钛基复合管件冷成形数值模拟及制备工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高钛管件表面硬度,改善其耐磨损、耐腐蚀性能,需要对其表面进行处理。本文采用一种新工艺,制备了带有氧化铝陶瓷涂层的钛基复合管件。
     首先用爆炸焊接工艺制备了钛/铝复合管材,利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)分析了复合管界面的形貌、元素分布及相组成,结果表明钛/铝复合管界面过渡层由钛-铝固溶体组成,实现了冶金结合,界面无微观裂纹存在。采用压剪试验、径向压扁试验和轴向压缩试验研究了界面结合性能。
     运用Marc有限元软件对钛/铝复合三通管件液压胀形和弯头推弯成形进行了数值分析,研究表明复合三通管件胀形所需的最小结合强度为5MPa。当摩擦系数小于0.1,内压力为100MPa,左右冲头的进给距离为25mm时,成形效果较好;复合弯头推弯所需最小结合强度为50MPa,摩擦系数应小于0.15。根据模拟结果对钛/铝复合管件进行了液压胀形和推弯成形试验,制备的钛/铝复合管件尺寸精度较高,双金属的界面结合良好。
     通过微弧氧化工艺对经过化学铣切处理的钛/铝复合三通和弯头管件进行了陶瓷化处理,分别采用划痕仪、电化学工作站及球盘式摩擦磨损试验机,对氧化铝陶瓷涂层的力学性能、耐腐蚀性能和摩擦学性能进行了表征,结果表明陶瓷涂层与基体结合力达55N,涂层腐蚀电流比钛基体降低5个数量级,摩擦系数比钛基体降低8倍。
     综合分析表明,运用有限元方法对钛基复合管件冷成形进行模拟,能较好地指导实际冷成形试验。通过新工艺所制备的带有陶瓷涂层的钛基复合管件能够显著提高钛基体耐磨损及耐腐蚀性能。
Titanium pipe-fittings with ceramic coatings were prepared using a new composite process in this work to improve their surface hardness, corrosion resistance and wear properties..
     Firstly, the Ti/Al composite tube blanks were produced by explosive welding. The microstructure, element distribution and phase composition around the interface of the composite tubes were characterized respectively with the aid of scanning electron microscope (SEM), energy dispersion X-ray spectrum (EDS) and X-ray diffraction (XRD).The results showed that the metallurgical bonding occurred without any microcracks at the interface between Al and Ti matrix, and the microstructure around the interface was Ti-Al solid solution. The bonding strength of composite tubes was investigated individually by means of compression shear test, flattening test and upset test.
     Then, the Marc software was used to simulate the hydroforming process of T-shapes and push bending process of elbows. It was found that more than 5MPa interface bonding strength and less than 0.1 friction coefficient were needed with internal pressure 100MPa and feed distance 25mm in the hydroforming process. For the push bending process, the critical interface bonding strength was 50MPa, friction coefficient was less than 0.15. Ti/Al composite T-shapes and elbows with high size accuracy and good bonding strength were manufactured successfully according to the simulation results.
     The Al_2O_3 coatings were prepared by micro-arc oxidation. The adhesion strength, corrosion resistance and tribological behavior of Al2O3 coatings were investigated individually through scratch adhesion test, electrochemistry work station and ball-on-disc tribological test. The results reveal that the Al2O3 coatings have the bonding force of over 55N. The corrosion current of the Al2O3 coatings decreases dramatically by 5 magnitudes owing to their compact structure. Furthermore, the prepared coatings possess good wear resistance with friction coefficient 8 times lower than that of the titanium substrate.
     The above analysis indicates that the numerical simulation can guide the practical forming of Ti-based composite pipe-fittings effectively. Ti-based composite pipe-fittings with Al2O3 coatings prepared by a new composite process can improve their wear resistance and corrosion properties, significantly.
引文
[1]赵卫民.金属复合管生产技术综述[J]. 2003, 26(3): 10~14.
    [2]王晓峰. H62黄铜/碳钢双金属管内压扩散复合的研究[D].大连:大连交通大学, 2005.
    [3] Wang X S, Li P, Wang R. Study on hydro-forming technology of manufacturing bimetallic CRA-lined pipe[J]. International Journal of Machine Tools & Manufacture, 2005, 45: 373~378.
    [4]郑远谋.爆炸焊接与金属复合材料及其工程应用[M].湖南:中南大学出版社, 2002. 298~309.
    [5]陈海云,曹志锡.双金属复合管塑性成形技术的应用及发展[J].化工设备与管道, 2006, 43(5): 16~21.
    [6] Alcarz J L, Mlartfnez J M. An analytical approach to the stress field in the extrusion of bimetallic tubes[J]. International Journal of Solids and Structures, 1996, 33(14): 2075~2093.
    [7] Park H J, Na K H, et al. A study of the hydrostatic extrusion of copper-clad aluminium tube[J]. Journal of Materials Processing Technology, 1997, 67: 24~28.
    [8] Liu F J, Zheng J Y, Xua P, et al. Forming mechanism of double-layered tubes by internal hydraulic expansion[J]. International Journal of Pressure Vessels and Piping, 2004, 81: 625~633.
    [9] Cheng D M., Teng B G, Guo B. Thickness distribution of a hydroformed Y-shape tube[J]. Materials Science and Engineering, 2009, 499: 36~39.
    [10] Islam M D, Olabi A G, Hashmi M S. Feasibility of multi-layered tubular components forming by hydroforming and finite element simulation[J]. Journal of Materials Processing Technology, 2006, 174: 394~398.
    [11] Anon. Titanium alloys for aerospace[J]. Advanced Materials & Processes, 1999, 155(3): 39~43.
    [12]郭敏,彭乔.钛的应用开发和腐蚀研究[J].四川化工与腐蚀控制, 2000, 3(6): 28~31.
    [13]苏鸿英.钛航空应用技术新进展[J].世界有色金属, 2008, 12: 30~31.
    [14]胡清熊.钛的应用及前景展望[J].钛工业进展, 2003, 20(5): 11~15.
    [15]王浩.钛和钛合金在口腔环境中应用腐蚀的研究进展[J].口腔材料器械, 2008, 17(3): 147~149.
    [16]梁芳慧,周廉.钛和钛合金生物活化研究现状[J].稀有金属材料与工程, 2003, 32(4): 241~244.
    [17] Taddei E B, Henriques V A R. Production of new titanium alloy for orthopedic implants[J].Materials Science and Engineering, 2004, 24: 683~687.
    [18]余洪.金属钛及其合金[J].汽车工艺与材料, 2004, 12: 6~9.
    [19]金红.钛在民用领域中的开发应用现状及发展前景[J].稀有金属, 1998, 22(6): 434~438.
    [20]杨保祥.钛合金应用领域拓展及攀枝花钛加工产业发展建议[J].攀枝花科技与信息, 2009, 35(2): 30~36.
    [21]周佳宇,哈军.钛合金材料在舰船管系上的应用[J].材料开发与应用, 2006, 21(3): 40~42.
    [22]刘增文,孙俊峰,吴新章.火力发电厂凝汽器钛管的焊接工艺及应用[J].河北电力技术, 2006, 25(2): 14~16.
    [23] Yue T M. Excimer laser surface treatment of Ti-6Al-4V alloy for corrosion resistance enhancement[J]. Materials Letters, 2002, 52(3): 206~212.
    [24] Man H C, Cui Z D, Yue T M, et al. Cavitation erosion behavior of laser gas nitrided Ti and Ti-6A1-4V alloy[J]. Materials Science and Engineering, 2003, 355: 167~173.
    [25]唐宾.钛及钛合金表面改性层腐蚀及腐蚀磨损性能研究[D].太远:太原理工大学, 2005.
    [26]秦妍梅,孙斌煜,张秀芝,等.纯钛表面渗Mo改性层在模拟人工体液中的腐蚀行为研究[J].表面技术, 2008, 1: 34~36.
    [27]戴景杰.纯钛TA2合金表面改性试验与机理研究[D].兰州:兰州理工大学, 2006.
    [28]梁峥嵘,韩栋伟.纯钛表面改性对细菌粘附的影响[J].临床口腔医学, 2009, 10: 76~78.
    [29]李健学,张玉梅,吴国锋,等.钛微弧氧化表面处理对钛瓷结合强度的影响[J].稀有金属材料与工程, 2008, 3: 56~59.
    [30]王志义,管相杰.电泳沉积氧化铝陶瓷涂层的制备及耐腐蚀性能[J].电镀与涂饰, 26(9): 1~4.
    [31]吴晓东,翁端,徐鲁华,等.等离子喷涂氧化铝涂层的结构与性能研究[J].稀土, 2002, 23(1): 1~5.
    [32]马壮,孙方红,李智超,等.热化学反应法制备氧化铝基陶瓷涂层及性能研究[J].材料热处理, 2007, 36(12): 1~6.
    [33] Veith Schier.物理气相沉积( PVD)制备氧化铝涂层[J].工具技术, 2006, 40: 84~85.
    [34] Noguchi K, Nishida M, Chiba A, et al. Microstructural characteristics of low pressure plasma sprayed CoNiCrAl coating[J]. Proceedings of ITSC, 1995: 411~416.
    [35]何国松.最新钢管铸铁管制造工艺技术、标准及管材、管件应用技术手册[M].吉林:吉林电子出版社, 2004. 167~198.
    [36]于宁,陈鸿恩.组合管件在直埋蒸汽管网中的应用[J].管道技术与设备, 2001, 4: 25~27.
    [37]时永利.不锈钢薄壁管件的加工工艺改进[J].重工与起重技术, 2009, 1: 16~18.
    [38]高峻凯.国内外螺旋焊管钢管制管概况[J].油气储运, 1994, 4: 13~18.
    [39]刘丽敏.大口径高钢级管件成形工艺数值模拟及实验研究[D].北京:北京机电研究所, 2008.
    [40]陶杰,刘红兵.金属管件冷成形技术研究进展[J].机械制造与自动化, 2009, 4: 1~5.
    [41] Dohmann F, Hartl C. Tube hydroforming research and practical application[J]. Journal of Materials Processing Technology, 1997, 71: 174~186.
    [42]陈仙风.基于数值模拟的汽车管件液压成形工艺分析[D].上海:上海交通大学, 2007.
    [43]齐军,王小松,苑世剑.管材液压成形技术的发展[J].塑性工程学报, 2008, 15(4): 6~11.
    [44]杜华.非对称Y型三通管内高压成形过程数值模拟及参数优化[D].合肥:合肥工业大学, 2009.
    [45] Wang Y M, Lin T C, Chang W C. Experiments on T-shape hydroforming with counter punch[J]. Journal of Materials Processing Technology, 2007, 192: 243~248.
    [46] Abrantes J P. Numerical simulation of an aluminum alloy tube hydroforming[J]. Journal of Materials Processing Technology, 2006, 179: 67~73.
    [47] Wang X.S, et al. Research on hydroforming tubular part with large perimeter difference[J]. Acta Metallurgica Sinica, 2008, 21: 133~138.
    [48]鄂大辛,宁汝新,唐承统,等.小直径管无芯弯曲壁厚变形的试验研究[J].塑性工程学报, 2005, 12(2): 58~60.
    [49]余同希,章亮炽.塑性弯曲理论及其应用[M].北京:科学出版社, 1992: 134~143.
    [50]张文生,孙娈芬,陈建忠.热推弯头制造工艺的改进[J].管道技术与设备, 2007, 5: 28~29.
    [51]段文森.钛及钛合金管弯头成形工艺论述[J].金属学报, 2002, 38: 242~244.
    [52]谢世坤,赵孝养,程从山.板料成形有限元分析的发展综述[J].井冈山学院学报, 2006, 27(4): 48~50.
    [53]应富强,张更超,潘孝勇.三维有限元模拟技术在金属塑性成形中的应用[J].锻压装备与制造技术, 2003, 5: 10~13.
    [54]高程.管件液压成形理论分析及数值模拟[D].西安:西安理工大学, 2006.
    [55]刘丽敏.大口径高钢级管件成形工艺数值模拟及实验研究[J].北京:北京机电研究所, 2008.
    [56]林俊峰,苑世剑,韩杰才.有限元模拟技术在管件液压成形中的应用[J].机床与液压, 2009, 37(3): 133~135.
    [57]张洪武,关振群,李云鹏.有限元分析与CAE技术基础[M].北京:清华大学出版社, 2004: 11~172.
    [58]阚前华,常志宇. MSC.Marc工程应用实例与二次开发[M].北京:中国水利水电出版社, 2005: 60~179.
    [59] Nizamettin K, Behcet G. Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process[J]. Journal of Materials Processing Technology, 2005, 169: 67~71.
    [60] Mousavi S A A, Sartangi P F. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel[J]. Materials and Design, 2009, 30: 459~468.
    [61] Mousavi S A A, Barrettb L M. Explosive welding of metal plates[J]. Journal of Materials Processing Technology, 2008, 202: 224~239.
    [62] Mustafa A, Bilge D. An investigation of mechanical and metallurgical properties of explosive welded aluminum-dual phase steel[J]. Materials Letters, 2008, 62: 4158~4160.
    [63] Mousavi S A A, Hassani A, Atkins A G. Bond strength of explosively welded specimens[J]. Materials and Design, 2008, 29: 1334~1352.
    [64] Manikandana P, Hokamotob K, Fujitac M. Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel[J]. Journal of Materials Processing Technology, 2008, 195: 232~240.
    [65]杨扬,李志鹏,胡彬.内爆法制备双金属管复合参数的计算机辅助设计[J].爆炸与冲击, 2004, 24(6): 571~574.
    [66] Kahraman N, Gulenc B, Findik F. Corrosion and mechanical-microstructural aspects of dissimilar joints of Ti-6Al-4V and Al plates[J]. International Journal of Impact Engineering, 2007, 34: 1423~1432.
    [67]刘彩霞.焊制三通管件塑性极限载荷的有限元分析[D].北京:北京化工大学, 2003.
    [68]陈火红,杨剑.新编Marc有限元实例教程[M].北京:机械工业出版社, 2007: 164~253.
    [69]章志兵,李赳华,柳玉起.管材液压成形中的数值模拟方法[J].中国机械工程, 2008, 19(16): 194~197.
    [70]李赳华.管材液压胀形与板材液压拉深数值模拟方法的研究[D].武汉:华中科技大学, 2007.
    [71] Liewald M, Stefan W. State of the art of hydroforming tubes and sheets in Europe[J]. Journal of Plasticity Engineering, 2007, 14: 164~170.
    [72] Wang Y M, Lin T C, Chang W C. Experiments on T-shape hydroforming with counter punch[J]. Journal of Materials Processing Technology , 2007, 192: 243~248.
    [73] Lang L H, Li H L, Yuan S J, et al. Investigation into the pre-forming’s effect during multi-stagesof tube hydroforming of aluminum alloy tube by using useful wrinkles[J]. Journal of Materials Processing Technology, 2009, 2553~2563.
    [74]吕海源.金属复合管弯曲过程数值模拟与实验验证[D].上海:上海交通大学, 2008.
    [75]方雄.铝塑复合管受力过程的数值模拟[D].湖北:华中科技大学, 2004.
    [76]郑远谋.金属爆炸复合材料的压力加工[J].钢铁研究, 1999, 3: 32~37.
    [77]卫英慧,侯利锋.纯铝薄板在爆炸冲击作用下结合界面特征研究[J].材料科学与工艺, 2006, 3(14) :330~332.
    [78]杨兵.管件液压成形的影响因素[J].上海交通大学学报, 2005, 11(9): 1767~1774.
    [79]卢立红. Q235钢表面热镀铝微弧氧化陶瓷层的性能[J].腐蚀与防护, 2008, 28(8): 425~426.
    [80]杜继红,李争显,慕伟意.不锈钢/铝复合材料表面微弧氧化陶瓷膜的研究[J].表面技术, 2004, 33(1): 35~37.
    [81]吴振,姜兆华,姚忠平.纯铝及其合金微弧氧化陶瓷膜性能分析[J].稀有金属材料与工程, 2006, 35: 148~151.
    [82]金光,熊伟,李玉海.纯铝微弧氧化陶瓷层的相组成及性能[J].轻合金加工技术, 2008, 36(8): 38~40.
    [83]胡鹏.锻铝微弧氧化过程控制问题的研究[D].武汉:中南民族大学, 2007.
    [84]李静.铝、钛微弧氧化工艺及机理研究[D].大连:大连海事大学, 2006.
    [85]周一扬,黄明珠,李澄.铝合金的化学铣切加工[J].模具技术, 2000, 1: 90~91.
    [86]于芝兰.铝合金化学铣切的现代技术[J].轻合金加工技术, 1995, 23(9): 28~29.
    [87]薛文斌,邓志威,陈如意,等.铝合金微弧氧化膜与基体界面区的硬度和弹性模量分布[J].金属学报, 1999, 35(6): 638~642.
    [88] Xue W B, Wang C, Li Y L, et al. Effect of microarc discharge surface treatment on the tensile properties of Al-Cu-Mg alloy[J]. Materials Letters, 2002, 56(5): 737~743.
    [89]辛世刚,宋力听,赵荣根.铝基复合材料微弧氧化陶瓷膜的组成与性能[J].无机材料学报, 2006, 21(1): 223~228.
    [90]李淑华,程金生,尹玉军.铝的微弧氧化机理与膜层结构的对应关系[J].机械工程材料, 2001, 25(1): 23~25.
    [91]朱小清,葛顺兰.划痕试验检验TiN涂层粘附性的影响因素分析[J].汽车科技, 1996, (5): 23~30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700