桑属系统学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桑属(Morus)为桑科的模式属,由Linne(1753)建立,属内种数、系统发育关系历来存在较大争议。本研究分别从孢粉学、分支系统学、分子系统学、区系地理学等四个方面对桑属的系统学进行研究,以期得到更加科学的桑属分类系统。(1)桑属植物孢粉学研究:选取不同地理分布桑属材料25份,代表桑属10种1变种(Koidzumi分类系统),采用醋酐法,光学显微镜(LM)、扫描电子显微镜(SEM)观察花粉形态、表面纹饰。研究结果显示,本属植物的花粉为椭圆形,极面观为圆形,大小为20.0(13.5-25.0)×13.5(12.3-22.3)μm,P/E=1.11-1.26,属小型花粉。萌发孔1-3,圆形,分属N3P3C4类型,外壁纹饰变化不大,均为颗粒状纹饰,属内花粉差异主要表现在大小和形状(P/E值)以及表面纹饰的细微差异上。根据花粉大小、P/E值、表面纹饰,可将观察的材料10种1变种的亲缘关系由原始到进化排列为:鲁桑M. multicaulis Perrott.→白桑M. alba L.→广东桑M. atropurpurea Roxb→华桑M. cathayana Hemsl.→奶桑M. macroura Miq.→川桑M.notabilis Schneid.→瑞穗桑M. mizuho Hotta.→蒙桑及变种鬼桑M.mongolica Schneid.,var. diabolica Koidz.→山桑M. bombycis Koidz.→鸡桑M. australis Poir.。花粉信息基本支持现行以花柱长短的桑属分类系统,支持短花柱为原始类型,长花柱是进化类型。
     (2)桑属广义形态分支系统学研究:选取在中国有地理分布的桑种及变种13个,以构树作外类群,通过性状选取、极性化编码,编制出用于分支分析的数据矩阵,用PAUP4.0b10软件(Swofford,2002)在PC机上,最大简约法(MP)、邻接法(Neighbor Joining, NJ)分析,研究结果显示,将桑属分成长花穗类、桑类和山桑类三支。进化顺序由原始到进化依次为:黑桑M. nigra→白桑M. alba→广东桑M. atropurpurea→华桑M. cathayana→川桑M. notabilis→山桑M. bombycis→鸡桑M.australis→细齿桑M. serrata→滇桑M. var. yunnanensis→蒙桑M. mongolica→鬼桑M..mongolica var.diabolica→奶桑M. macroura→长穗桑M. wittiorum.,基本支持小泉源一的分类系统。
     (3)桑属分子系统学研究:采集不同地理分布材料73份,代表桑属12种1变种,外类群3个。ITS通用引物PCR扩增,直接测序。测序结果用Sequencher4.1.4软件拼接,并从GenBank下载桑科、桑属ITS序列。Clustalxl.83c软件(Thompson et al.,1997)序列比对,根据GenBank已公布的鲁桑(AM042003)18S rRNA基因·3′端、26S rRNA基因5′端、5.8S rDNA基因碱基序列,确定本试验各材料的ITS序列范围,Bioedit软件除去两端非ITS序列部分。Modeltest V3.06(Posada D et al,1998)和PAUP Version4.0b10(Swofford,2002)软件进行碱基替换模型计算为GTR+G,基于模型用PAUPVersion4.0b10和mrbayes软件分析系统位置与进化关系,并用BEASTv1.5.1软件计算桑属的分歧年代。研究结果得到如下结论①基于ITS桑属的系统位置:系统位置排列在非洲硬木树(Milicia excels)(MEU93585)与新西兰鹊肾树(Streblus glaber)(DQ 499105)之间,与桑族、非洲硬木树(MEU93585)亲缘关系最近;MP法分支图以100%靴带(bootstrap)支持率将桑属分为一支,桑属单系得到强烈支持;②基于ITS桑属进化关系:Modeltest V3.06软件计算碱基替换模型为GTR+G。基于此模型Mrbayes分析,分支图首先将新疆黑桑、北美默里桑
     (FJ605515)分出,靴带支持率77%。其它桑属分为三支,靴带支持率100%。第一支包括:白桑、暹罗桑(AM042005)、瑞穗桑、广东桑、鸡桑、鲁桑(AM041999)蒙桑、鬼桑、印度桑(AM041997)、山桑、赤桑(FJ605516)等,靴带支持率97%。第二支包括:华桑、奶桑、川桑等,靴带支持率72%。第三支利川长穗桑、咸丰长穗桑,靴带支持率100%。其进化顺序依次为:新疆黑桑Xinjiang M. nigra,北美默里桑North America M.murrayana→白桑M.alba,暹罗桑M. rotundiloba (AM042005),瑞穗桑M. mizuho,广东桑M.atropurprea,鸡桑M. australis,鲁桑M.lhou(AM041999),蒙桑M. mongolica,鬼桑M. mongolica var.diabolica,印度桑M.indica(AM041997)、山桑M. bombycis,赤桑M. rubra(FJ605516)→华桑M.cathayana,奶桑M. macroura,川桑M. notabilis,→利川长穗桑Lichuan M.wittorum,咸丰长穗桑Xianfeng M.wittorum。与桑属由北向南地理迁移吻合;③松散分子钟估算本属及内部分支的分歧年代,桑属与桑族非洲硬木树、鹊肾树属新西兰鹊肾树起源年代(height)为53.67mya,新疆黑桑、北美默里桑的起源时间(height)在31.60mya,华桑类的分歧年代(height)在31.16mya,长穗类的分歧年代(height)在20.92mya,而白桑类的白桑、山桑、广东桑、鲁桑、蒙桑、鸡桑、瑞穗桑、滇桑、暹罗桑、赤桑、印度桑,以及华桑类的华桑、奶桑、川桑是近3mya的分化事件。
     (4)桑属区系地理学研究:通过查阅云南(KUN)、贵州(HGAS)植物标本馆桑属标本,及相关文献资料;汇总确定桑属的地理分布;绘制地理分布图;在此基础上,分析桑属植物的区系特点。研究结果认为,世界有桑属植物26种,分布亚洲、美洲、非洲,欧洲有逸生。东亚有桑属16种,占该属61.5%,中国有桑属植物14种,占该属53.8%,原产我国12种。云南11种,贵州9种,四川8种。中国桑属植物种类丰富,起源古老,区系成份复杂。云、贵、川三省种类最丰富,为现代桑属的遗传多样性中心。
     桑属按地理成分可划分为:
     Ⅰ泛北极植物区
     ⅠE欧亚森林植物亚区:黑桑M. nigra L.;
     中国—日本森林植物亚区:白桑M.alba L.,蒙桑M. mongolica Schneid.,华桑M. cathayana Hemsl.,山桑M. bombycis Koidz.,鸡桑M. australis Poir.,广东M. atropurpurea Roxb.,滇桑M. yunnanensts Koidz.,川桑M. notabilis Schneid.,裂叶桑M. trilobata (S.S.Chang) Cao.
     ⅠF.中国-喜马拉雅森林植物区:细齿桑M. serrata Roxb,喜马拉雅桑M.wallichiana Koidz.
     Ⅱ.古热带植物区
     ⅡG22滇、缅、泰地区:长穗桑M. wittiorum Hand.-Mazz.,奶桑M. macroura Miq.Ⅲ.新热带植物区:秘鲁桑M. perubjana Planchon.,美洲桑M. insights Bur,非洲桑M. mcsozygio Stapf.
     根据桑属的区系地理学研究结果,结合分子系统学得出的结论----新疆黑桑、北美默里桑最原始,可以得出如下结论:
     1.桑属劳亚古陆(Laurasia)高纬度起源(起源中心),;
     2.随着地球寒、旱化,由北向南迁移;
     3.桑属起源正是老第三纪始新世(53.67mya),此时整个地球气候还较温暖,白令海峡(Bering Strait)还未关闭,桑属可在北半球美洲、亚洲、欧洲相互迁移。
     4.Morus起源后,随着古地中海退却,喜马拉雅隆起,气候寒、旱化,逐渐向低纬度迁移;
     5.到第四纪冰期(2-3mya),北美、欧洲大多数桑种灭绝,而东亚北纬20-40°N山区,受第四纪冰期影响较小,大多数桑种保存下来,成为现代桑属的遗传多样性中心;
     6.第四纪冰期后桑属继续向南迁移,形成现代美洲、亚洲、欧洲、非洲间断分布格局;
     7.桑属可由地理分布、抗寒性强弱,间接反映系统演化关系。
     综合孢粉学、分支分类学、分子系统学和区系地理学的结果,认为桑属中黑桑M. nigra是最原始的种类,长穗桑M.wittorum是最进化的种类。其进化顺序由原始到进化依次为:黑桑M. nigra,默里桑M.murrayana→白桑M.alba,鲁桑M.multicaulis,广东桑M.atropurprea,赤桑M. rubra,暹罗桑M. rotundiloba,印度桑M. indica,瑞穗桑M. mizuho,山桑M. bombycis,蒙桑M. mongolica,鬼桑M. mongolica var.diabolica,鸡桑M. australis,→华桑M.cathayana,川桑M. notabilis,奶桑M. macroura→长穗桑M.wittorum。
The Morus L., which is the type genus of Moraceae, was established by Linne in 1753. So far the species number and the phylogeny of Morus have been still controversial. In this study, the genus phylogeny of Morus flora was studied based on the evidences of Palynology, Cladistics, Molecular systematics, floristic plant geography and so on, in order to get more scientific classifier systerm of Morus flora. In order to get a more scientific classifier, the phylogeny of Morus flora was studied based on the evidences of Palynology, Cladistics, Molecular systematics, floristic plant geography and so on.
     (1) In the study of Palynology of Morus, pollen characteristics of 25 taxa (representing 9 species and 1 varieties) (Koidzumi taxonomy system) of Morus from different distributions regions were described by acetic anhydride method, LM and SEM, to observe pollen mophology and surface decoration. The results showed that the pollens of the genus were small, oval-shaped, round in polar view (P/E=1.11~1.26). The pollen size was 20.0(13.5-25.0)×13.5(12.3~22.3)μm. Germination aperture was 1-3 in number, round in shape, N3P3C4 in type. The decorations of outer wall were all granular. The differences of pollen characteristics among the species of Morus were the size, shapes (P/E value), and the surface decoration. According to pollen size, P/E value and the surface ornamentation, the evolutionary order of 9 species and 1 varieties of Morus was as following (from originated to evolved), M.multicaulis Perrott., M. alba L., M. atropurpurea Roxb., M. cathayana Hemsl.., M. macroura Miq., M.notabilis Schneid., M. mizuho Hotta., M.mongolica Schneid. and M.mongolica var. diabolicaKoidz., M. bombycis Koidz., M. australis Poir.. Pollen information basically supports the current Morus classification system based on the style length. Supporting the short-Style inter lobule is primitive type, while supporting long-Style inter lobule is Evolutionary type.
     (2) In the study of Cladistics of Morus, collect the evolutionary order of 13 species sampled from different distributions, the evolutionary order of 13 species were collected from different regions (the B. papyrifera L'Herit. Ex Vent is outgroup). After shape selecting and polarity coding, work out a cladistic analysis of the data matrix.a cladistic analysis of the data matrix was worked out,Use the methods of Maximum Parsimony (MP), Neighbor Joining (NJ), by PAUP4.0b10 software (Swofford,2002) on PC to analyse. Then the methods of Maximum Parsimony (MP) and Neighbor Joining (NJ) were used to analyze through software PAUP4.0b10 (Swofford,2002).
     The results showed that Morus was separated into three groups including Longispica, Macromorus and Dolichstylae. The evolutionary order of 13 species of Morus was as following (from originated to evolved), M. nigra L.,M. alba, M. atropurpurea Roxb., M. cathayana Hemsl., M. serrata Roxb., M. notabilis Schneid., M. bombycisKoidz, M. australis.Poir., M. var. yunnanensis Koidz., M. mongolica Schneid., M..mongolica var.diabolica Koidz., M. wittiorum Hand-Mazz, M. macroura Miq. Basic Support Koidzumi classification system. This result is in accordance with Koidzumi classification system.
     (3) In the study of molecular systematics of Morus, the 73 materials contained 12 species and varieties and 3 out groups collected from different distributions were sequenced directly by amplifying ITS by PCR a total of 73 mulberry genotypes representing 12 species and varieties of the genus Morus and 3 out groups collected from different regions were amplified using ITS primers, and the PCR products were sequenced. Use Sequencher4.1.4 software to splice the sequencing result, Software Sequencher 4.1.4 was used to splice sequencing results. According to GenBank published M.multicaulis (AM042003) 18S rRNA gene 3'end,26S rRNA gene 5'end, 5.8S rDNA gene base sequence, Determine the test range of different materials ITS sequences,use Bioedit software to remove the non-ITS part at the ends. The ranges of ITSs were determined according to the data published on GenBank (AM042003), and then the non-ITS parts were removed by using Bioedit software. Use Clustalxl.83c software (Thompson et al.,1997) to do sequence alignment. Clustalxl.83c was used to do sequence alignment. Then use Modeltest V3.06(Posada D et al,1998)software and PAUP Version4.0b10(Swofford,2002) software to calculate the model of bases replacement, For the GTR+G.based on which use PAUPVersion4.0b10 and mrbayes software to analyze the systematic position and the evolutionary relationship, and use BEAST v1.5.1 software to calculate the age differences of Morus. Modeltest 3.06 (Posada Detal,1998) and PAUP Version4.0b10 (Swofford,2002) were run for all data sets to select a model of sequence evolution. Based on the model, GTR+G, which was selected the last step, PAUPVersion4.0b10 and MRbayes were used to analyze the systematic position and the evolutionary relationship, and BEAST v1.5.1 was used to calculate the divergence times of Morus. The results showed that the cladogram from joined segments of the three DNA sequences was supported by bootstrap values and compatible to differ the species of Morus. The analysis of DNA sequences indicated that Morus is a monophyletic. Its System Location arranges between African Milicia excels(MEU93585) and New Zealand Streblus glaber(DQ 499105). It has the closest relationship with the Milicia and the African Milicia excels(MEU93585). Based on ITS Mrbayes analysis of Morus, genus Morus will be was divided into two broad categories and 4 small categories sub-categories. According to outgroup, Xinjiang M. nigra and North America M.murrayana (FJ605515) are the most primitive. The evolutionary order of Morus was is listed as following (from originated to evolved), Xinjiang M. nigra, North America M.murrayana→M.alba, M. rotundiloba (AM042005), M. mizuho, M.atropurprea, M. australis, M.lhou(AM041999), M. mongolica, M. mongolica var.diabolica, M. indica(AM041997), M. bombycis,M. rubra(FJ605516)→M.cathayana, M. macroura, M. notabilis→Lichuan M.wittorum, Xianfeng M.wittorum. Estimated differences estimating divergences in age was by loose molecular clock. the origin time The divergence time of Morus, African Milicia excels(MEU93585) and New Zealand Streblus glaber(DQ 499105) (height) is 53.67mya, height_95%_HPD (highest posterior density)=[43.57.63.46 mya]. The differences in age The divergence time of Xinjiang M. nigra and North America M.murrayana (height) is 31.6mya, height_95%_HPD= [9.81, 53.64mya]. The differences in age The divergence time of Macromorus and M.cathayana class (height) is 31.16mya,height_95%_HPD= [10.78,52.87 Ma]. The differences in age The divergence time of Macromorus M.alba class and Longispica (height) is 20.92mya, height_95%_HPD= [2.74,42.29 Ma]. The differentiation evolution divergence events of M.alba, M. rotundiloba (AM042005), M. mizuho, M.atropurprea, M. australis, M.lhou(AM041999), M. mongolica, M. mongolica var.diabolica, M: indica(AM041997), M. bombycis, M. rubra(FJ605516), M.cathayana, M. macroura, M. notabilis and M.wittorum begin to have evolutionary radiation nearly 3mya.
     (4) In the study of geographic flora of Morus, analyze the specimens in the herbarium of KUN and HGAS, and search relative literature data, in order to make sure the geographic distributions of Morus, and work out the geographic distributions graph. Then analyze the floristic characteristics of Morus based on this. we consulted specimens and relative literature in KUN and HGAS, and determined the geographic distribution of Morus. The results show that there are 26 species of Morus distributed in Asia, America, Africa and Europe has Introduction the planting after, natural wild reproduction去掉.In East Asia, has 16 species,Accounted for 61.5% of Morus;16 species accounted for 61.5% of Morus, have been growing there. In China, there are 14 species, Accounted for 53.8% of Morus.including 11 species in Yunnan,9 in Guizhou and 8 in Sichuan. The flora of Chinese mulberries is abundant in the number of species, native and old in origination, complicated in the compositions. For the large species number, the three provinces of—Yunnan, Guizhou and Sichuan are the modern centers of Morus.
     According to geographical elements, Morus can be devided divided as following
     ⅠHolarctic region
     ⅠE Europe and Asia forest region, M. nigra L. Chine-Japan forest plants region, M.alba L., M. mongolica Schneid., M. cathayana Hemsl., M. bombycis Koidz., M. australis Poir., M. atropurpurea Roxb., M. yunnanensts Koidz., M. notabilis Schneid., M. trilobata (S.S.Chang) Cao.
     ⅠF. China-Himalaya forest region, M. serrata Roxb, M. wallichiana Koidz.
     ⅡPaleotropical region.
     ⅡG22 Yunnan, Burma and Thailand region, M. wittiorum Hand.-Mazz., M. macroura Miq..
     ⅢNeotropical region, M. perubjana Planchon.,M insights Bur,M mcsozygio Stapf.
     Morus originated in the Northern Hemisphere high latitudes region (center of origin), migrating from north to south. Geographical distribution and cold resistance can reflect the phylogenetic relationship of Morus indirectly.
     According to the studies of palynology, branch taxonomy, molecular systematics, and floristic geography, the author conclude that M. nigra L. is the most primitive species, while Xianfeng M.wittorum is the most envolved species. The evolutionary order of Morus was as following (from originated to evolved), M. nigra, M.murrayana→M.alba, M.multicaulis,M. rotundiloba, M. mizuho, M.atropurprea, M. rubra, M. indica, M. bombycis, M. mongolica, M. mongolica var.diabolica, M. australis,→M.cathayana, M. notabili,M.macroura, M.wittorum. Laurasia high-latitude regions is the origin of the genus Morus, Origin time where the genus Morus originated from 53.67mya ago. As the cold and aridity of the north region, Migration from north to south, Morus migrated from north to south. Now East Asia is the Morus center Center center of Morus genetic diversity. Morus can be geographic distribution, Cold tolerance, Indirectly reflect the phylogenetic relationships. So the geographic distribution and cold tolerance of Morus can reflect the phylogenetic relationship indirectly.
引文
1. 贝克C B.被子植物的起源和早期演化.北京:科学出版社,1981:35
    2. 浅间一男.被子植物的起源.北京:海洋出版社,1988:132
    3. 河北植物志编辑委员会.河北植物志(第一卷).石家庄:河北科学技术出版社,1986:282-285
    4. 山西植物志编辑委员会编.山西植物志(第一卷).北京:中国科学技术出版社,1992:322-325
    5. 《浙江药用植物志》编写委员会编.1925浙江药用植物志(上册).浙江科学技术出版社,:67-70.
    6. 白胜,柯益富,余茂德.桑属植物形态系统数值分类研究.蚕业科学,1998,2:63-66
    7.蔡联炳,王玉金.鹅观草属的系统发育分析.植物研究,2001,21(4)
    8.曹子余.中国桑属(桑科)新分类群.植物分类学报,1991,29(3):264-267
    9. 曹子余.中国植物志资料(桑科).云南植物研究,1995,17(2):153-154,158
    10.陈家辉,孙航,杨永平.柳属的分支系统学分析.云南植物研究,2008,30(1):1-7
    11.陈仁芳,陈龙清,余茂德..被子植物分类依据评述.安徽农业科学,2008,17:7082--7083
    12.陈仁芳,王登成.神农架及鄂西山区桑树种质资源.湖北蚕业,1989
    13.陈嵘.中国树木分类学.北京:科学出版社,1937,228-231
    14.陈中义,覃方贞.湖北咸丰长穗桑的生境与种群结构初探.广西植物,2001,4:300--302
    15.陈因硕.1992.孢粉学的回顾与展望[J]. Chinese Bulletin of Botany(植物学通报),9(2):16-20
    16.储瑞银,孙晓霞.桑属植物细胞遗传学的研究Ⅰ部分桑品种的染色体数.蚕业科学,1986,12(4):199-202.
    17.储瑞银,孙晓霞.桑属植物细胞遗传学的研究Ⅱ四个桑品种的核型分析.蚕业科学,1987,3:129-132
    18.储一宁,余茂德.云南省桑属植物种质资源分类及生态分布研究.蚕业科学,2002
    19.大泽一卫.日本50个桑树品种染色体倍数性鉴定.蚕试报,1916,4:215-300
    20.邓传良,周坚.石蒜属植物分支系统学分析.植物研究,2005,25
    21.东城功.桑树多倍体及其育种研究进展.日蚕杂1966,35(5):360-363
    22.樊孔彰,孙日彦,柏新付.山东桑属主要资源品种过氧化物酶谱相似性的三维排序分析.烟台师范学院学报,1993,4:52-57
    23.冯丽春,杨光伟,余茂德,柯益富,敬成俊,向仲怀.桑树栽培种的随机扩增DNA多态性(RAPD)研究.蚕业科学,1996,23(3):153-159
    24.冯丽春,杨光伟,余茂德,柯益富,敬成俊,张孝勇,向仲怀.利用RAPD对桑属植物种间亲缘关系的研究.中国农业科学,1997,30(1):52-56
    25.福建科学技术委员会《福建植物志》编写委员会.福建植物志第一卷.福建科技出版,1982
    26.付大煦.新疆桑属植物栽培居群的遗传多样性研究.西北植物学报,2005(2)
    27.关博夫.桑树多倍体研究与育成多倍体桑树的组织形态学观察.日本蚕丝学杂志,1953,32(2):97-108
    28.关博夫.桑树多倍体研究.日蚕杂,1959,21:229-231
    29.贵州植物志编辑委员会编.贵州植物志.贵州人民出版社,1982
    30.韩明斋,王淑侠,朱光义,苏超,焦锋.陕西桑属植物染色体的倍数性.陕西蚕业,1994,3:17-20
    31.韩世玉.贵州省野生桑染色体倍数性研究初报.广西蚕业,2002,(2)
    32.何大彦,周明珠,何伟.云贵川地区桑属植物细胞遗传学的研究I桑种及品种的染色体倍数性观察.蚕业科学,1989,3:7-12
    33.胡先骕. 植物分类学简编.北京:科学技术出版社,1957
    34.湖北植物志编辑委员会.湖北植物志.湖北科学技术出版社,1976
    35.华北植物志编辑委员会.华北植物志.北京:中国科学院出版社,1953:148-152
    36.蒋同庆,朱勇. 桑属的细胞学初步研究. 四川蚕业,1985,(4)
    37.靳永年.桑树同工酶研究进展与应用.蚕桑通报,1995,3:5-8
    38.李东升,张和禹.桑树种与品种分类研究进展.中国蚕业,2003,3:15-17
    39.路安民主编.种子植物科属地理.北京:科学出版社,1999:1-14,299-344,561-529
    40.买买提依明.新疆桑种质资源随机扩增DNA多态性(RAPD)研究.蚕业科学,2004,(1)
    41.南泽吉三郎.栽桑学(基础和应用).鸣凤出版社,1984,143-147
    42.彭镜毅.台湾維管束植物編碼索引.台湾:行政院農業委員會出版.1997,Ⅱ:136-194
    43.潘一乐.桑树根尖细胞染色体的检查.蚕业科学,1980,6(3):195-197.
    44.坡克罗夫卡娅.花粉分析[M].科学出版社.1956,15-56.
    45.秦仁昌.孢粉学与分类.植物分类学报,1959,17(4):1-5
    46.任长锐,汪福希,李云楼.湖南省桑树品种资源考察总结.湖南蚕桑,1986,(4)
    47.任强.基于形态分支分类的桑属植物系统发育及菌根生物学研究.[硕士学位论文].西南大学,2008
    48.任作英,何大彦,冯文和.同工酶与桑品种遗传变异的关系.激光生物学报,1998,4:288-290
    49.桑涛,徐炳声.分支系统学当前的理论和方法概述及华东地区山胡椒属十二个种的分支系统学研究.植物分类学报,1996,1:12-28
    50.施炳坤,王登成.西藏桑树资源考察.蚕业科学,1983,9(2):87
    51.施炳坤,吴朝吉.贵州省桑树资源考察.蚕业科学,1985,11(2):65-70
    52.施苏华,黄椰林,章群,金虹,谈凤笑,张宏达.四药门花属及其近缘植物ITS区序列分析和系统学意义.云南植物研究,1999,21(1):87-95
    53.史全良,赵卫国.桑树ITS序列测定及特点的初步分析.蚕业科学2001,27(2):140-142.
    54.宋葆华,陈之端,汪小全,李法曾.中国苋菜属nrDNA的ITS序列分析及其系统学意义.]植物学报,2000,42(11):1184-1189
    55.苏超.桑属植物混倍体产生的途径及分类.北方蚕业,2000,(3)
    56.苏超.桑树无性系同源多倍体过氧化物同工酶研究.北方蚕业,2003,24(3):22-23
    57.苏利红,焦峰,苏超,王淑侠.不同倍数体桑树花粉的形态观察.北方蚕业,1998,19:9-10
    58.四川植物志编辑委员会.四川植物志.中国植物数字化资源2007.5-15.
    59.田欣,李德铢.槭树科植物广义形态学性状分支分析.云南植物研究,2004,26(4):387-397
    60.田欣,李德铢.DNA序列在植物系统学研究中的应用.云南植物研究,2002,24:170-184
    61.汪伟,王兴科,朱昱萍,汪生鹏,张林,潘一乐,沈兴家,杨永华,赵卫国.基于trnL内含子序列的桑属植物分子系统学初探.蚕业科学,2008,34(2):892-897.
    62.王峰,李德铢.基于广义形态学性状对木通科的分支系统学分析.云南植物研究,2002,24(4):445-454
    63.王荷生.植物区系地理.北京:科学出版社,1992
    64.王祺,郝守刚,王德明.亚鳞木属及其相关属的分支系统学研究.2003,39:
    65.吴家喜,赵正龙,许晓凤.若干桑树品种过氧化物同工酶酶谱和部分品种酶活性的研究.安徽农业大学学报,2001,28(3):305-310
    66.吴云.我国不同桑品种的倍数性鉴定.蚕业科学,1964,2(3):195-197
    67.吴征镒,路安民,汤彦承.中国被子植物科属综论.北京:科学出版社,2003:560-565
    68.吴征镒,王荷生.中国自然地理——植物地理(上册).北京:科学出版社,1983:56.
    69.吴征镒,张秀实.中国桑科的一些新分类单位.云南植物研究,1989,11(1):24-34
    70.武玉壁.河北桑属二新变种.云南植物研究,1994a,16(2):120
    71.武玉璧,张进献,庞玉兰.桑树雌蕊柱头表面扫描的特异形态.蚕业科学,1994b,20,
    72.向仲怀,张孝勇,余茂德,柯益富.采用随机扩增多态性DNA技术(RAPD)在桑属植物系统学研究的应用初报.蚕业科学,1995(4):203-208
    73.徐家萍.安徽省地方桑树种质资源过氧化物同工酶差异性研究.安徽农业科学,2001,29(5):657-662
    74.阎传海.植物地理学.北京:科学出版社,2001
    75.杨光伟,冯丽春,张孝勇,余茂德,柯益富,向仲怀.桑属种群遗传结构变异分析.蚕业科学,2003a,4:6-12
    76.杨光伟.中国桑属(Morus L.)植物遗传结构及系统发育分析.[博士学位论文].西南农业大学,2003b:24-29,51-74
    77.余茂德.桑树染色体倍数性的研究.蚕学通讯,1986,4:38-40
    78.余茂德.新疆桑树雌蕊柱头表面超微结构观察与分类的探讨.蚕业科学,1989,15 (2): 44-59
    79.张道远,陈之瑞,孙海英,尹林克,潘伯荣.用核糖体DNA的ITS序列探讨中国柽柳科植物系统分类中的几个问题.西北植物学报,2000,20(3):421-431
    80.张道远.中国柽柳属植物的分支分类研究.云南植物研究,2004,26(3):275-282
    81.张宏达.种子植物系统学.北京:科学出版社,2004
    82.张林斌,赵南先,葛学军.广义飞蛾藤属(旋花科)的分支系统学分析.武汉植物研究,2003,21(4):308-315
    83.张金谈,王伏雄.孢粉形态研究进展[J].植物学通报,1988.5(2)77-81
    84.张秀实.桑科新分类群.植物分类学报,1984,22(1):64-76
    85.章群,施苏华,黄椰林,谈凤笑,金虹.金缕梅族ITS序列分析及其系统学意义.中山大学学报,2000,39(1)
    86.赵国平,,新关稔,石川隆二,钱三旗,章群,敖杰男.中日当归属药用植物ITS序列分析.中草药,2006,37(7):1072-1076
    87.赵铁桥.分支系统学和种系发生.植物分类学报,2001,39(5):481-488
    88.赵卫国,潘一乐,黄敏仁.桑属种质资源的随机扩增多态性DNA研究.蚕业科学,2000,26(4)398—402.
    89.赵卫国,潘一乐,张志芳.桑属植物ITS序列研究与系统发育分析.蚕业科学,2004,30(1):11-14
    90.赵卫国.桑树叶绿体基因组DNA的提取及部分序列分析.蚕业科学,2001,(4):303-305
    91.中国科学院华南植物研究所编.广东植物志.广东科技出版社,1987
    92.中国科学院昆明植物研究所编著.云南植物志第六卷.科学出版社,1995
    93.中国科学院兰州沙漠研究所编.中国沙漠植物志第一卷.科学出版社,1985
    94.中国科学院青藏高原综合科学考察队.青藏高原横断山区维管植物.科学出版社,1993
    95.中国科学院青藏高原综合科学考察队吴征镒主编.西藏植物志第一卷.科学出版社,1983
    96.中国科学院西北高原生物研究所编.青海经济植物志.西宁:青海人民出版社,1987
    97.中国科学院植物研究所.中国高等植物图鉴.科学出版社,1957中国科学院植物研究所古植物室孢粉组.中国热带亚热带植物花粉形态.科学出版社,1982.1-9,图版107.
    98.中国科学院植物研究所古植物研究室孢粉组(译).孢粉学译丛.北京:科学出版社,1980,1-10.
    99.中国农业科学院蚕业研究所.中国桑树栽培学.上海:科学技术出版社,1985.45-49
    100. 中国植物志编辑委员会.中国植物志23卷(1).北京:科学出版社,1998:2-23
    101. 中国孢粉学会.中国孢粉学会第一届学术会议论文选集[M].科学出版社.1982
    102. 朱祥瑞,鲍惠金.桑叶超氧化物歧化酶(SOD)的研究.蚕业科学,1995,21(4):214-218
    103. 朱勇.二倍体桑的核型分析.蚕学通讯,1985,3:14-18
    104.Alvarez I, Wendel J F. Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol,2003,29:417-434
    105.AIph. de Candolle. prodromus Systematis Naturalis Regnj Vegetabijis, vol.XVIL.1873
    106.Apetorgbor M M, Turco E, ObbinahJ R, Ragazzi C A. Potential factors limiting viability of Milicia excelsa (Welw.) C. C. Berg seeds in plantation establishment in West Africa. Journal of Plant Diseases and Protection,2004(3):238-246
    107.Asrnussen C B,Chase,M w,2001.Coding and nonceding plastid DNA in palm systematics. American,journal of botarry;88; 1103-1117.
    108.Barraclough T G, Vogler A P. Detecting the geographical pattem of speciation from species-level phylogenies. Am Nahaliss,2000,155:419-434
    109.Baldwin B G, Sanderson M J, Porter J M. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden,1995,82:247-277.
    110.BANKS H.GA SSON P 2000.Pollen morphogy and wood anatamy of the Crudia group (Legum inosae,Caesalp in io ideae,Detarieae)[J].Bot J.Linn.Soc.134:19-59.
    111. Baum D A, Small R L, Wendel J F. Biogeography and fioralk evolution of Baobabs (Adansonia, Bombacaceac)as inferred from multiple data sets. System Biol,1998,47: 181-200.
    112. Bellstedt D U, Linder H P, harley E H. phylogenetic relationships in disa based on non-coding trnl-trnf chloroplast sequences; evidence of numerous repeat regions. Am J Bot,2001,88:2008-2100
    113.Bellarosa R, Simeone M C, Papini A, Schirone B. Utitity of ITS sequence data for phylogenetic reconstruction of ltatian Querces spp. Molecular Phytogenetics, and Evolution,2005,34:355-370
    114.Berry P E, Hipp A L, Wurdack K J, Van E E B, Riina R. Molecular phylogenetics of the giant genus croton and tribe crotoneae (Eupborbiaceae sensu stricto) using ITS and tml-tmf DNA sequence data. Am J Bot,2005,92:1520-1534
    115.Chase M W, Soltis D E, Olmstead R G, Morgan D, Les D H, Mishler B D, Duvall M R, Price R A, Hills H G, Qiu Y-L, Kron K A, Rettig J H, Conti E, Palmer J D, Manhart J R, Sytsma K J, Michaels H J, Kress W J, Karol K G, Clark W D et al. Phylogenetics of seed plants:an analysis of nucleotide sequences from the astid gene rbcl. Ann Mo Bot Gard,1993,80:221-233
    116.Donoghue M J. Progress and prospects in reconstructing plant phylogeny. Ann Mo Bot Gard,1994,81:405-418
    117.Downic S R, Katz-downie d s,1999.phylogenetic analysis of chloroplast rps16 intron sequences reveal relationships within the woody southern African apiaceae subfamily apioideae. Canadion Journal of Botarry,77;1120-1135.
    118.Erdtman G. Handbook of Palynology. New York:Hafner publishing Co,1969
    119.Galla S J, Viers B L, Gradie P E, Saar D E. Morus murrayana (moraceae):Anew mulberry from Eastern North America. Phytologia,2009,91(1):105-116.
    120.Groth M, Heinrichs J, Schneider H, Gradstein S R. Phylogenetic relationships in the Lejeuncece (Hepaticae) Inferred using ITS sequences of nuclear ribosomal DNA. Org Divers Evol,2004,4:51-57
    121.Huber K T, Watson E E, Hendy M D. Analgorithm for constructing local regions in a phylogenetic network. Mol Phylogenet Evol,2001,19:1-8.
    122. Jiang Z W, Wang S M, Zhang Z H. Pollen morphology of A ctin id ia and its system atic significance. Acta phy totax Sin 2004,42 (3):245-260
    123.Moretti G.. Prodromo di una monografia della Specie del Genere Morus,1842.
    124.Koidzumi G. Botanical Magazine,[J] 1915,29:313
    125.Koidzumi G., Botanical Magazine,[J] 1917,31:36
    126.Koidzumi G., Buli,Imp,Sericult.Ext.Station[J] 1923,2:1-45
    127.Koidzumi G., Floroe Symboloe Orientali-Asiaticae[M] 1930.89
    128.Kay K M, Reeves P A, Olmstead R G, Schemske D W. Rapid speciation and the evolution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae):evidence from nrDNA ITS and ETS sequences. Am J Bot,2005,92: 1899-1910
    129.Katayama H, Uematsu C. Structural analysis of chloroplast NDA in Prunus (Rosaceae):evolution, genetic diversity and unequal mutationt. Theor Appl Genet, 2005,111:1430-1439
    130.Kress W J, Liu A Z, Newman M, Li Q J. The molecular phylogeny of Alpinia (Zingiberaceac):A complex and polyphyletic genus of gingers. American Journal of Botany,2005,92:167-178.
    131.Kumar S, Tamura K, Nei M. MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 2004,5:150-163
    132.Linne C V. Species plantarum.1753,2:986
    133.Nyree J.C. Zerega, Clement W L, Datwyler S L, Weiblen G D. Biogeography and divergence times in the mulberry family (Moraceae). Molecular Phylogenetics and Evolution,2005(39):402-416.
    134.Ochse J J.Tropical and subtropical agriculture. New York:The Macmillan Co..N.Y.,U.S.A..1961 (Vol.1p):724.
    135.Posada D, Bukley T R. Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. System Biol,2004.53:793-808
    136.Posada D, Crandall K A. Modeltest:Testing the model of DNA substitution. Bioinformatics,1998,14:817-818.
    137.Renner S S. Bayesian analysis of combined chloroplast loci, using multiple calibrations, supports the recent arrival of Melastomataceae in Africa and Madagascar. Am J Bot,2004,91:1427-1435
    138.Ridley M. Evolution. Boston:Blaek well Seientifie Publication,1993.
    139.Scgols P, Furness C A, Wlkn P, Huysman S S, Smets E. Morphology of pollen and orbidules in some Dioscorea species and its system atic inp locations. Bot J linn Soc, 2001,136:295-311.
    140.Schwarzbach A E, Ricklefs R E. Systematic affinities of rhizopboraccec and Anisophylleacese, and intergeneric relationships within rhizophoraccae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology, Am J Bot,2000,87: 547-564.
    141.Schneider C K. lantae Wilsonianae.1916,3(2):296-297
    142.Seringe N C. Description et Culture des Murierrs.1855
    143.Shaw J, Small R L.Chloroplast DNA phylogeny and phylogeography of the north American plums (pruna subgenus prumd section prunocerana, Rosaceae), Am J Bot, 2005,92:2011-2030
    144.Stanford A M, Harden R, Parks C R. Phylogeny and biogeography of jugland (juglandaceac) based on mark and ITS sequence data. Am J Bot,2000,87:872-882
    145.Stech M, Quandt D, Frey W. Molecular cirumseription of the bornworts (anthocerotophyta) based on the chloroplast DNA tml-tmf region.J Plant Res,2003, 116:389-398
    146.Sugiura M. The chloroplast chromosomes in land plants. Annl Rev Cell Bio,1989, 5:51-70
    147.Sugiura M. The chloroplast genome. Plant Mol Bio,1992,19:149-168
    148.Swofford D L. PAUP Phylogenetic Analysis Using Parsimony (and Other Methods),Version 4.0b10,2002
    149.Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The Clustal Ⅹ windows interface:Flexible strategies for multiple sequence alignment aided by quality analysis. tools. Nucleic Acids Research,1997,25:4876-4882
    150. Van Campo, M. Patterns of pollen morphological variation within tascaiine.Symp.Ser 1976,1:125-137
    151.Vinnersten A, Recves G. Phylogenetic relationships within cokhicaceae. Am J Bot, 2003,90:1455-1462
    152.Walker J M. Aperture evolution in the pollen of prinitive angiosperms. Am J Bot, 1974,61(10):1112~1136
    153.Weising K H, Wolff K, Meyer W. DNA Fingerprinting in Plants and Fungi. Boca Raton, Florida, US:CRC Press,1995:50-54
    154. Wolfe K H, Li W H, Sharp P M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chiotoplast, and nuclear DNAs, PNAS USA,1987,84: 9054-9058
    155.Zhao W G, Miao X X, Jia S H, Yile P, Huang Y P. Isolation and characterization of microsatellite loci from the mulberry, Morus L.. Plant Science,2005,168:519-525.
    156.Zukerkandt E, Pauling L. Molecules as documents of evolutionary history. J Theo Bio,1965,8:357-366

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700