茎瘤芥芥子油苷组分及含量的品种间和器官间差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茎瘤芥(Brassica juncea var. tumida Tsen et Lee)是中国特产蔬菜,以其为原料加工而成的榨菜滋味鲜美,风味独特,深受广大消费者的喜爱。芥子油苷是十字花科植物中一种重要的次生代谢物质,它具有广泛的生物学功能,其降解产物与植物风味、抗病虫性等有关。目前已经鉴定的芥子油苷有120多种,但关于茎瘤芥中芥子油苷的报道还比较少。本研究以茎瘤芥13个品种为材料,在现蕾期分根、瘤状茎、功能叶、花蕾取样,测定了芥子油苷组分及其含量,研究了茎瘤芥芥子油苷组分和含量的品种和器官间差异,主要结果如下:
     (1)在茎瘤芥不同品种和器官中均检测到9种芥子油苷,其中脂肪族芥子油苷4种(2-丙烯基芥子油苷、3-丁烯基芥子油苷、1-甲基丙基芥子油苷和1-甲基丁基芥子油苷),吲哚族芥子油苷4种(4-羟基吲哚基-3-甲基芥子油苷、吲哚基-3-甲基芥子油苷、4-甲氧吲哚基-3-甲基芥子油苷和1-甲氧吲哚基-3-甲基芥子油苷),芳香族芥子油苷1种(2-苯基乙基芥子油苷)。
     (2)13个茎瘤芥品种根、瘤状茎、功能叶、花蕾中总芥子油苷含量依次为2.360-20.155μmol·g-1DW、15.544-46.052μmol·g-1DW、35.808-96.259μmol·g-1DW和79.762-130.831μmol·g-1DW。四个器官间总芥子油苷含量存在显著差异,蕾中含量最高,其次是叶片,再次是瘤状茎,根中含量最低,瘤状茎、功能叶和花蕾中芥子油苷总量分别是根部的1.1倍、3.8倍和5.8倍。
     (3)13个茎瘤芥品种根中芥子油苷以2-苯基乙基芥子油苷和2-丙烯基芥子油苷含量为主,分别占根中芥子油苷总量的39.18%和34.16%;茎瘤芥瘤状茎、功能叶和花蕾中均以2-丙烯基芥子油苷为主,分别占瘤状茎、功能叶和花蕾芥子油苷总量的90.24%、93.74%和92.94%。茎瘤芥根、瘤状茎、功能叶和花蕾中芥子油苷组分的含量在品种间存在显著差异。品种08A-124根中的2-苯基乙基芥子油苷、2-丙烯基芥子油苷含量较高,分别为10.194和5.801μmol g-1DW,叶中的2-丙烯基芥子油苷的含量为92.359μmol g-1DW,显著高于其他参试品种。品种08A-131、08A-133茎中2-丙烯基芥子油苷含量较高,都在40μmol g-1DW以上,是含量较低品种08A-53和08A-141的三倍左右。同时,08A-131叶中2-丙烯基芥子油苷的含量也较高。
     (4)芥子油苷存在三种类型,即脂肪类、吲哚类、芳香类。茎瘤芥不同器官间三种类型的芥子油苷含量存在差异。根中三个种类的芥子油苷分布比较均匀,分别为总含量的40.16%、27.23%、32.61%。而茎、叶、蕾中都是脂肪类占绝大部分,分别占到了93.80%、97.09、96.60,其他两种含量很少。
Tuber mustard(Brassica juncea var. tumida Tsen et Lee) is an original Chinese vegetable that can be processed into a very delicious food with special flavor called Zhacai. Glucosinolates are important natural plant products found mainly in Brassicaceae family. The hydrolysis products have many different biological activities, such as characteristic bitter flavor and defense compounds. In order to analyze the glucosinolate (GS) composition and content in various organs and varieties of tuber mustard, tissues of roots, swollen stems, leaves and floral buds of thirteen varieties were sampled at floral bud emergence stage. A total of nine glucosinolates were detected in different varieties and various organs, including four aliphatic glucosinolates (2-Propenyl GS,3-Butenyl GS,1-Methylpropyl GS and 1-Methybutyl GS), four indolyle glucosinolates (4-Hydroxyindol-3-ylmethyl GS, Indol-3-ylmethyl GS,4-Methoxyindol-3-ylmethyl GS and 1-Methoxyindol-3-ylmethyl GS), and one aromatic glucosinolate (2-phenylethyl GS). Total glucosinolate contents in roots, swollen stems, leaves and floral buds ranged from 2.360 to 20.155μmol·g-1DW、15.544 to 46.052μmol·g-1 DW、35.808 to 96.259μmol·g-1 DW and 79.762 to 130.83lμmol·g-1DW respectively. Floral buds contained the highest concentration, followed by leaves, swollen stems and roots.2-phenylethyl GS and 2-Propenyl GS were the major glucosinolate in roots, accounting for 39.18% and 34.16% of the total root glucosinolates, respectively. The major glucosinolate in swollen stems, leaves and floral buds was 2-Propenyl GS, accounting for 90.24%、93.74% and 92.94% of the total glucosinolates, respectively. Significant differences of total and individual glucosinolates levels were abserved among different organs and varieties. The varieties (08A-124,08A-131,08A-133) showed the highest 2-Propenyl GS or 2-phenylethyl GS content. So, they could be good candidates for future breeding programs. There are also obvious differences in glucosinolate types between four organs. In root, indole, aliphatic and aromatic glucosinolates shared a approximately proportion of total GS content, while the aliphatic glucosinolates were relatively abundant in the other three organs.
引文
Agrawal A A.2002. Herbivory and maternal effects-mechanisms and consequences of trans generational induced plant resistance. Ecology,83(12):3408-3415
    Bak S, Feyereisen R.2001. The involvement of two P450 enzymes,CYP83B1 and CYP83Al,in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol,127:108-118
    Bartlet E, Kiddle G, Williams I, Wallsgrove R.1999. Wound-induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist. Entomologia ExperimentalisetApplicata,91:163-167.
    Bridges M, Jones AME, Bones AM, Hodgson C, Cole R, Bartlet E, Wallsgrove R, Karapapa VK, Watts N, Rossiter JT.2002. Spatial organization of the glucosinolate-myrosinase system in Brassica specialist aphids is similar to that of the host plant. Proc. R. Soc. London Sci. Ser. B, 269(1487):187-191
    Brown P D, Tokuhisa J G, Reichelt M, Gershenzon J.2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thalian. Phytochemistry,62: 471-481
    Bruinsma M, Van Dam N M, Van Joop J A, Dick M.2007. Jasmonic acid-Induced changes in brassica oleracea affect oviposition preference of two specialist herbivores. J Chem Ecol,33: 655-668
    Cartea M E, Velasco P, Obregon S, Padilla G, De Haro A.2008. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry,69:403-410
    Dicke M, Vet LEM.1999. Plant-carnivore interactions:evolu-tionary and ecological consequences for plant, herbivore and carnivore. HerbiVores:between Plants and Predators,483-519
    Doughty K, Kiddle G A, Pye B J, Wallsrove R M, Pickett J A.1995. Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry,38:347-350
    Du LC, Halkier BA.1998. Biosynthesis of glucosinolates in the developing silique walls and seeds of Sinapis alba. Phytochemistry,48(7):1145-1150
    Eckardt NA.2001. New insights into auxin biosynthesis. Plant Cell,13(1):1-3
    Fahey J W, Zalcmann A T, Talalay P.2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry,56:5-51
    Fenwick G R, Heaney R K, Mullin W J.1983. Glucosinolates and their breakdown products in food and foodplant.Food-Science,18:123-201
    Fenwick G R, Griffiths N M, Heaney R K.1983. Bitterness in brussels sprouts(Brassica oleracea L. var. gernrnifera):The role of glucosinolates and their breakdown products. J Sci. Food Agric,34:73-80
    Halkier B A, Gershenzon J.2006. Biology and biochemistry of glucosinolates. Plant Biology,57: 303-333.
    Haugen R, Steffes L, Wolf J, Brown P, Matzner S, Siemens DH.2008. Evoution of drought tolerance and defense:dependence of tradeoffs on mechanism,environment and defense switching. Oikos,117:231-244
    Jensen C R, Mogensen V O, Mortensen G, Fieldsend J K, Milford G F J, Andersen M N, Thage J H.1996. Seed glucosinolate, oil and protein contents of field-grown rape(Brassica napus L.) affected by soil drying and evaporative demand. Field Crops Research,47:93-105
    Kameoka H, Hashimoto S.1980. The constituents of steam volatile oil from Brassica rapa L. Var laciniito lia kitamura(studies on constituents of the genus Brassica PartO). Nippon Nogeikgaku Kaishi,54:865-869.
    Keum Y S, Jeong WS, Kong ANT.2004. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat. Res. Fundam. Mol. Mech. Mutagen,555: 191-20
    Kiddle G A, Doughty K J, Wallsgrove R M.1994. Salisylic acid-indused accumulation of glucosinolates in oilseed rape (Brassica napus L.) leaves. J Exp Bot,45:1343-1346.
    Kim JH, Jander G.2007. Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant Journal,49(6):1008-1019
    Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J, Mitchell-Olds T.2001. Gene duplication in the diversification of secondary metabolism:Tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell,13(3):681-693
    Kushad M M,Brown A F, Kurilich A C, Juvik J A, Klein B P, Wallig M A, Jeffery E H.1999. Variation of glucosinolates in vegetable crops of Brassica oleracea. Food Chemistry,47: 1541-1548
    Loivamki M, Holopainen J K, Nerg A M.2004. Chemical changes induced by methyl Jasmonate in oilseed rape grown in the laboratory and in the field. J Agric Food Chem,52 (25): 7607-7613
    Lykkesfeldt J, M(?)ller B L.1993. Synthesis of benzylglucosinolate in Tropaeolum majus L. Plant Physiology,102:609-613
    Macleod A J, Vaughan J G, Jones B.1976. Volatile flavour compounds of the cruciferae. The biology and chemisitry of the cruciferae,307-330
    Mewis I, Appel H M, Hom A, Raina R, Schultz J C.2005. Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiology,138:1149-1162
    Mikkelsen MD, Naur P, Halkier BA.2004. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J, 37:70-777
    Mikkelsen M D, Petersen B L, Glawischnig E, Jensen A B, Andreasson E, Halkier B A.2003. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathway. Plant Physiology,131:298-308
    Padilla G, Cartea M E, Velasco P, Haro A, Orda's A.2007. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry,68:536-545
    Petersen B L, Chen S, Hansen C H, Olse C E, Halkier B A.2002. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta,214:562-571
    Poulton J E, Moller B L.1993. Glucosinolates. Meth Plant Biochemistry,9:209-237
    Rangkadilok N, Nicolas M E, Bennett R N, Premier R R, Eagling D R, Taylor P.2002. Determination of sinigrin and glucoraphanin in Brassica species using a simple extraction method combined with ion-pair HPLC analysis. Scientia Horticulturae,96:27-41
    Ratzka A, Vogel H. Kliebenstein D J, Mitchell-Olds T, Kroymann J.2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci,99:11223-11228
    Rosa E AS.1997. Glucosinolates from flower buds of Portuguese Brassica crops. Phytochemistry. 44(8):1415-1419
    Rosa E A S, Heaney R K, Fenwick G R, Portas C A M.1997. Glucosinolates in crop plants. Horticultural Review,19:99-215
    Sun Jing, Yang Jin-zhao, Yu Tao.2010. Effects of drought stress simulated by PEG on glucosin-olates content in Arabidopsis thaliana. Agricultural Science & Technology,11 (3):20-24
    Tolra R, Pongrac P, Poschenrieder C, Vogel-Mikus K, Regva M, Barcelo J.2006. Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense. Plant Soil,288:333-341
    Tolra RP, Poschenrieder C, Alonso R, Barcelo D, Barcelo J.2001. Influence of zinc hyperaccumu-lation on glucosinolates in Thlaspi caerulescens. New Phytologist,151(3):621-626
    Uda Y, Maeda Y.1986. Volatile constituents occurring in autolyzed leaves of three Cruciferous vegetables. Agric Biol Chem,50(1):205-208
    Van Doom H E, Van Kruk G C, Van Hoist G J, Raaijmakers-Ruijs N, Postma E, Groeneweg B, Jongen W H F.1998. The glucosinolates sinigrin and progoitrin are important determinants for taste preference and bitterness of brussels sprouts. J Sci Food Agric,78:30-38
    Wittstock U, Halkier B A.2002. Glucosinolate research in the Arabidopsis era. Trends in Plant Science,7(6):263-270
    Wittstock U, Agerbirk N, Stauber E J, Olsen C E, Hippler M.2004. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad.Sci,101:4859-4864
    Zazimalova E, Napier RM.2003. Points of regulation for auxin action. Plant Cell Rep,21: 625-634
    Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD.2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science,291:306-309
    陈材林,周源,周光凡,陈学群,范永红.1992.中国的芥菜起源探讨.西南农业学报,5(3):6-11
    陈亚州,陈思学,阎秀峰.2008.环境对植物芥子油苷代谢的影响.生态学报,28(6):2828-2834
    陈新娟.2006.中国芸蔓属蔬菜硫代葡萄糖昔及其影响因子研究[博士论文].杭州:浙江大学.
    何洪巨,陈杭,Schnitzler W H.2002.芸薹属蔬菜中硫代葡萄糖苷鉴定与含量分析.中国农业科学,35(2):192-197
    《涪陵辞典》编委会.2003.涪陵辞典.重庆:重庆出版社:279-281
    腊贵晓,方萍.2008.芥子油苷分解研究进展.食品科学,29(1):350-354
    吕家龙.2003.蔬菜栽培学各论(南方本).北京:中国农业出版社:88-89
    刘佩瑛.1996.中国芥菜.北京:中国农业出版社:11-101
    林正奎,华映芬.1986.四川榨菜香气成分研究.植物学报,28(3):299-306
    任欢,戴绍军,阎秀峰.2008.聚乙二醇模拟干旱对拟南芥芥子油苷的影响.黑龙江大学自然科学学报,25(2):241-245
    田云霞,戴绍军,陈思学,阎秀峰.2009.机械损伤对拟南芥莲座叶芥子油苷含量和组成的影响.生态学报,29(4):1647-1654
    汪俏梅,曹家树.2001.芥子油苷研究进展及其在蔬菜育种上的应用前景.园艺学报,28:669-675
    徐文佳,陈亚州,阎秀峰.2008.芥子油昔-黑芥子酶系统及其在植物防御和生长发育中的作用.植物生理学通讯,44(6):1189-1194
    俞朝.2008.蔬菜作物芥子油苷含量与种类的基因型差异及其农艺调控.长江蔬菜,2008(5):34-37
    赵大云,汤坚,丁霄霖.2001.雪里蕻腌菜特征风味物质的分离和鉴定.无锡轻工大学学报,20(3):291-298
    张海峰,袁晶,汪俏梅.2005.植物激素与芥子油苷在生物合成上的相互作用.细胞生物学杂志,27:423-426
    张海峰.2006.芥蓝芥子油苷组分,醌还原酶诱导活性和抗虫性分析[硕士论文].杭州:浙江大学.
    钟海秀,陈亚州,阎秀峰.2007.植物芥子油苷代谢及其转移.生物技术通报,3:44-48
    周光凡,范永红,刘义华,林合清,王彬,陈材林,王旭伟.2008.茎瘤芥(榨菜)研究进展及其对产业化发展的贡献.中国十字花科蔬菜研究进展(M):118-120
    周英男,于涛.2010.拟南芥脂肪族芥子油苷合成过程中甲硫氨酸链延长途径和相关酶研究进展.安徽农业科学,38(15):7739-7741

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700