超大跨空间钢管拱桁架层面太阳能发电功能及其强震下弹塑性性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界建筑的日益增多,建筑耗能超越工业耗能和交通耗能,一跃成为社会耗能之首。在不可再生能源日趋减少的情形下,太阳能因其清洁和无限性引起大家重点关注。经过不断的开发创新,太阳能建筑一体化成为建筑未来的发展方向,尤其是光伏发电技术与建筑一体化在大跨度空间结构上的应用成为建筑行业的一大亮点。
     人类文明的发展并不能阻挡自然灾害的发生,地震灾难作为自然灾害之首,具有不可抗拒的破坏力,灾后造成的严重损失也是人们无法承受的。从已发生地震后震区情形可知,为了使灾民能及时得到治疗尽快恢复正常生活,有必要建设抗震性能极强且用太阳能提供能源的大跨度空间结构的避难所以备灾后使用。据此,本文设计了240m跨矢跨比0.15的钢管拱桁架模型,并对其太阳能应用做了初步探索,进一步对其抗震性能做了研究,主要工作如下:
     1.对太阳能发电原理、太阳能电池类型及其发电量计算方法、太阳能在建筑上的应用可行性等做了分析。
     2.对配备了太阳能发电设备的240m跨钢管拱桁架进行设计,根据太阳能电池发电量计算方法对整个屋面太阳能发电量进行计算分析。
     3.为满足抗震避难所及太阳能应用要求,在宁河波作用下对原设计结构进行动力弹塑性分析,经分析对原设计结构进行了部分截面调整,并对比了调整前后两模型的结果。
     4.为进一步确定调整结构是否满足作为抗震避难所及太阳能应用的要求,采用宁河波、LOMA波和上海人工波对调整截面结构进行了X向、Z向、X+0.65Z双向地震的响应分析。
     本文通过对上述两大部分内容的分析研究,得出结论如下:
     1.超大跨度空间结构相比其他结构而言,更加适合太阳能的应用;经发电量计算,可知该结构太阳能板发电量足以供馆内日常生活使用,并且作为抗震避难所,灾后可以当作应急电源使用。
     2.经分析对比可知,调整后单榀钢管拱桁架用钢量比原设计结构用钢量增加了11.2%,但拱桁架水平抗震能力提高了167%,竖向抗震能力提高了119%,双向抗震能力提高了198%。
     3.不同地震波同一方向作用下,结构破坏时最大位移值基本一致,且都小于空间网格结构的容许挠度值,即结构跨度的1/250。
     4.分析结果显示,调整结构在罕遇地震下仍可使用;强震作用下结构最大位移值小于空间结构正常使用时最大允许挠度值,同时也满足了太阳能板正常使用的条件
With the growing number of world-building, the building energy consumption beyond the industrial energy consumption and transport energy consumption, became the first social energy consumption. In unrenewable resources decreasing circumstances, solar energy caused everybody attention for its clean and infinity. After continuous development and innovation, bilding integrated solar energy has become the future development direction of the building, especially the photovoltaic technology and building integrated applications on the large span space structure become a major bright spot in the construction industry.
     Development of human civilization can not prevent the occurrence of natural disasters, earthquake disaster as natural disasters, with an irresistible destructive disaster. People can not afford the serious losses after the earthquake earthquake. We can know from the circumstances after the happend earthquake, in order to make the victims can receive timely treatment then resume normal life as soon as possible, it is necessary to build the large span spatial structure refuge for post-disaster use, which have strong seismic performance and use solar energy to provide energy. Accordingly, this paper designed240m span, cross ratio of0.15in arch truss model, made a preliminary exploration of its solar energy applications, but also study their anti-seismic performance furtherly, the main works are as follows:
     1. Do an analysis for the principle of solar power generation, solar cell type and its power calculation method, the feasibility of the application of solar energy in building.
     2. Design240m span steel pipe arch truss equipped with solar power generation equipment. According to the solar power calculation method, calculated and analyzed the entire roof solar power generation.
     3. In order to meet the requirements of anti-seismic refuge and solar energy application, do elastoplastic dynamic analysis on initial designed structural under the NH wave, do a partial cross-section adjustment on the original design structure through analysis, and compared the results of the two models before and after adjustment.
     4To further identify the adjust structural whether meet the requirements of anti-seismic shelters and solar energy applications, using NH wave, LOMA wave and RG wave on the adjust structure did seismic response analysis in X, Z, X+0.65Z-bi-directional.
     This article according to the above two parts content analysis study, draws the following conclusions:
     1. Compared to other structures, super large span space structure is more suitable for solar applications,through the power calculation of the structure, we can see the solar panels generating capacity is sufficient for the daily life, and as anti-seismic shelters, it can be used as emergency power after disaster
     2. We can know through comparison, steel amount of adjustment single beam of steel tubular arch truss increased11.2%than the original design structure steel consumption, but the arch truss horizontal anti-seismic capacity increased167%, vertical anti-seismic capacity increased119%, bi-directional anti-seismic capacity increased198%.
     3. Different seismic waves in the same direction, the maximum displacement value is basically the same when structural damage, and it is less than the allowable deflection value of space frame structure, namely1/250of the structure span.
     4. The analysis results shows, structural adjustment in the rare earthquake can still be used; Under strong earthquake, the maximum displacement value is less than the maximum allowable deflection of the normal use in the spatial structure, but also this meet the normal conditions of use solar panels.
引文
[1]张鑫,大跨度钢拱桁架建筑结构的新功能研究,太原理工大学硕士学位论文,2009
    [2]陈建,空间结构屋面太阳能应用及光伏屋面板开发研究,浙江大学硕士学位论文2008
    [3]王垚,太阳能技术在建筑上的应用研究,西安科技大学硕士学位论文,2011
    [4]鞠晓磊,梁叶,曾雁,张磊,王岩.光伏系统在既有建筑改造中的应用,太阳能2010(4)
    [5]谢士涛,黄向阳,何清.深圳南玻大厦光伏幕墙技术,太阳能,2008(1)
    [6]孟繁晋,寒冷地区居住建筑太阳能低温地板辐射采暖系统的实验研究,山东建筑大学硕士学位论文,2009
    [7]孙薇,住宅太阳能节电研究,河海大学硕士学位论文,2007
    [8]郝斌,李现辉.太阳能光伏建筑一体化探讨,建筑科技,2009(20)
    [9]李芳,沈辉,许家瑞等.光伏建筑一体化的现状与发展,电源技术,2007,8,659-662.
    [10]余寅,唐宏德,郭家宝.中国可再生能源发展前景分析,华东电力,2009,37(8)
    [11]鲁永飞,夏海山.被动式太阳能建筑一体化设计策略,建筑科技,2009,(24)
    [12]马宁,太阳能光伏发电概述及发展前景,智能建筑电气技术,2001,05(2)
    [13]匡荛,柳孝图.建筑的形态、环境与光伏系统输出功率差异.华中建筑,2004,05,84-85.
    [14]由世俊,娄承芝.建筑物用光伏集成系统在中国应用的前景.太阳能学报,2000,10,434-438.
    [15]王殿池.太阳能在多高层住宅建筑中的应用研究,河北工业大学硕士学位论文,2005.
    [16]王璐,太阳能技术在低层住宅中的应用,华中科技大学硕士学位论文,2005.
    [17]李炳华,王玉清.国家体育场太阳能光伏发电技术应用的研究.建筑电气,2006,4,20-26.
    [18]朱伟钢,林燕梅,周蕾.太阳能光伏发电在中国的应用.现代电力,2007,10,20-22.
    [19]汤叶华,谢建,刘祖明等.光伏发电系统优化分析.可再生能源.2006,3,16-18.
    [20]杨金焕,葛亮,陈中华,等.太阳能发电系统的最佳化设计.能源工程,2003,5,25-28.
    [21]腾飞.太阳能产业新蓝海-光伏建筑一体化.太阳能,2007,8,40-41.
    [22]郝国强,李洪波,陈鸣波.光伏建筑一体化并网电站的应用与发展.上海节能,2006, 6,66-70.
    [23]安文韬,刘彦丰.太阳能光伏光热建筑一体化系统的研究.应用能源技术,2007,11,33-39.
    [24]Michael j Crosbie. The Passive Solar Design and Construction Handbook. Steven Winter Associates.1997:16~18
    [25]Edward Mazria. Passive Solar Energy Book. Rodale Press.1979:8~10
    [26]J.D Balcomb. Passive Solar Heating Analysis:a Design Manual. Los Alamos National Laboratory.ASHRAE,U.S.A.1984:2~7
    [27]J.D.Balcomb,J.C, Acdstoem, R.D. McFarland, Simulation analysis of passive Solar heating building(preliminary results, Solar Energy, Vol,19(1974):pp277-282
    [28]J.D.Balcomb, R.D, McFarland, Simulation analysis of passive solar heating building(the influence of climate and geometry on performance, As/ISES,1977 Annual meeting,pp11~14.
    [29]J.N.Swisher.Measured Performance of 50 Passive Solar Residences in the United States. Proceedings of NPSC.1983,5
    [30]C.M.Lampert. Large-area smart glass and integrated photovoltaics. Solar Energy Materials&Solar Cells 76(2003)489-499
    [31]M.Oliver,T.Jackso. Energy and economic evaluation of building-integrated photovoltaics.Energy,26(2001)431-439
    [32]Joachim Benemann, Oussama Chehab, Eric Schaar-Gabriel. Building-integrated PV modules. Solar Energy Materials&Solar Cells,67(2001)345-354.
    [33]李爱群,工程结构减振控制[M],北京:机械工业出版社,2008.
    [34李海旺.钢管拱桁架的静力稳定性研究[J].太原理工大学学报,2006
    [35]李海旺.空间钢管拱桁架组合结构体系在地震作用下的动力响应研究[C].第十二届空间结构学术会议,2008,11
    [36]李海旺.空间钢管拱桁架强震作用下的弹塑性动力响应研究[J].工程抗震与加固改造(增),2009
    [37]李海旺.考虑行波效应下单榀钢管拱桁架的非线性地震反应分析[J].建筑结构,2009,39(2)
    [38]李海旺,李建仙,钢管拱桁架在地震作用下的动力响应研究,科技情报开发与经济,2007,17(8)
    [39]王伟,120m跨带下部结构钢管拱桁架的基础隔震性能及失效机理分析,太原理工大学硕士学位论文,2007
    [40]庞文忠,强震下60m跨倒三角形截面钢管拱桁架工作性能研究,太原理工大学硕士学位论文,2006
    [41]刘静,李海旺,庞文忠.强震下钢管拱桁架损伤及失效机理研究[J].土木工程学报(增),2010,8(24)
    [42]H.W. Li, X.F. Shu and F.Zhi:International Association for Shell and Spatial Structures (IASS) Symposium (Universidad Politecnica De Valencia, Spain, September 28-October 2,2009).p.358
    [43]H.W. Li, J.X. Li, F. Zhi, F. Ma and D.Q. Qin:Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures IASS-IACM (Cornell University, Ithaca, NY, USA, May 28-31,2008).
    [44]Li Haiwang,Zhao Hongsheng,Zhao Yanjing, Study on Planning for the Indoor-earthquak e-shelter in City and Town. 《Advanced Science Letters》,USA,2011,10.
    [1]中国新能源网http://www.newenergy.org.cn/solar/
    [2]朱伟钢,林燕梅,周蕾.太阳能光伏发电在中国的应用.现代电力,2007,10,20-22.
    [3]太阳能发电,《太阳能发电》杂志,2011,9
    [4]梁宗存,沈辉,李戬洪.太阳能电池及材料研究.材料导报,2000.8,14(8)
    [5]张鑫,大跨度钢拱桁架建筑结构的新功能研究,太原理工大学硕士学位论文,2009
    [6]林安中,王斯成.国内外太阳电池和光伏发电的进展与前景.太阳能学报,1999
    [7]陈建,空间结构屋面太阳能应用及光伏屋面板开发研究,浙江大学硕士学位论文,2008
    [1]《钢结构设计规范》GB50017-2003
    [2]《网架结构设计与施工规程》JGJ 7-91
    [3]《建筑结构荷载规范》GB5009-2001(2006年版)
    [4]《建筑抗震设计规范》GB50011-2010
    [5]王仕统,姜正荣,宝安体育馆钢屋盖结构设计.空间结构,2003(5),VOL,18,NO,67
    [6]周敏辉,李志宏,陈文祥,李伟锋.佛山岭南明珠体育馆穹顶钢结构设计,2007.09
    [7]周笋,朱忠义,丁志鹃,张世碧,王雪生,秦凯.绵阳新体育馆屋盖结构设计.建筑结构,2006.6
    [1]沈世钊,陈昕.网壳结构动力稳定性[M].北京,科学出版社,1999
    [2]北京金土木软件技术有限公司,中国建筑标准设计研究院.SAP2000中文版使用指南,人民交通出版社
    [3]王伟,120m跨带下部结构钢管拱桁架的基础隔震性能及失效机理分析,太原理工大学硕士学位论文,2007
    [4]庞文忠,强震下60m跨倒三角形截面钢管拱桁架工作性能研究,太原理工大学硕士学位论文,2006
    [5]沈世钊,网壳结构动力稳定性[A].邀请报告,第三届海峡两岸及香港钢及结构技术研讨会[C].中国,香港,2003:277-291
    [6]郭海山,沈世钊,单层网壳结构动力稳定性分析方法[J].建筑结构学报,2003,24(3):1-9
    [7]范峰,钱洪亮,邢佶慧,支旭东,沈世钊,强震作用下球面网壳动力强度破坏研究[J].哈尔滨工业大学学报,2004,36(6):722-725
    [8]沈世钊,支旭东,球面网壳结构在强震下的实效机理[J].土木工程学报,2005:11-20
    [1]黄鑫.大跨度空间结构抗震设计方法研究[D].天津大学硕士学位论文,2007,1
    [2]王蕊.大跨度空间结构弹塑性时程分析[D].天津大学硕士学位论文,2007,6
    [3]杨木旺.大跨度刚性空间结构竖向地震的静力弹塑性分析{D}.同济大学博士学位论文,2005,6
    [4]王丽娜,空间钢管桁架结构动力性能及抗震设计方法研究,北京交通大学硕士,学位论文,2008
    [5]杨洁,何熠.建筑结构抗震弹塑性分析方法的讨论,云南建筑,2009(6)
    [6]范峰,支旭东,沈世钊,大跨度网壳结构强震失效机理研究
    [7]Zhi Xudong, Fan Feng, Shen Shizhao. Failuremechanis m of single21ayer reticulated domes subjectedt o earthquakes [J]. Journal of the Internati onalAss ociati on for Shell and Spatial Structures.2007,48(1):29244.
    [8]支旭东,范峰,沈世钊.强震下单层柱面网壳损伤及失效机理研究[J].土木工程学报.2007,40(8):292 34.(Zhi Xudong, Fan Feng, Shen Shizhao. Failureand damage of single21ayer reticulated cylindrical shells under earthquakes [J]. China Civil Engineering Journal,2007,40
    [9]吴金妹,大跨度单层柱面网壳在强震下的失效研究,2009,6
    [10]朱自强,浅谈建筑抗震现状与抗震技术展望,城市建筑理论研究,2011,(32)
    [11]刘淑华,董磊,钢结构抗震和消能问题的探讨,城市建筑理论研究,2011,(30)
    [12]朱自强,浅谈建筑抗震现状与抗震技术展望,城市建筑理论研究,2011,(32)
    [13]陈代海,郭文华,大跨度钢桁架拱桥的空间地震响应分析,中南大学学报,2010,41 (4)
    [14]马人乐,赵林,何敏娟,大型超高钢结构电视塔抗震性能分析,同济大学学报,2007,35(10)
    [15]王仕统,姜正荣.宝安体育馆钢屋盖结构设计.空间结构,2003(5),VOL,18.NO,67
    [16]周笋,朱忠义,丁志鹃,张世碧,王雪生,秦凯.绵阳新体育馆屋盖结构设计.建筑结构,2006.6
    [17]AL-Hassani,S.T.S et al. Large-deformation response of deep circrlar arches to radial magnetommotive forces. J.Mech.Engng.Sci.,1978,20(6):335~343
    [18]John,S.Humphreys. On dynamic snap buckling of shallow arches.AIAA J, 1966.4(5):878~886

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700