流化床中甲烷裂解制氢过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿物燃料的使用向大气排放大量的CO2,产生全球气候温室气体效应,迫切需要发展矿物燃料脱碳技术。燃料电池因其较高的能量转换效率而受到广泛关注,低温燃料电池由于能够满足汽车燃料电池与小规模的制氢需要而成为研究热点。但低温燃料电池容许的COx含量较低,传统的制氢过程要达到上述要求是不经济的。甲烷裂解制氢可以脱除天然气中的碳,制得的氢气不含CO,而且氢气过程得以简化,是很有前景的制氢过程。因此,研究甲烷裂解制氢具有十分重要的意义。
     甲烷在催化剂上裂解生长碳使催化剂失活,要实现连续制氢就必须对催化剂进行再生。选用25Ni/Cu-Al2O3和75Ni/Cu-Al2O3两种催化剂,分别在500℃和650℃进行甲烷裂解制氢与催化剂再生,反应与再生过程的温度与时间保持相同,催化剂再生时采用空气进行再生,气体流量均为370 cm3/min(STP),考察催化剂活性与稳定性的影响因素。实验结果表明低镍含量的催化剂表现出较好的稳定性,温度增加时其稳定性降低。甲烷转化率随操作周期呈下降趋势,但25Ni/Cu-Al2O3催化剂在500℃制氢与再生操作达到第五周期时,其甲烷转化率趋于稳定。对切换时间的影响研究表明切换时间存在一个最佳值,即5分钟的切换时间甲烷裂解制氢效率最高。对生成碳产品进行了XRD和TEM表征,并对实验结果进行了讨论。
     甲烷裂解同时制氢和碳纳米管工艺过程能有效降低制氢成本。本文重点考察催化剂组成、反应温度、甲烷浓度对碳纳米材料的规模生产与性能的影响。研究发现镍铝催化剂(3Ni1Al)在600 oC时纯甲烷裂解制氢的浓度较高,达到~55%,积碳量达9mgC/mgcat。铜修饰后催化剂的活性温区上移,650 oC时纯甲烷裂解制得的氢气浓度较高,达到63%,相应的积碳量达8 mgC/mgcat。TPO技术定量表征了碳产品的组成, Raman光谱和TEM(HRTEM)表征了碳产品的石墨化程度。压汞法对碳纳米管的孔结构进行了表征,适合用作气体吸附剂、催化剂载体与催化剂。
     反应器操作模式能影响甲烷催化裂解制氢过程。以纯甲烷为原料,分别考察了75Ni10Cu15Al和2Co1Al(原子比)催化剂上流化床与固定床操作模式下甲烷裂解制氢反应,结果表明流化床中的甲烷裂解反应速率较高。流化床操作的高表观速率主要是因为此模式下有效消除了外扩散,同时极大减少了内扩散阻力。不同温度下催化剂上生长的碳的TEM表征发现,金属颗粒尺寸随反应温度增加而增加,表明催化剂烧结是失活原因之一。但相同温度下固定床中催化剂金属颗粒尺寸明显大于流化床中的金属颗粒尺寸,且金属颗粒尺寸分布变宽,这说明流化床反应器有利于阻止金属颗粒的烧结。通过对甲烷裂解催化剂失活原因的分析发现流化床中催化剂颗粒的流态化有利于延长催化剂活性寿命。
     反应条件是影响催化剂活性的重要因素。采用15Ni3Cu2Al(原子比)复合氧化物催化剂,用氮气稀释的甲烷为原料,在流化床中对甲烷催化裂解制氢进行了研究。初始甲烷浓度范围为20%-50%,反应温度控制在500-680oC,临界流化高度为10-30mm。600oC时反应气体流量控制在250-360 ml/min (标准状态)之间,流化床稳定操作可以在一定的反应时段内实现。当初始甲烷浓度为48%,反应温度600oC,产物氢气浓度达42%,且可以稳定维持在30min以上,能实现氢气的稳定生产。对实验动力学数据进行数学模拟,分别提出了碳生长反应初期和平稳期的反应动力学模型,计算结果表明误差小于2%。
     流化床中催化剂颗粒的流化状态影响反应效率,而催化剂颗粒尺寸及其分布是影响流化状态的最重要因素之一。采用75Ni-15Cu-10Al (原子比)催化剂,反应气体为纯甲烷,气体空速为0.099 m3/gh (STP),反应温度550℃,反应时间为1小时。不同的催化剂颗粒尺寸及其分布得到相应的积碳量,并进行回归处理。为了探讨催化剂颗粒尺寸及其分布对甲烷裂解反应的影响程度,选择了两种回归方案,一是以催化剂颗粒尺寸、颗粒分布宽窄(称之为分布因素1)为自变量的回归方案,另一个则是以颗粒尺寸、分布因素1和主次分布区域比例(称之为分布因素2)为自变量的回归方案。两者的回归结果分析表明模型与参数估值的可靠性较高,准确性也能满足要求。但在进行优化设计的时候发现后者与实际情况较符合,这说明颗粒分布对流化状态的影响不能忽略。
It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO2 emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO2 greenhouse gas climate change problem. The intense interest in fuel cell technology stems from the fact that fuel cells are environmentally benign and extremely efficient. The stringent COx-free hydrogen requirement for the current low temperature fuel cells has motivated the development of COx-free hydrogen production alternatives to the conventional hydrogen production technologies. It is therefore, desirable to explore other avenues for hydrogen production with specific applications for fossil fuel decarbonization and current fuel cells. Methane catalytic decomposition significantly simplifies the conventional hydrogen production process and makes it particularly attractive for fuel cell application.
     In the present paper, we report the results of catalytic behaviour of 25Ni/Cu-Al2O3 and 75Ni/Cu-Al2O3 catalysts and characterization of formed carbon by XRD and TEM over them during the catalytic decomposition of methane and catalyst regeneration. CO-free H2 was produced intermittently by methane decomposition and the formed carbon combustion in a fluidized bed reactor in cyclic manner. The process involved two reactions: first, catalytic decomposition of methane to H2 and carbon (deposited on the catalyst), and second, gasification of the carbon deposited on the catalyst by air to CO2. The two reactions were carried out separately in cyclic manner by switching a methane-containing feed and a air-containing feed at a predecided interval of time. 25Ni/Cu-Al2O3 catalyst behaves higher stability than 75Ni/Cu-Al2O3 catalyst in the cycle operation. And it reduces with operation temperature increase. The process shows best performance at an optimum value (5min) of the feed switchover time.
     With the thorough progress of research and application of carbon nanotubes, the Simultaneous process for hydrogen and carbon nanotubes got extensive attention in the world. But some troubles of the operation in a fixed bed reactor such as volume expansion, catalyst loading and carbon product unloading, etc., baffled the progress of the process. So the process for hydrogen and carbon nanotubes from methane decomposition in a fluidized bed reactor was investigated. The effects of some factors such as catalyst composition, reaction temperature, and initial methane concentration on hydrogen yield, hydrogen content in product, carbon nanotube composition and configuration were studied. It was discovered that hydrogen content in product and carbon yield reached ~55%, 9mgC/mgcat respectively at 600oC over 3Ni1Al catalyst. When the catalyst was deposited by metal copper, the reactive temperature range of the catalyst ascended. The corresponding values arrived at 63%and 8mgC/mgcat at 650oC respectively. Carbon formed on catalysts was characterized by TPO, Raman, TEM (HRTEM) and pore measurement. It was found that the quantitative result from TPO was basically consistent to the experimental data. Therefore the quantitative characterization of carbon by TPO may be considered feasible.
     In fact, reactor type would affect the process for hydrogen production from methane decomposition. So in the next work the processes from methane decomposition in fluidized and fixed bed reactors were compared. Hydrogen production was investigated over 75Ni10Cu15Al, 2Co1Al (atomic ratio) catalysts in two types of reactors respectively. Pure methane was used as reaction gas. It was displayed that the performance in a fluidized bed was obviously higher than that in a fixed bed. The carbon formed at 600oC and 700oC respectively was characterized by TEM. It appeared that the size of metal particle increased with reaction temperature growth. This means that sinter between metal particles had taken place. But at the same reaction temperature it in a fixed bed was bigger than that in a fluidized bed and size distribution was wider. It may be considered that fluidized bed reactor was beneficial to prevent the sinter. The analysis of catalyst deactivation reasons indicated that throwback could prolong the lifetime of catalysts. It may be concluded that the main reason of high performance in a fluidized bed was throwback and relative prevention of sinter between metal particles.
     The effect of reaction conditions on hydrogen production from methane decomposition and its kinetics were investigated. In the same way, 15Ni3Cu2Al(atomic ratio)was used as the catalyst for methane decomposition. Diluted methane was used as reaction regent, reaction temperature was controlled between 500-680oC and gas volume was selected between 250-360 ml/min. fluidization may be maintained for some trivial. When the initial methane concentration was 48% and reaction temperature was 600oC, hydrogen content in product gas reached 42% and also maintained for over 30 minutes. According to the kinetic experimental data, kinetic models for growing and stability period of carbon growth were posted respectively. The error of theoretical values was less than 2%.
     Fluidization was affected by the size of catalyst particles and their distribution and the change of methane conversion took place. In order to make the mathematical relationship between them, the quantitative characterization of particle distribution must be made. But it was usually characterized by distribution diagram. In the text two distribution variables were used to characterize the distribution, distribution variable 1 that means width degree of particle distribution and distribution variable 2 that means proportion of particle weight in the secondary distribution region to that in the main distribution region. And then regression analysis was done. Reaction conditions were 15Ni3Cu2Al(atomic ratio)catalyst, reaction temperature 550 oC and gas volume 340 ml/min. Two regression schemes were selected: one in which particle size and distribution factor 1 were choosed as independent variables and another one in which particle size, distribution factor 1 and distribution factor 2 were choosed as independent variables. Regressive results indicated that reliability and veracity were satisfactory. But in the next step for their optimization design, it was found that the last situation was more accorded to the experiment than the first one. This implied that the effect of particle distribution on fluidization was complicated. The above results will be of instructional meaning to the next implication.
引文
[1] Houghton, et al., editors, International Panel on Climate Change, Climate change, Cambridge: Cambridge University Press, 1995
    [2] K. Blok, R. Williams, R. Katofsky, et al., Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery, Energy, 1997, 22:161–8
    [3] International Energy Agency, Carbon dioxide capture from power stations, IEA, 1998
    [4] R. Socolow, editor, Fuels decarbonization and carbon sequestration, Report of a Workshop, PU/CEES Report No. 302, Princeton University, 1997
    [5] S. Stevens, J Gale, Geologic CO2 sequestration, Oil Gas J, 2000, 98:40-44
    [6] M. Steinberg, Fossil fuel decarbonization technology for mitigating global warming, Inter. J. Hydrogen Energy, 1999, 24: 771-
    [7] A.J. Appleby, F.R. Foulkes, Fuel Cell Handbook, New York: Nostrand Reinhold (Van), 1989
    [8] J.R. Rostrup-Nielsen, in: J.R. Anderson, M. Boudart (Eds.), Catalytic Steam Reforming, Science and Engineering, Vol. 5. Berlin: Springer, 1984
    [9] T.V. Choudhary, D.W. Goodman, Stepwise methane steam reforming: A route to CO-free hydrogen, Catal. Lett., 1999, 59: 93-94
    [10] T.V. Choudhary, D.W. Goodman, CO-free productin of hydrogen via stepwise steam reforming of methane, J. Catal., 2000, 192: 316-321
    [11] T.V. Choudhary, C. Sivadinarayana, C. Chusuei, et al., D.W. Goodman, Hydrogen production via catalytic decomposition of methane, J. Catal., 2001, 199(1): 9-18
    [12] M. Steinberg, The Hy-C process (hermal decomposition of natural gas) potentially the lowest cost source of hydrogen with the least CO2 emission, BNL 61364, Brookhaven National Laboratory, NY: Upton, 1994
    [13] M. Steinberg, Production of hydrogen and methanol from natural gas with reduced CO emission, Proceedings of the Eleventh World Hydrogen Energy Conference (WHEC). Stuttgart, Germany: 1996, vol. 1: 499-510
    [14] M.Calahan, Catalytic pyrolysis of methane and other hydrocarbons, Proceedings of Conference on Power Sources, 1974, Vol. 26: 181
    [15] N.Z. Muradov, How to produce hydrogen from fossil fuels without CO2 emission, Inter. J. Hydrogen Energy, 1993, 18: 211-215
    [16] M. Pourier, C. Sapundzhiev, Catalytic decomposition of natural gas to hydrogen for fuel cell applications, Inter. J. Hydrogen Energy, 1997, 22: 429
    [17] T.P. Beebe, D.W. Goodman, J.T. Yates, Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces, J. Chem. Phys., 1987, 87: 2305-2315
    [18] R. Aiello, J. Fiscus, H. Loye, et al., Hydrogen production via the direct cracking of methane over Ni/SiO2: catalyst deactivation and regeneration, Appl. Catal. A: Gen., 2000, 192 (2): 227–234
    [19] J. Haggin, Direct conversion of methane to fuels, chemicals still intensely sought, Chem. Eng. News, 1992, 70 (17): 33-35
    [20] 陈久岭,甲烷催化裂解生产纳米碳纤维及其应用的基础研究, 博士学位论文,天津,天津大学化学工程系,1999
    [21] 周兴政,甲烷裂解制氢同时得到纳米碳材料的研究,硕士论文,天津,天津大学化工学院,2002
    [22] R.T.K. Baker, In situ electron microscopy studies of catalyst deactivation, Surf. Sci. Catal., 1991, 68: 1-4
    [23] C.H. Bartholomew, Carbon deposition in steam reforming and methanation, Catal. Rev. –Sci. Eng., 1982, 24: 67-112
    [24] J.R. Rostrup-Nielsen, Coking on nickel catalyst for steam reforming of hydrocarbons, J. Catal, 1974, 33: 184
    [25] Y. Nishiyama, Y. Tamai, Deposition of carbon and its hydrogenation catalyzed by nickel, Carbon, 1976, 14: 13
    [26] R.T.K. Baker, Catalytic growth of carbon filaments, Carbon, 1989, 27 (3): 315-323
    [27] G.S. Hoogenraad, The growth and utilization of carbon fibrils (thesis), Universiteit Utrecht, The Netherlands, 1995
    [28] G.G. Tibbetts, M. Endo, C.P.Jr. Beetz, Carbon fibers grown from the vapor phase: a novel material, Sampe J, 1986, september/october: 30
    [29] M.S. Kim, N.M. Rodriguez, R.T.K. Baker, The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments, J. Catal., 1991, 131: 60-73
    [30] T. Koyama, Formation of carbon fibers from benzene, Carbon, 1972, 10: 757
    [31] T. Koyama, M. Endo, Y. Onuma, Carbon fibers obtained by thermal decomposition of vaporized hydrocarbon, Japan J Appl Phys, 1972, 11: 445
    [32] T. Koyama, M. Endo, Structure and growth processes of vapor-grown carbonfibers, O Buturi, 1973, 42: 690
    [33] A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Crystal Growth, 1976, 32: 335
    [34] J.S. Speck, M. Endo, M.S. Dresselhaus, Structure and intercalation of thin benzene derived carbon fibers, J. Crystal Growth, 1989, 94: 834
    [35] H.W. Kroto, J.R. Health, S.C. O′Brien, et al., C60: Buckminsterfullerene, Nature, 1985, 318: 162
    [36] H.W. Kroto, Space, stars, C60 and soot, Science, 1988, 242: 1139
    [37] S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56-58
    [38] C.H. Kiang, W.A. Goddard, R. Beyers, et al., Carbon nanotubes with single-layer walls, Carbon, 1995, 33: 903-914
    [39] J.W. Mintmire, C.T. White, Electonic and structural properties of carbon nanotubes, Carbon, 1995, 33: 893
    [40] R.S. Ruoff, D.C. Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon, 1995, 33: 925-930
    [41] J.P. Issi, L. Langer, J. Heremans, et al., Electronic properties of carbon nanotubes: experimental results, Carbon, 1995, 33: 941
    [42] V. Ivanov, A. Fonseca, J.B. Nagy, et al., Catalytic production and purification of nanotubes having fullerene-scale diameters, Carbon, 1995, 33: 1727
    [43] A. Fonseca, K. Hernadi, J.B. Nagy, et al., Model structure of perfectly graphitizable coiled carbon nanotubes, Carbon, 1995, 33: 1795
    [44] J.C. Charlier, A. De Vita, X. Blasé, et al., Microscopic growth mechanisms for carbon nanotubes, Science, 1997, 275: 646
    [45] Y. Saito, Nanoparticles and filled nanocapsules, Carbon, 1995, 33: 979-988
    [46] M.G. Poirier, C. Sapundzhiev, Catalytic decomposition of natural gas to hydrogen for fuel cell applications, Inter. J. Hydrogen Energy, 1997, 22: 429–433
    [47] S. Takenaka, H. Ogihara, I. Yamanaka, et al., Decomposition of methane over supported-Ni catalysts: effects of the supports on the catalytic lifetime, Appl. Catal. A: Gen., 2001, 217 (1-2): 101–110
    [48] M.A. Ermakova, D.Yu. Ermakov, G.G. Kuvshinov, Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon: Part Ⅰ. Nickel catalysts, Appl. Catal. A: Gen., 2000, 201(1): 61-70
    [49] K. Otsuka, S. Kobayashi, S. Takenaka, Catalytic decomposition of light alkanes, alkenes and acetylene over Ni/SiO2, Appl. Catal. A: Gen., 2001, 210(1-2): 371-379
    [50] V.I. Zaikovskii, L.B. Avdeeva, Sh.K. Shaikhutdinov, Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition Ⅲ. Morphology and surface structure of the carbon filaments, Appl. Catal. A: Gen., 1996, 148: 123
    [51] A. Govindaraj, E. Flahallt, Ch. Laurent, et al., J. Mater Res., 1994, 14: 2567
    [52] M. Audier, M. Coulon, L. Bonnetain, Disproportionation of CO on iron-cobalt alloys—I : Thermodynamic study, Carbon, 1983, 21 (2): 93-97
    [53] L.B. Avdeeva, D.I. Kochubey, Sh.K. Shaikhutdinov, Cobalt catalysts of methane decomposition: accumulation of the filamentous carbon, Appl. Catal. A: Gen., 1999, 177 (1): 43-51
    [54] 马衍梅,催化生长碳纤维的研究,天津大学硕士学位论文,1999
    [55] 乔元华,甲烷裂解生成纳米碳的基础研究,天津大学硕士毕业论文,2001
    [56] 朴玲珏,氧化铝负载金属气凝胶催化剂上甲烷裂解制备碳纳米管的研究,天津大学博士学位论文,2002
    [57] T. Zhang, M.D. Amiridis, Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts, Appl. Catal. A: Gen., 1998, 167(2): 161-172
    [58] J.P. Zhou, C.Y. Li, S.K. Shen, Effects of temperature and time of CH4 decomposition on the carbon deposition over Ni/A12O3 Catalyst. Chin. J. Chem. Phys.,2000, 13 (6): 736-740
    [59] T. Ishihara, Y. Miyashita, H. Iseda, et al., Decomposition of methane over Ni/SiO2 catalysts with membrane for the production of hydrogen, Chem.Lett.,1995, 93-94
    [60] P.K. de Bokx, A.J.H.M. Kock, E. Boellaard, et al., The formation of filamentous carbon on iron and nickel catalysts I. Thermodynamics, J. Catal., 1985, 96: 454-467
    [61] M. T. Taveres, C. A. Bernardo, I. Alstrup, et al., Reactivity of carbon deposited on nickel-cppper alloy catalysts from the decomposition of methane, J. Catal., 1986, 100:545
    [62] Y.D. Li, J.L. Chen, Y.N. Qin, et al., Simultaneous Production of Hydrogen and Nanocarbon from Decomposition of Methane on a Nickel-Based Catalyst, Energy Fuels, 2000, 14: 1188-1194
    [63] G. G. Tibbetts, M. G. Debvour, E. J. Rodda., An adsorption-diffusion isotherm and its application to the growth of carbon filaments on iron catalyst particles, Carbon, 1987, 25: 367-375
    [64] J.R. Rostrup-Nielsen, D.L. Trimm, Mechanism of carbon formation on nickel-containing catalysts, J. Catal., 1977, 48: 155-165
    [65] R.T. Figueiredo, M.L. Granados, J.L.G. Fierro, et al., Preparation of alumina-supported CuCo catalysts from cyanide complexes and their performance in CO hydrogenation, Appl. Catal. A: Gen., 1998, 170 (1): 145-157
    [66] R.T.K. Baker, P.S. Harris, T.B. Thomas, et al., Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene, J. Catal., 1973, 30: 86-95
    [67] A. Sacco, P. Thacker, T.N. Chang, et al., The initiation and growth of filamentous carbon from α-iron in H2, CH4, H2O, CO2 and CO gas mixture, J. Catal., 1984, 85: 224-236
    [68] A.J.H.M. Kock, P.K. de Bokx, E. Boellaard et al., The formation of filamentous carbon on iron and nickel catalysts: II. Mechanism, J. Catal., 1985, 96: 468-480
    [69] I. Alstrup and J.R. Rostrup-Nielsen, Reactivity of carbon deposited on nickel-copper alloy catalysts from the decomposition of methane, J. Catal., 1986, 100: 545-548
    [70] I. Alstrup, A new model explaining carbon filament growth on nickel, iron, and Ni-Cu alloy catalysts, J. Catal., 1988, 109: 241-251
    [71] R. Borup, Diesel Reforming for Solid Oxide Fuel Cell Auxiliary Power Units (APUs), Fuel Cell Annual Report, 2003
    [72] J.W. Snoeck, G.F. Froment, M. Fowles, Filamentous carbon formation and gasification: Thermodynamics, driving force, nucleation, and steady-state growth, J. Catal., 1997, 169: 240-249
    [73] M.S. Hoogenraad, Ph.D. Thesis, Utrecht University, 1995
    [74] S.H. Lee and E. Ruckenstein, Simulation of the behavior of supported metal catalysts in real reaction atmospheres by means of model catalysts, J. Catal., 1987, 107: 23-81
    [75] M. Audien, A. Oberlin, M. Coulon, Crystallographic orientations of catalytic particles in filamentous carbon; Case of simple conical particles, J. Crystal Growth, 1981, 55: 549-556
    [76] O. Clause, M.G. Coelho, M. Gazzano, et al., Synthesis and thermal reactivity of nickel-containing anionic clays, Appl. Clay Sci., 1993, 8 ( 2-3): 169-186
    [77] S.D. Robertson, Carbon formation from methane pyrolysis over some transition metal surfaces-I. Nature and properties of the carbons formed, Carbon, 1970, 8 (3): 365-368
    [78] V.I. Zaikovskii, V.V. Chesnokov, R.A. Buyanov, Symmetrical Spiral Forms of Filamentous Carbon Formed from Butadiene-1,3 on the Ni-Cu/MgO Catalyst: Regularities and Mechanism of Growth , Kinetics & Catalysis, 1999, 40 (4): 552-555 (English version)
    [79] J.R. Rostrup-Nielsen, D.L. Trimm, Mechanism of carbon formation on nickel-containing catalysts, J. Catal., 1977, 48 (1-3): 155-165
    [80] P. Mcallister, E.E. Wolf, Ni-catalyzed carbon infiltration of carbon-fiber substrates, Carbon, 1992, 30 (2): 189-200
    [81] I. Alstrup, M.T. Tavares, The kinetics of carbon formation from CH4+H2 on a silica-supported nickel catalyst, J. Catal., 1992, 135 (1): 147-155
    [82] I. Alstrup, M.T. Tavares, Kinetics of carbon formation from CH4+H2 on a silica-supported nickel and Ni-Cu catalysts, J. Catal., 1993, 139 (2): 513-524
    [83] J.W. Snoeck, G.F. Froment, M. Fowles, Kinetic study of the carbon filament formation by methane cracking on a nickel catalyst, J. Catal., 1997, 169 (1): 250-262
    [84] S. A. Safvi, E. C. Bianchini and C. R. F. Lund, The dependence of catalytic carbon filament growth kinetics upon gas phase carbon activity, Carbon, 1991, 29 (8): 1245-1250
    [85] T.Zhang, M.D.Amiridis, Hydrogen Production via direct cracking of methane over Silica-supported nickel catalysts, Appl. Catal. A: Gen., 1998, 167: 161
    [86] M.G. Poirier, C. Perreault, L. Couture, et al., Procedings of the first international sysmposium on new materials for fuel cel system, Montreal, Que, Canada, 1995, 9-13: 258
    [87] R. Aiello, J.E. Fiscus, H.C. Loye, et al.,Hydrogen production via the direct cracking of methane over Ni/Si02: catalyst deactivation and regeneration, Appl. Catal. A: Gen., 2000,192: 227-234
    [88] A. Makkuni, D. Panjala, N. Shah, et al., Hydrogen and nanotube production by catalytic decomposition of ethane, Boston: ACS Boston National Meeting, Fuel Chemistry Division Technical Program, 2002
    [89] V.R. Choudhary, S. Banerjee, A.M. Rajput, Continuous production of H2 at low temperature from methane decomposition over Ni-containing catalyst followed by gasification by steam of the carbon on the catalyst in two parallelreactors operated in cyclic manner, J. Catal., 2001, 198: 136-141
    [90] K. Hernadi, A. Fonseca, J.B. Bernaerts, et al., Fe-catalyzed carbon nanotubes formation, Carbon, 1996, 34: 1249-1257
    [91] E.F. Brooks, Method for making carbonaceous materials, US patent, US4650657
    [92] W.H. Mandeville, L.K. Truesdale, H. Tennent, Fibrils, 1996, US patent, US5500200
    [93] B.C. Liu, Q. Liang, S.H. Tang, et al., Production of carbon nanotubes over prereduced LaCoO3 by using fluidized bed reactor, Chinese Journal of Chemistry, 2001, 19: 983 –986
    [94] A. Weidenka, S.G. Ebbinghaus, Ph. Mauron, et al., Metal nanoparticles for the production of carbon nanotube composite material by decomposition of different carbon sources, Mater. Sci. Eng. C, 2002, 19: 119 –123
    [95] Y. Wang, F. Wei, G. Luo, et al., The large scale production of carbon nanotubes in a nano-agglomerate fluidized bed reactor, Chem. Phys. Lett., 2002, 364: 568 –572
    [96] H. Yu, Q.F. Zhang, F. Wei, et al., Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism, Carbon, 2003, 41 (14): 2855–2863
    [97] M. Pérez-Cabero, I. Rodríguez-Ramos, A. Guerrero-Ruíz, Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor, J. Catal., 2003, 215: 305–316
    [98] W.Z. Qian, F. Wei, Z.W. Wang, et al., Production of carbon nanotubes in a packed bed and a fluidized bed, AIChE J., 2003, 49: 619-625
    [99] V.I. Za]kovskii, L.B. Avdeeva, ShX. Shaikhutdinov, Coprecipitated Ni-a]umina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition ill, Morphology and surface structure of the carbon filaments, Appl. Catal. A: Gen., 1996, 148 (1): 123-133
    [100] K. Hernadi, A. Fonseca, J.B. Nagy, et al., Production of nanotubes by the catalytic decomposition of diferent carbon-containing compounds, Appl. Catal. A: Gen., 200, 199 (2): 245-255
    [101] J.I. Villacampa, C. Royo, E. Romeo, et al., Catalytic decomposition of methane over Ni-Al2O3 coprecipitated catalysts: Reaction and regeneration studies, Appl. Catal. A: Gen., 2003, 252: 363– 383
    [102] Y.D. Li, J.L. Chen, L. Chang, Catalytic growth of carbon fibers from methane on a nickel-alumina composite catalyst prepared from Feitknechtcompound, Appl. Catal. A: Gen., 1997, 163: 45-57
    [103] N.M. Rodriguez, A. Charnbers, R.T.K. Baker, Catalytic engineering of carbon nanostructures, Langmuir, 1995, 11: 3862-3866
    [104] L.D. Andrews, Hydrogen generation from natural gas for the fuel cell systems of tomorrow, J. Power Sources, 1996, 61 (1-2): 113-124
    [105] M. Steinberg, H.C. Cheng, Modern and prospective technologies for hydrogen production from fossil fuels, Int. J. Hydrogen Energy, 1989, 14 (11): 797-820
    [106] K.R. Williams, G.T. Burstein, Low temperature fuel cells: Interactions between catalysts and engineering design, Catal. Today, 1997, 38 (4): 401-410
    [107] G.L. Semin, V.D. Belyaev, A.K. Demin,et al., Methane conversion to syngas over Pt-based electrode in a solid oxide fuel cell reactor, Appl. Catal. A: Gen., 1999, 181 (1): 131-137
    [108] J.P. Breen, J.R.H. Ross, Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts, Catal. Today, 1999, 51 (3-4): 521-533
    [109] S.H. Clarke, A.L. Dicks, K. Pointon,et al., Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells, Catal. Today, 1997, 38 (4): 411-423
    [110] G.J.K. Acres, J.C. Frost, G.A. Hards,et al., Electrocatalysts for fuel cells, Catal. Today, 1997, 38 (4): 393-400
    [111] P. Chen, X. Wu, J. Lin, et al., High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures, Science, 1999, 285: 91-93
    [112] N.M. Rodriguez, A review of catalytically grown carbon nanofibers, J. Mater. Res., 1993, 8: 3233-3250
    [113] G.P. Daumit, Summary of panel discussion, carbon fiber industry: Current and future, Carbon, 1989, 27: 759-764
    [114] C. Lin, Y.Y. Fan, M. Liu, et al., Science 1999, 286, 1127-1129
    [115] R. Dagani, Hybrid materials containing ultrasmall building blocks provide new properties, better performance, Chem. Eng. News, 1999, June 7, 77 (23): 25-37
    [116] W.Z. Li, S.S. Xie, L.X. Qian, et al., Science 1996, 274: 1701-1703
    [117] C. Journet, W.K. Maser, P. Bernier, Nature, 1997, 388: 756-758
    [118] S. Iijima, T. Ichlhashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363: 603-605
    [119] D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls, Nature, 1993, 363: 605-607
    [120] C. Fournet, W. K. Maser, P. Bernier, A. Loiseau, M. Lde la Chapelle, S.Lefrant, large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature, 1997, 388: 756-758
    [121] A.G. Rinzler, J. Liu, H. Dai, et al., Large-scale purification of single-wall carbon nanotubes: Process, product and characterization, Appl. Phys. A, 1998, 67 (1): 29-37
    [122] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273: 483-487
    [123] Y. Zhang, S. Iijima, Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperatures, Appl. Phy. Lett., 1999, 75 (20): 3087-3089
    [124] Z. Shi, Y. Lian, F. H. Liao, X. Zhou, Z. Gu, Y. Zhang, Large scale synthesis of single-wall carbon nanotubes by discharge method, J. Phys. Chem. Soli., 2000, 61 (7):1031-1036
    [125] Y. Saito, K. Nishikubo, K. Kawabata, T. Matsumoto, Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge, J.Appl. Phys., 1996, 80 (5): 3062-3067
    [126] V.R. Choudhary, S. Banerjee, A.M. Rajput, Hydrogen from step-wise steam reforming of methane over Ni/ZrO2: factors affecting catalytic methane decomposition and gasification by steam of carbon formed on the catalyst, Appl. Catal. A: Gen., 2002, 234 (1-2): 259-270
    [127] S. Naresh, P. Devadas, P.H. Gerald, Hydrogen production by catalytic decomposition of methane, Energy Fuels, 2001, 15: 1528-1534
    [128] P.M. Ajayan, Nanotubes from Carbon, Chem. Rev., 1999, 99 (7): 1787- 1800
    [129] H. Dai, Carbon nanotubes: opportunities and challenges, Surf. Sci., 2002, 500 (1-3): 218-241
    [130] W.K. Maser, A.M. Benito, M.T. Martínez, Production of carbon nanotubes: the light approach, Carbon, 2002, 40 (10): 1685-1695
    [131] M. Corrias, B. Caussat, A. Ayral, et al., Carbon nanotubes produced by fluidized bed catalytic CVD: first approach of the process, Chem. Eng. Sci., 2003, 58: 4475-4482
    [132] R.T.K. Baker, P.S. Harris, R.B. Thomas, et al., Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene, J. Catal., 1973, 30 (1): 86-95
    [133] S.H. Lee, E. Ruckenstein, Simulation of the behavior of supported metal catalysts in real reaction atmospheres by means of model catalysts, J. Catal., 1987, 107 (1): 23-81
    [134] A.Jr. Sacco, P. Thacker, T.N. Chang, et al., The initiation and growth of filamentous carbon from -iron in H2, CH4, H2O, CO2, and CO gas mixtures, J. Catal., 1984, 85 (1): 224-236
    [135] B. Kitiyanan, W.E. Alvarez, J.H. Harwell, et al., Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts, Chem. Phys. Lett., 2000, 317 (3-5): 497-503
    [136] W.E. Alvarez, B. Kitiyanan, A. Borgna, et al., Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO, Carbon, 2001, 39 (4): 547-558
    [137] 梁二军,张红瑞,刘一真等,碳纳米管的热解法制备、电子显微镜观察及拉曼光谱研究,光散射学报,2002,13(4):205-209
    [138] 杨子芹,沈曾民,陈晓红等,Co催化氧化制备弯曲状碳纳米管的研究,新型炭材料,2000,15(2):34-38
    [139] J. Kastner, T. Pichler, H. Kuznany, et al., Resonance Raman and infrared spectroscopy of carbon nanotubes, Chem. Phys. Lett., 1994, 221: 53-58
    [140] 韩和相,汪兆平,李国华等,多壁碳纳米管的拉曼散射,光散射学报,1999,11(3):187-189
    [141] 张树霖,黄福敏,周丽霞等,关于碳纳米管反常反斯托克斯光谱现象的研究,光散射学报,1999,11(2):110-112
    [142] C. J. Lee, J. Park, Y. Huh, et al., Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition, Chem. Phy. Lett., 2001, 343: 33-38
    [143] P. Pinheiro, M. C. Schouler, P. Gadelle, et al., Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts, Carbon, 2000, 38: 1469-1479
    [144] Q. Liang, L. Z. Gao, Q. Li, et al., Carbon nanotube growth on Ni-particles prepared in situ by reduction of La2NiO4, Carbon, 2001, 39: 897-903
    [145] L. J. Ci, J. Q. Wei, J. Liang, et al., Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon, 2001, 39: 329-335
    [146] F. Cataldo, A study of soot formed by benzene combustion, Carbon, 1999, 31 (1): 529-530
    [147] P. Wang, E. Tanabe, K. Itob, et al., Filamentous carbon prepared by the catalytic pyrolysis of CH4 on Ni/SiO2, Appl. Catal. A: Gen., 2002, 231: 35–44
    [148] T.V. Reshetenko, L.B. Avdeeva, Z.R. Ismagilov, et al., Catalytic filamentous carbon: Structural and textural properties, Carbon, 2003, 41: 1605–1615
    [149] J.N. Armor, The multiple roles for catalysis in the production of H2, Appl. Catal. A: Gen., 1999, 176: 159-176
    [150] T.V. Choudhary, D.W. Goodman, CO-free production of hydrogen via stepwise steam reforming of methane. J. Catal., 2000, 192 (2): 316-321
    [151] V.R. Choudhary, S. Banerjee, A.M. Rajput, Continuous Production of H2 at Low Temperature from Methane Decomposition over Ni-Containing Catalyst Followed by Gasification by Steam of the Carbon on the Catalyst in Two Parallel Reactors Operated in Cyclic Manner, J. Catal., 2001, 198 (1): 136–141
    [152] G. Tibbetts, G.P. Meisner, H. OlkCh, Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers, Carbon, 2001, 39 (15): 2291-2301
    [153] I. Alstrup, A new model explaining carbon filament growth on nickel, iron, and Ni-Cu alloy catalysts, J. Catal., 1988, 109 (2): 241-251
    [154] D. Venegoni, Ph. Serp, R. Feurer, et al., Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor, Carbon, 2002, 40 (10): 1799–1807
    [155] K.P. de Jong, J.W. Geus, Carbon Nanofibers: Catalytic Synthesis and Applications, Catal. Rev.-Sci. Eng, 2000, 42 (4): 481-510
    [156] 侯祥麟,中国炼油技术,中国石化出版社,1991
    [157] 温廷琏,氢能,能源技术,2001, 22:
    [158] I. Dincer, Technical, environmental and exergetic aspects of hydrogen energy systems, Inter. J. Hydrogen Energy, 2002, 27: 265
    [159] Ramachandran, R. Menon, An overview of industrial uses of hydrogen, Inter. J. Hydrogen Energy, 1998, 23: 593
    [160] M.A. Rosen, Thermodynamic comparison of hydrogen production process, Inter. J. Hydrogen Energy, 1996, 21: 349
    [161] K. Hassmann, H.M. Kühne, Primary energy sources for hydrogen production, Inter. J. Hydrogen Energy, 1993, 18 (8): 635-712
    [162] C.D. Chang, W.H. Lang, A.J. Silvesteri, Synthesis gas conversion to aromatic hydrocarbons, J. Catal., 1979, 56 (2): 268-273
    [163] M.L. Toebes, J.H. Bitter, A. Jos van Dillen, et al., Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers, Catal. Today, 2002, 76 (1): 33-42
    [164] V.V. Chesnokov, V.I. Zaikovskii, R.A. Buyanov, et al., Formation of carbon morphological structures from hydrocarbons over nickel containing catalysts, J. Kinet. Katal., 1994, 35 (1): 146-151 (in Russian)
    [165] A. Ozaki, K. Aika, in J.R. Anderson and M. Boudart (Editors), Catalysis: Science and Technology, New York: Springer Verlag, 1981, Vol. 1, Chap. 3, 106-129
    [166] G.G. Kuvshinov, Yu.I. Mogilnykh, D.G. Kuvshinov, Kinetics of carbon formation from CH4±H2 mixtures over a nickel containing catalyst,Catal. Today, 1998, 42: 357-360
    [167] T.V. Choudhary, C. Sivadinarayana, C. Chusuei, et al., Hydrogen production via catalytic decomposition of methane, J. Catal., 2001, 199 (1): 9–19
    [168] 国井·大藏,O. 列文斯皮尔, 流态化工程, 北京:石油化学工业出版社,1977:15-52
    [169] F.A. Zenz and D.F. Othmer, Huidization and Fluid Particle System, New York: Reinhold publishing Corp., 1960
    [170] Trowinski, Dr.H. Von, Chemi-Ing-Tech., 25, Jahrg, 1953
    [171] S.E. George and J.R. Grace, Entrainment of Particles from Aggregative Fluidized Beds, AICHE, Symp. Series, 1978, 74 (176): 67
    [172] M. Belgued, P. Pareja, A. Amariglio, et al., Conversion of methane into higher hydrocarbons on platinum, Nature, 1991, 352: 789-790
    [173] T.P. Beebe, D.W. Goodman, J.T. Yates, Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces, J. Chem. Phys., 1987, 87: 2305-2315
    [174] T.V. Choudhary, D.W. Goodman, Methane activation on Ni and Ru model catalysts, J. Mol. Catal.: A, 2000, 163: 9~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700