hydrogenation of acetylene on TiO2-added Pd catalysts [J]. J. Catal.,2002,208(2):310-320.
    [119]Ojeda M, Nabar R, Nilekar A U, Ishikawa A, Mavrikakis M, Iglesia E. CO activation pathways and the mechanism of Fischer-Tropsch synthesis [J]. J. Catal.,2010,272(2): 287-297.
    [120]Wang F, Zhang D, Ding Y. DFT study on CO oxidation catalyzed by PtmAun (m+n=4) clusters:Catalytic mechanism, active component, and the configuration of ideal catalysts [J]. J. Phys. Chem. C,2010,114(33):14076-14082.
    [121]Gonzalez S, Sousa C, Fernandez-Garcia M, Bertin V, Illas F. Theoretical study of the catalytic activity of bimetallic RhCu surfaces and nanoparticles toward H2 dissociation [J]. J. Phys. Chem. B,2002,106(32):7839-7845.
    [122]Sousa C, Bertin V, Illas F. Theoretical Study of the interaction of molecular hydrogen with PdCu (111) bimetallic surfaces [J]. J. Phys. Chem. B,2001,105(9):1817-1822.
    [123]Kapur N, Hyun J, Shan B, Nicholas J B, Cho K. Ab initio study of CO hydrogenation to oxygenates on reduced Rh terraces and stepped surfaces [J]. J. Phys. Chem. C,2010, 114(22):10171-10182.
    [124]Cao D B, Li Y W, Wang J, Jiao H. Mechanism of y-Al2O3 support in CO2 reforming of CH4: A density functional theory study [J]. J. Phys. Chem. C,2011,115(1):225-233.
    [125]Pan Y X, Liu C J, Wiltowski T S, Ge Q F. CO2 adsorption and activation over y-Al203-supported transition metal dimmers:A density functional study [J]. Catal. Today,2009,147(2):68-76.
    [126]Pan Y X, Liu C J, Ge Q F. Adsorption and protonation of CO2 partially hydroxylated γ-AI2O3 surfaces:A density functional theory study [J]. Langmuir,2008,24(21): 12410-12419.
    [127]Rodriguez J A, Evans J, Graciani J, Park J-B, Liu P, Hrbek J, Sanz J F. High water-gas shift activity in TiO2(110) supported Cu and Au nanoparticles:Role of the oxide and metal particle size [J]. J. Phys. Chem. C,2009,113(17):7364-7370.
    [128]Pan Y X, Liu C J, Ge Q F. Effect of surface hydroxyls on selective CO2 hydrogenation over Ni4/γ-Al2O3:A density functional theory study [J]. J. Catal.,2010,272(2): 227-234.
    [129]Gao H W, Xu W Q, He H, Shi X Y Zhang X L, Tanaka K. DRIFTS investigation and DFT calculation of the adsorption of CO on Pt/TiO2, Pt/CeO2 and FeOx/Pt/CeO2 [J]. Spectrochim Acta A,2008,71 (4):1193-1198
    [130]Wang S-G, Liao X-Y, Cao D-B, Huo C-F, Li Y-W, Wang J, Jiao H. Factors controlling the interaction of CO2 with transition metal surfaces [J]. J. Phys. Chem. C,2007,111(45): 16934-16940.
    [131]Strasser P, Fan Q, Devenney M, Weinberg W H, Liu P, N(?)rskov J K. High throughput experimental and theoretical predictive screening of materials-A comparative study of search strategies for new fuel cell anode catalysts [J]. J. Phys. Chem. B,2003,107(40): 11013-11021.
    [132]Greeley J, Mavrikakis M. Alloy catalysts designed from first principles [J]. Nat. Mater., 2004,3:810-815.
    [133]Studt F, Abild-Pedersen F, Bligrrd T, Serensen R Z, Christensen C H, N(?)rskov J K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene [J]. Science,2008,320:1320-1322.
    [134]Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G, Ross P N, Markovic N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces [J]. Nat. Mater.,2007,6:241-247.
    [135]Jacobsen C J H, Dahl S, Clausen B S, Bahn S, Logadottir A, N(?)rskov J K. Catalyst design by interpolation in the periodic table:bimetallic ammonia synthesis catalysts [J]. J. Am. Chem. Soc.,2001,123(34):8404-8405.
    [1]林梦海.量子化学计算方法与应用[M].北京:科学出版社.2004,1.
    [2]Carlson G A, Granoff B. Modeling of coal structure using computer-aided molecular design [J]. Am. Chem. Soc. Div. Fuel Chem. Preprints,1989,34(3):780-786.
    [3]潘道皑,赵成大,郑载兴,物质结构(第二版)[M]北京:高等教育出版社,1997,47-52.
    [4]徐光宪,黎乐民,王德民.量子化学基本原理和从头算法(中册)[M].北京:科学出版社.1985,599-606.
    [5]陈念陔,高坡,乐征宇,量子化学理论基础[M].哈尔滨:哈尔滨大学出版社.2002,201.
    [6]Levine I N. Quantum Chemistry (Fifth Ed.) [M]. Beijing:Prentice Hall, Inc..2004, 366-369.
    [7]傅献彩,沈文霞,姚天扬.物理化学(第四版)[M].北京:高等教育出版社.1990:798-812.
    [8]臧雅茹.分子反应动力学[M].天津:南开大学出版社.1995,82-87.
    [9]许越.化学反应动力学[M].北京:化学工业出版社.2004,52-60
    [10]李军,冯态,李文英.神府东胜煤镜质组和惰质组的热化学反应差异[J].物理化学学报,2009,25(7):1311-1319.
    [11]李军,冯态,李文英,常海洲,谢克昌.强弱还原煤聚集态对可溶性影响的分子力学和1分子动力学分析[J].物理化学学报,2008,24(12):2297-2303.
    [12]曾凡桂,贾建波.霍林河褐煤热解甲烷生成反应类型及动力学学的热重-质谱实验与量子化学计算[J].物理化学学报,2009,25(6):1117-1124.
    [13]Ling L, Zhang R, Wang B, Xie K. Density functional theory study on the pyrolysis mechanism of thiophene in coal [J]. J. Mol. Stru. (THEOCHEM),2009,905:8-12.
    [14]Ling L, Zhang R, Wang B, Xie K. Pyrolysis mechanisms of quinoline and isoquinoline with density function theory [J]. Chin. J. Chem. Eng.,2009,17(5):805-813.
    [15]Ling L, Zhang R, Wang B, Xie K. DFT study on the sulfur migration during benzenethiol pyrolysis in coal [J]. J. Mol. Stru. (THEOCHEM),2010,952:31-35.
    [16]Zhang R, Ling L, Wang B, Xie K. Theoretical studies on reaction mechanism of H2 with COS [J].J. Mol. Modeling.,2010,16(12):1911-1917.
    [17]周公度,段连运.结构化学基础[M].北京:北京大学出版社,1995:56-57.
    [18]杜希文,原续波.材料分析方法[M].天津:天津大学出版社.2006,131-144
    [19]李炳瑞.结构化学(多媒体版)[M].北京:高等教育出版社.2004,359360.
    [20]范康年.谱学导论[M].北京:高等教育出版社.2001,255-257.
    [21]刘维桥,孙桂大.固体催化剂实用研究方法[M].北京:中国石化出版社.1999,203-213.
    [1]Somorjai G A. Introduction to surface chemistry and catalysis [M]. New York:Wiley, 1994.
    [2]张微,葛庆杰,徐恒泳.镍前驱体对非负载型镍催化剂上甲烷分解活性的影响[J].催化学报,2010,31(11):1358-1362.
    [3]张微,葛庆态,徐恒泳.阶跃升温分解法对非负载型镍催化甲烷分解活性的影响[J].催化学报,2010,31(9):1162-1166.
    [4]Hammer B, N(?)rskov J K. Theoretical surface scicence and catalysis-calculations and concepts [J]. Adv. Catal.,2000,45:71-129.
    [5]Li M, Guo W, Jiang R, Zhao L. Lu X, Zhu H, Fu D, Shan H. Density functional study of ethanol decompostion on Rh(111) [J]. J. Phys. Chem. C,2010,114(49):21493-21503.
    [6]Li M, Guo W, Jiang R, Zhao L, Lu X, Zhu H, Fu D, Shan H. Mechanism of the ethylene conversion to ethylidyne on Rh(111):A density functional investigation [J]. J. Phys. Chem. C,2010,114(18):8440-8448.
    [7]Zhao Z-J, Moskaleva L V, Aleksandrov H A, Basaran D, Rosch N. Ethylidyne formation from ethylene over Pt(111):A mechanistic study from first-principle calculations [J]. J. Phys. Chem. C,2010,114(28):12190-12201.
    [8]Zhao Z-J, Moskaleva L V, Aleksandrov H A, Basaran D, Rosch N. Transformations of ethylene on the Pd(111) surface:A density functional study [J]. J. Phys. Chem. C,2010, 114(41):17863-17692.
    [9]Yang Y, White M G, Liu P. Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu (111) surfaces [J]. J. Phys. Chem. C,2012,112(1): 248-256.
    [10]Yang M, Bao X, Li W. First principle study of ethanol adsorption and formation of hydrogen bond on Rh (111) surface [J]. J. Phys. Chem. C,2007,111(20):7403-7410.
    [11]Choi Y, Liu P. Understanding of ethanol decomposition on Rh (111) from density functional theory and kinetic Monte Carlo simulations [J]. Catal. Today,2011,165(1): 64-70.
    [12]Shah V, Li T, Baumert K L, Cheng H, Sholl D S. A comparative study of CO chemisorption on flat and stepped Ni surfaces using density functional theory [J]. Surf. Sci.,2003,537(1-3):217-227.
    [13]Wang S G, Cao D B, Li Y W, Wang J. Jiao H. CH4 dissociation on Ni surfaces:Density funcitional theretical study [J]. Surf. Sci.,2006,600(16):3226-3234.
    [14]Payne M C, Teter M P. Allan D C, Arias T A, Joannopoulos J D. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys.,1992,64(4):1045-1097.
    [15]Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V, Nobes R H. Electronic structure, properties, and phase stability of Inorganic crystals:A pseudopotential plane-wave study [J]. Int. J. Quantum Chem.,2000,77(5):895-910.
    [16]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett.,1996,77(18):3865-3868.
    [17]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B,1990,41(11):7892-7895.
    [18]Monkhorst H J, Pack J D. Special points for brillouin-zone integrations [J]. Phys. Rev. B, 1976,13(12):5188-5192.
    [19]Zhang J, Wang H. Dalai A K. Development of stable bimetallic catalysts for carbon dioxide reforming of methane [J]. J. Catal.,2007,249(25):300-310.
    [20]Takanabe K, Nagaoka K, Narial K. Aika K. Titania-supported cobalt and nickel bimeallic catalysts for carbon dioxide reforming of methane [J]. J. Catal.,2005,232(2):268-275.
    [21]Notis M R, Brown J, Cotell C M, Ells C E, Kalonji G, LaBranche M H, Marcotte V C, Massalski T B, Merchant S M, Morral J E, Parker C A, Prince A, Smith G D, Zedalis M S. Handbook of Alloy Phase Diagrams (10th ed.) [M]. USA:ASM International,1996, 745.
    [22]Villars P, Calvert L D. Pearson's Handbook of Crystallographic Data for Intermetallic Phases(2nd ed.) [M]. USA:ASM International,1991.
    [23]Mohri T, Chen Y J. First-Principles Investigation of Lio-disorder phase equilibria of Fe-Ni,-Pd and-Pt binary alloy systems [J]. J. Alloys Compd.,2004,383(1-2):23-31.
    [24]Dowden P A, Miller A. Surface segregation phenomena[M]. Boston:CRC Press,1990.
    [25]L(?)vvik O M. Surface segregation in palladium based alloys from density-functional calculations [J]. Surf. Sci.,2005,583(1):100-106.
    [26]刘建才,张新明,陈明安,唐建国,刘胜旦.密度泛函理论预测微量元素在A1(100)表面的偏聚[J].物理化学学报,2009,25(12):2519-2523.
    [1]Beebe T P, Goodman D W, Kay B D, Yates J T. Kinetics of the activated dissociative adsoiption of methane on the low index planes of nickel single crystal surfaces [J]. J. Chem. Phys.,1987,87(4):2305-2315.
    [2]Chorkendorff I, Alstrup I, Ullmann S. XPS study of chemisorption of CH4 on Ni(100) [J]. Surf. Sci.,1990,227(3):291-296.
    [3](?)lgaard N B, Luntz A C, Holmblad P M, Chorkendorff I. Activated dissociative chemisorption of methane on Ni(100)----A direct mechanism under thermal conditions [J]. Catal. Lett.,1995,32(1-2):15-30.
    [4]Burghgraef H, Jansen A P J, van Santen R A. Theoretical investigation of CH4 decompositon on Ni:Electronic structure calculations and dynamics [J]. Faraday Discuss., 1993,96:337-347.
    [5]Alstrup I and Tavares M T. The kinetics of carbon formation from CH4+H2 on a silica supported nickel catalyst [J]. J. Catal.,1992,135(1):147-155.
    [6]Solymosi F, Erdohelyi A, Cserenyi J. A comparative study on the activation and reactions of CH on supported metals [J]. Catal. Lett.,1992,16(4):399-405.
    [7]McCarty J G, Wise H. Hydrogenation of surface carbon on alumina-supported nickel [J]. J. Catal.,1979,57(3):406-416.
    [8]Bartholomew C H. Carbon deposition in steam reforming and methanation [J]. Catal. Rev. Sci. Eng.,1982,24(1):67-112.
    [9]Ceyer S T. Translational and collision-induced activation of CH4 on Ni(111): phenomena connectiong ultra-high-vacuum surface science to high-pressure heterogeneous catalysis [J]. Langmuir,1990,6(1):82-87.
    [10]Burghgraef H, Jansen A P J, van Santen R A. Methane activation and dehydrogenation on nickel and cobalt:a computational study [J]. Surf. Sci.,1995,324(2-3):345-356.
    [11]Purwanto W W, Muharam Y. The role of catalysis for effective conversion and utilization of natural gas status and persfective [R]. Proceedings of the Sixth AEESEAP Triennial Conference Kuta, Bali, Indonesia, August 23-25,2000.
    [12]Au C T, Liao M S, Ng C F. A detailed theoretical treatment of the partial oxidation of methane to syngas on transition and coinage metal(M) catalysts(M=Ni.Pd,Pt.Cu) [J]. J. Phys. Chem. A,1998,102(22):3959-3969.
    [13]Liao M-S, Au C-T, Ng C-F. Methane dissociation on Ni, Pd, Pt and Cu metal (111) surfaces:A theoretical comparative study [J]. Chem. Phys. Lett.,1997,272(5-6): 445-452.
    [14]Beengaard H S. Alstrup I, Chorkendorff I, Ullmann S, Rostrup-Nielsen J R. Norskov J K. Chemisorption of methane on Ni(100) and Ni(111) surfaces with preadsorbed potassium [J]. J. Catal.,1999,187(1):238-244.
    [15]Haroun M F, Moussounda P S, Legare P. Theoretical study of methane adsorption on perfect and defective Ni(111) surfaces [J]. Catal. Today,2008,138(1-2):77-83.
    [16]Haroun M F, Moussounda P S, Legare P. Dissociative adsorption of methane on Ni(111) surface with and without adatom:A theoretical study [J]. J. Mol. Stru. (THEOCHEM). 2009,903(1-3):83-88.
    [17]Abild-Pedersen F, Lytken O, Engbas k J, Nielsen G, Chorkendorff I, N(?)rskov J K. Methane activation on Ni(111): Effects of poisons and step defects [J]. Surf. Sci.,2005,590(2-3): 127-137.
    [18]Zuo Z, Huang W, Han P, Li Z. A density functional theory study of CH4 dehydrogenation onCo(111) [J].Appl. Surf. Sci.,2010,256(20):5929-5934.
    [19]Moussounda P S, Haroun M F, Mabiala B M, Legare P. A DFT investigation of methane molecular adsorption on Pt(100) [J]. Surf. Sci.,2005,594(1-3):231-239.
    [20]Sorescu D C. First-principles calculations of the adsorption and hydrogenation reactions of CH*(x=0-4) species on a Fe(100) surface [J]. Phys. Rev. B,2006,73(15): 155420-155436.
    [21]An W, Zeng X C, Turner C H. First-principles study of methane dehydro-genation on a bimetallic Cu/Ni(111) surface [J]. J. Chem. Phys.,2009,131(17):17470201-17470212.
    [22]Lee M B, Yang Q Y, Ceyer S T. Dynamics of the activated dissociative chemisorption of CH4 and implication for the pressure gap in catalysis:A molecular beam-high resolution electron energy loss study [J]. J. Chem. Phys.,1987,87(5):2724-2741.
    [23]Lee M B, Yang Q Y, Tang S L, Ceyer S T. Activated dissociative chemisorption of CH4 on Ni(111):Observation of a methyl radical and implication for the pressure gap in catalysis [J]. J. Chem. Phys.,1986,85(3):1693-1694.
    [24]Liu H, Zhang R, Yan R, Wang B, Xie K. CH4 dissociation on NiCo(111) surface:A first-principles study [J].Appl. Surf. Sci.,2011.257(21):8955-8964.
    [25]Siegbahn P E M, Panas I. A theoretical study of CHx chemisorption on the Ni(100) and Ni(111) surfaces [J]. Surf. Sci.,1990,240(1-3):37-49.
    [26]Swang O, Faegri K, Gropen O, Wahlgren U, Siegbahn P. A theoretical study of the chemisorption of methane on a Ni(100) surface [J]. Chem. Phys.,1991,156(3):379-386.
    [27]Yang H, Whitten J L. Chemisorption of atomic H and CH.T fragments on Ni(111) [J]. Surf. Sci.,1991.255(1-2):193-207.
    [28]Yang H, Whitten J L. Ab initio chemisorption Studies of CH3 on Ni(111) [J]. J. Am. Chem. Soc.,1991,113(17):6442-6449.
    [29]Yang H, Whitten J L. Dissociative chemisorption of CH4 on Ni(111) [J]. J. Chem. Phys., 1992,96(7):5529-5537.
    [30]Michaelides A, Hu P. Methyl chemisorption on Ni(111) and C-H-M multicentre bonding: A density functional theory study [J]. Surf. Sci.,1999,437(3):362-376.
    [31]Michaelides A, Hu P. A density functional theory study of CH2 and H adsorption on Ni(111) [J]. J. Chem. Phys.,2000,112(13):6006-6014.
    [32]Michaelides A, Hu P. A first principles study of CH3 dehydrogenation on Ni(111) [J]. J. Chem. Phys.,2000,112(18):8120-8125.
    [33]Wang S G, Cao D B, Li Y W, Wang J, Jiao H. CH4 dissociation on Ni surfaces:Density funcitional theretical study [J]. Surf. Sci.,2006,600(16):3226-3234.
    [34]Bj(?)rgum E, Chen D, Bakken M G, Christensen K O, Holmen A, Lytken O, Chorkendorff I. Energetic mapping of Ni catalysts by detailed kinetic modeling [J]. J. Phys. Chem. B, 2005,109(6):2360-2370.
    [35]Xu J, Saeys M. Improving the coking resistance of Ni-based catalysts by promotion with subsurface boron [J]. J. Catal.,2006,242(1):217-226.
    [36]Mortensen K, Besenbacher F, Stensgaard I, Wampler W R. Deuterium on the Ni(111) surface:An adsorption-position determination by transmission channeling [J]. Surf. Sci., 1988,205(3):433-446.
    [37]Pillay D, Johannes M D. Comparison of sulfur interaction with hydrogen on Pt(111), Ni(111) and Pt3Ni(111) surfaces:The effect of intermetallic bonding [J]. Surf. Sci.,2008, 602(16):2752-2757.
    [38]Yang H, Whitten J L. Adsorption of SH and OH and coadsorption of S, O and H on Ni(111) [J]. Surf. Sci.,1997,370(2-3):136-154.
    [39]Delbecq F, Zaera F. Origin of the selectivity for trans-to-cis isomerization in 2-butene on Pt(111) single crystal surfaces [J]. J. Am. Chem. Soc.,2008,130(45):14924-14925.
    [40]Lin R-J, Li F-Y, Chen H-L. Computational investigation on adsorption and dissociation of the NH3 molecule on the Fe(111) surface [J]. J. Phys. Chem. C,2011,115(2): 521-528.
    [41]Besenbacher F, Chorkendorff Ⅰ, Clausen B S. Structure and reactivity of Ni-Au nanoparticle catalysts [J]. J. Phys. Chem. B,2001,105(23):5450-5458.
    [42]Galea N M, Knapp D, Ziegler T. Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells:Suggestions for coke reduction [J]. J. Catal.,2007,247(1):20-33.
    [43]Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter T R, Moses P G, Skulason E, Bligaard T, Norskov J K. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J]. Phys. Rev. Lett.,2007, 99(1):016105-016108.
    [44]Takenaka S, Orita Y, Matsune H, Tanabe E, Kishida M. Structures of silica-supported Co catalysts prepared using microemulsion and their catalytic performance for the formation of carbon nanotubes through the decomposition of methane and ethylene [J]. J. Phys. Chem. C,2007,111(21):7748-7756.
    [45]Zhang Y, Smith K J. CH4 decomposition on Co catalysts:Effect of temperature, dispersion, and the presence of H2 or CO in the feed [J]. Catal. Today,2002,77(3): 257-268.
    [46]Zhang Y, Smith K J. A kinetic model of CH4 decomposition and filamentous carbon formation on supported Co catalysts [J]. J. Catal.,2005,231(2):354-364.
    [47]Zhang Y, Smith K J. Carbon formation thresholds and catalyst deactivation during CH4 decomposition on supported Co and Ni catalysts [J]. Catal. Lett.,2004,95(1-2):7-12.
    [48]Nagy J B, Bister G, Fonseca A, Mehn D, Konya Z, Kiricsi I, Horvath Z E, BiroL P. On the growth mechanism of single-walled carbon nanotubes by catalytic carbon vapor deposition on supported metal catalysts [J]. J. Nanosci. Nanotechno.,2004,4(4): 326-345.
    [49]Takenaka S, Ishida M, Serizawa M, Tanabe E, Otsuka K. Formation of carbon nanofibers and carbon nanotubes through methane decomposition over supported cobalt catalysts [J]. J. Phys. Chem. B,2004,108(31):11464-11472.
    [50]Wood J D, Schmucker S W, Lyons A S, Pop E, Lyding J W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor depositon [J]. Nano Lett.,2011,11(11): 4547-4554.
    [51]Besenbacher F, Chorkendorff I, Clausen B S, Hammer B, Molenbroek A M, Norskov J K, Stensgaard I. Design of a surface alloy catalyst for steam reforming [J]. Science,1998, 279:1913-1915.
    [52]Yang Y, Li W, Xu H. A new explanation for carbon deposition and elimination over supported Ni, Ni-Ce and Ni-Co catalysts for CO2 reforming of CH4 [J]. React. Kinet. Catal. Lett..2002.77(1):155-162.
    [53]Fan C, Zhou X-G, Chen De, Cheng H-Y, Zhu Y-A. Toward CH4 dissociation and C diffusion during Ni/Fe-catalyzed carbon nanofiber growth:A density functional theroy study [J]. J. Chem. Phys.,2011,134(13):134704-134715.
    [54]Tanaka A, Yoon S H, Mochida I. Preparation of highly crystalline nanofibers on Fe and Fe-Ni catalysts with a variety of graphene plane alignments [J]. Carbon,2004,42(3): 591-597.
    [55]Zhou J H, Sui Z J, Li P, Chen D, Dai Y C, Yuan W K. Structural characterization of carbon nanofibers formed from different carbon-containing gases [J]. Carbon,2006, 44(15):3255-3262.
    [56]李斗星.镍基和铁基催化剂上甲烷催化裂解反应的研究[D].天津:天津大学, 2009.
    [57]Liu H,Yan R,Zhang R,Wang B,Xie K.A DFT theoretical study of CH4 diSSOCiation on gold-alloyed Ni(111)surface[J].J.Nat.Gas Chem.,2011,20(6):611-617.
    [58]Nielsen L P,Besenbacher F Stensgaard I,Legsgaard E.Inilial growth of Au on Ni(110): Surfhce a11oying ofimmiscible metals[J].Phys.Rev.Lett.,1993,71(5):754-757.
    [59]Chin Y H,King D L,Roh H S,Wang Y Heald S M.Structure and reactiViIy investigations on supported bimetallic Ni-Au catalysts fOr hydrocarbon steam refOrrning[J].J.CataJ., 2006,244(2):153-162.
    [60]Bligaard T,Norskov J K,Dahl S,Matthiesen J,Christensen C H,Sehested J.The Bronsted-Evans-Polanyi relation and the VOlcarlo curve in heterogeneous catalysis[J].J. CataI.,2004,224(1):206-217.
    [61]NorskOV J K,Bligaard L Hvolbaek B,Abild-Pedersen F Chorkendorff Ⅰ,ClaUS H.The nature of the actiVe site in heterogeneous metal catalysis[J].Chem.SOC.Rev.,2008, 37(10):2163-2171.
    [62]Ren R,Niu C,Bu S,ZhOH Y LV Y-Wang G Why is metallic Pt the best catalyst for methoXy decompositon?[J].J.Nat.Gas CheFll.,2011,20(1):90-98.
    [63]Ljma F H B,Zhang J,Shao M H,Sasaki K.Vukmirovic M B,TicianeIli E A,Adzic R R. Catalytic actiVity-d-band center correlation for the 02 reduction reaction oil pIatinUN in alkaline Solutions[J].J.Phys.Chem.C,2007.111(1):404-410.
    [64]Toyoda E,Jinnouchi R,Hatanaka.Ij Morimoto Y.MitStlhara K.Visjkovskiy A,Kido y The d-band structure of Pt nanoclusters correlated with the cataIytic actiVity for all Oxygen reduction reaction[J].J.Phys.Cheill.C,2011,115(43):21236-21240.
    [65]Skoplyak 0,Barteau M A,Chell J G.RefOrlTlillg of OXygenates for H2 production: Cortelating reactiVity of ethylene glycol alld ethanol on Pt(111)and Ni/Pt(111)with Surface d-band center[J].J.Phys.Chel-r1.B,2006,110(4):1686-1694.
    [1]Erdohelyi A, Cserenyi J, Solymosi F. Activation of CH4 and its reaction with CO2 over supported Rh catalysts [J]. J. Catal,1993,141(1):287-299.
    [2]Tsang S C, Claridge J B, Green M L H. Recent advances in the conversion of methane to synthesis gas [J]. Catal Today,1995,23(1):3-15.
    [3]Tomishige K, Yamazaki O, Chen Y, Yokoyama K Y, Li X, Fujimoto K. Development of ultra-stable Ni catalysts for CO2 reforming of methane [J]. Catal. Today,1998,45(1-4): 35-39.
    [4]Michaelides A, Hu P. A density functional theory study of the reaction of C+O, C+N, and C+H on close packed metal surfaces [J]. J. Chem. Phys.,2001,114(13):5792-5795.
    [5]List F A, Blakely J M. Kinetics of CO formation on singular and stepped Ni surfaces [J]. Surf. Sci.,1985,152/153:463-470.
    [6]Aloysius S, Mira T, Bernard D, Catherine S. Oxygen adsorption and stability of surface oxides on Cu(111): A first-principles investigation [J]. Phys. Rev. B,2006,73(16): 16542401-16542411.
    [7]Xu Y, Mavrikakis M. Adsorption and dissociation of O2 on Cu(111): Thermochemistry, reaction barrier and the effect of strain [J]. Surf. Sci.,2001,494(2):131-144.
    [8]Lo J M H, Ziegler T. Computational studies of the adsorption and diffusion of hydrogen on Fe-Co alloy surfaces [J]. J. Phys. Chem.,2008,112(10):3667-3678.
    [9]L(?)vvik O M, Olsen R A. Density functional calculations of hydrogen adsorption on palladium-silver alloy surfaces [J]. J. Chem. Phys.,2003,118(7):3268-3276.
    [10]Ozawa N, Arboleds N B, Nakanishi H, Kasai H. First principles study of hydrogen atom adsorption and diffusion on Pd3Ag(111) surface and in its subsurface [J]. Surf. Sci., 2008, 602(15):859-863.
    [11]Yang Y, Li W, Xu H. A new explanation for carbon deposition and elimination over supported Ni, Ni-Ce and Ni-Co catalysts for CO2 reforming of CH4 [J]. React. Kinet. Catal. Lett.,2002,77(1):155-162.
    [1]钱岭,阎子峰.担载型镍基催化剂上甲烷二氧化碳重整反应机理的研究[J].复旦学报,2003,42(3):392-395.
    [2]Zhu Y-A, Dai Y-C, Chen D, Yuan W-K. First-principles study of C chemisorption and diffusion on the surface and in the subsurfaces of Ni(111) during the growth of carbon nanofibers [J]. Surf. Sci.,2007,601(5):1319-1325.
    [3]Cinquini F, Delbecq F, Sautet P. A DFT comparative study of carbon adsorption and diffusion on the surface and subsurface of Ni and Ni3Pd alloy [J]. Phys. Chem. Chem. Phys.,2009,11:11546-11556.
    [4]Siegel D J, Hamilton J C. First-principles study of the solubility, diffusion, and clustering of C in Ni [J]. Phys. Rev. B,2003,68:0941051-0941056.
    [5]Zhu Y-A, Zhou X-G, Chen D, Yuan W-K. First-Principles Study of C adsorption and diffusion on the surfaces and in the subsurfaces of nonreconstructed and reconstructed Ni(100) [J]. J. Phys. Chem. C,2007,111(8):3447-3453.
    [6]Rosei R, Crescenzi M D, Sette F, Quaresima C, Savoia A, Perfetti P. Structure of graphitic carbon on Ni(111): A surface extended-energy-loss fine-structure study [J]. Phys. Rev. B,1983,28(2):1161-1164.
    [7]Klink C, Stensgaard I, Besenbacher F, Laegsgaard E. An STM study of carbon-induced structures on Ni(111):Evidence for a carbidic-phase clock reconstruction [J]. Surf. Sci., 1995,342(1-3):250-260.
    [8]Gamo Y, Nagashima A, Wakabayashi M, Terai M, Oshima C. Atomic structure of monolayer graphite formed on Ni(111) [J]. Surf. Sci.,1997,374(1-3):61-64.
    [9]Bertoni G, Calmels L, Altibelli A, Serin V. First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface [J]. Phys. Rev. B,2005, 71(7):0754021-0754028.
    [10]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett.,1996,77(18):3865-3868.
    [11]Kalibaeva G, Vuilleumier R, Meloni S, Alavi A, Ciccotti G, Rosei M. Ab initio simulation of carbon clustering on an Ni(111) surface:A model of the poisoning of nickel-based catalysts [J]. J. Phys. Chem. B,2006,110(8):3638-3646.
    [12]Helveg S, Lopez-Cartes C, Sehested J, Hansen P L, Clausen B S, Rostrup-Nielsen J R, Abild-Pedersen F, N(?)rskov J K. Atomic-scale imaging of carbon nanofibre growth [J]. Nature,2004,427:426-429.
    [13]Abild-Pedersen F, N(?)rskov J K, Rostrup-Nielsen J R, Sehested J, Helveg S. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations [J]. Phys. Rev. B,2006,73(11):1154 1901-11541913.
    [14]Fuentes-Cabrera M, Baskes M I, Melechko A V, Simpson M L. Bridge structure for the graphene/Ni(111) system:A first principles study [J]. Phys. Rev. B,2008,77(3): 0354051-0354055.
    [15]Gajewski G, Pao C-W. Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface [J]. J. Chem. Phys.,2011,135(6): 0647071-0647079.
    [16]Cheng J, Hu P, Ellis P, French S, Kelly G, Lok C M. Chain growth mechanism in Fischer-Tropsch synthesis:A DFT study of CC coupling over Ru. Fe, Rh, and Re surfaces [J]. J. Phys. Chem. C,2008,112(15):6082-6086.
    [17]黄传敬,郑小明,费金华.用不同前驱体制备的Co/SiO2催化剂的结构及其CO2/CH4重整反应性能[J].催化学报,2001,22(2):138-142.
    [18]Ruckenstein E, Wang H Y. Carbon depostion and catalytic deactivation during CO2 reforming of CH4 over Co/γ-Al2O3 catalysts [J].J. Catal.,2002,205(2):289-293.
    [19]Chen H-W; Wang C.-Y.; Yu C-H; Tseng L-T; Liao P-H. Carbon dioxide reforming of methane reaction catalyzed by stable nickel copper catalysts [J]. Catal. Today,2004, 97(2-3):173-180.
    [20]Lee S-I, Vohs J M, Gorte R J. A study of SOFC anodes based on Cu-Ni and Cu-Co bimetallics in CeO2-YSZ [J]. J. Electrochem. Soc.,2004,151(9):A1319-A1323.
    [1]Raupp G B, Dumesic J A. Effect of varying titania surface coverage on the chemisorptive behavior of nickel [J]. J. Catal.,1985,95(2):587-601.
    [2]Chou P, Vannice M A. Calorimetric heat of adsorption measuremetns on palladium:I. Influence of crystallite size and support on hydrogen adsorption [J]. J. Catal.,1987, 104(1):1-16.
    [3]Herrmann J M. Electronic effects in strong metal-support interactions on titania deposited metal catalysts:Reply to F. Solymosi's comments [J]. J. Catal.,1985,94(2): 587-589.
    [4]Sarapatka T J. XPS-XAES study of charge transfers at Ni/Al2O3/Al systems [J]. Chem. Phys. Lett.,1993,212(1-2):37-42.
    [5]Kang J H, Shin E W, Kim W J, Park J D, Moon S H. Selective hydrogenation of acetylene on TiCb-added Pd catalysts [J]. J. Catal.,2002,208(2):310-320.
    [6]Tomishige K, Chen Y G, Fujimoto K. Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts [J]. J. Catal.,1999,181(1):91-103.
    [7]Bradford M C J, Vannice M A. CO2 reforming of CH4 over supported Pt catalysts [J]. J. Catal.,1998,173(1):157-171.
    [8]Bitter J H, Seshan K, Lercher J A. The state of zirconia supported platinum catalysts for CO2/CH4 reforming [J]. J. Catal.,1997,171(1):279-286.
    [9]Zhang Z, Verykios X E. Carbon deoxide reforming of methane to synthesis gas over Ni/La2O3 catalysts [J]. Appl. Catal. A,1996,138(1):109-133.
    [10]Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity [J]. Appl. Catal. A,1996,142(1): 73-96.
    [11]Xu Z, Li Y, Zhang J, Chang L, Zhou R, Duan Z. Bound-state Ni species-A superior form in Ni-based catalyst for CH4/CO2 reforming [J]. Appl. Catal. A,2001,210(1-2):45-53.
    [12]Kao C C, Tsai S C, Bahl M K, Chung Y W, Lo W J. Electronic properties, structure and temperature dependent composition of nickel deposited on rutile titanium dioxide (110) surface [J]. Surf. Sci.,1980,95:1-14.
    [13]Kim K S, Winograd N. X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment [J]. Surf. Sci.,1974,43(2):625-643.
    [14]赵良仲.潘承璜.Ni的氧化行为及其表面氧化物热稳定性的XPS研究[J].金属学报,1988,24(5):B359-B363.
    [15]Kim K S, Davis R E. Electron spectroscopy of the nickel-oxygen system [J]. J. Electron Spectrosc. Relat. Phenom.,1972/3,1(3):251-258.
    [16]陈久岭,陈青海,乔元华,李永丹.Ni和A12O3间相互作用的调变对Ni/Al2O3在甲烷裂解过程中催化性能的影响[J].石油化工,2004,33(增刊):858-860.
    [17]Sauderson R T. Principles of electronegativity Part Ⅰ. Applications [J]. Chem. Educ.,1988, 65(2):112.
    [18]Sauderson R T. Principles of electronegativity Part Ⅱ. Applications [J]. Chem. Educ.,1988, 63(3):227.
    [19]许锁坤.用Pauling电负性估算原子部分电荷的新方法[J].河北师范大学学报,1993.4:42-45.
    [20]Bratsch S G. Electronegativity equalization with Pauling units [J]. Chem. Educ.,1984, 61(7):588.
    [21]黄华为.根据X射线光电子能谱结合能位移与原子电荷间的线性相关探索金属氧 化物催化剂中载体及助剂的作用[J].天津商学院学报,1998,2:13-19.
    [22]王广昌.电负性和价态[J].化学通报,1983,7:39-45.
    [23]王广昌.分子中原子电荷的一种新的计算法[J].化学通报,1994,(1):46-50.
    [24]Matienzo L J, Yin L I, Grim S O, Seartz W E. X-ray photoelectron spectroscopy of nickel compounds [J]. Inorg. Chem.,1973,12(12):2762-2769.
    [25]Wang Y, Florez E, Mondragon F, Truong T N. Effects of metal-support interactions on the electronic structures of metal atoms adsorbed on the perfect and defective MgO(100) surfaces [J]. Surf. Sci.,2006,600(9):1703-1713.
    [26]Pan Y, Liu C, Ge Q. Adsorption and protonation of CO2 on partially hydroxylated Y-Al2O3 surfaces:A density functional theory study [J]. Langmuir,2008,24(21): 12410-12419.
    [27]Pan Y, Liu C, Wiltowski T S, Ge Q. CO2 adsorption and activation over y-Al2O3-supported transitioin metal dimers:A density functional study [J]. Catal. Today, 2009,147(2):68-76.
    [28]Chen P. Zhang H-B. Lin G-D, Tsai K-R. Development of coking-resistant Ni-based catalyst for partial oxidation and CO2-reforming of methane to syngas [J]. Appl. Catal. A, 1998,166(2):343-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700