基于EMD和Cohen核的时—频分析研究及其在轨道不平顺监测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路轨道因初始弯曲、运行变形、磨损等原因,会产生垂向、水平以及轨距方向的不平顺。轨道不平顺是车辆振动的主要激振源,将产生车辆沉浮振动、横向滚摆、左右摇摆、侧滚等耦合振动。这种振动又加剧了轮轨磨耗,从而进一步加大轨道的不平顺,影响车辆运行的平稳性和安全性。随着列车运行速度越来越高,轨道不平顺对列车的动力作用更加显著。因此,在高速行车条件下研究轨道的不平顺性问题具有重要意义。
     论文在讨论了轨道不平顺研究现状的基础上,分析了高速动车组走行部信号非平稳的特点,针对轨检车需要专门的设备,同时占用营运时间的局限性,对现有的时-频分析方法进行了研究和改进,提出了EMD和Cohen核结合的时-频分析方法,并将此方法应用在轨道不平顺的监测中,得到的结论与利用轨检车得到的轨道不平顺信息一致。该方法对于弥补轨检车的上述不足,进行高速高密度的轨道不平顺监测具有一定价值。
     论文主要包含以下工作内容:
     (1)对Cohen核中的指数分布进行了算法改进。针对指数分布只适用于模糊函数自分量分布沿ζ和τ轴附近的信号的问题,通过将指数核函数进行坐标旋转,让自模糊函数项尽可能的全部通过指数核函数,而互模糊函数项尽可能的远离该指数核函数。解决了信号在模糊域中不沿ζ和τ轴附近分布时,其指数分布效果差的问题。仿真结果表明,该方法算法简单,易于实现,为抑制指数核的交叉项问题,提供了另一种思路。
     (2)对EMD分解中的几个关键问题进行了研究。关于EMD分解的参数指标,提出在利用仿真信号进行数值试验过程中,利用相关系数作为参数指标,是一种比较简便的选择。关于EMD算法的端点延拓,利用数值试验的方法,将通过数学拟合延长两端数据的方法与延长采样时间直接截取两端数据的方法进行比较,并将实际的EMD分解结果与理想分解结果分别作为矩阵,通过计算它们之间的相关系数来衡量EMD的分解效果。仿真结果表明,若左右各截取半个信号周期长度的数据信号,则得到的分解结果优于通过端点延拓方法得到的EMD分解结果,且截取的点数越多,得到的结果越接近理想的分解结果。
     (3)基于以上两部分的讨论,提出了经验模态分解法和Cohen类法结合的时-频变换方法,以更好的抑制二次时-频分析的交叉项。该方法从频域上分离为若干个内禀模态函数之和,再将分解后的信号分别进行Cohen类分布。可消除信号内部各IMF之间的交叉项,使总的交叉项项数减少。通过仿真表明,论文提出的方法较Wigner-Ville分布和广义指数核时-频分布能够更好的抑制交叉项,真实的反应信号本身的时-频特性。
     (4)将前述的理论应用于轨道不平顺的监测。总结了轴箱信号的特点,通过测量某型动车组在高速运行时轴箱的振动加速度响应,利用提出的改进的时-频分析方法来研究轨道不平顺问题。实验表明,此方法能够有效的扩大轴箱加速度的动态响应范围,得到的结论与利用轨检车得到的轨道不平顺信息一致,从而验证了此方法的正确性。
Track irregularities will be generated in vertical, level and gauge, due to the initial bend, run deformation and wear. Track irregularities are the main source of vehicle vibration. They will cause the coupling vibration of the vehicle in ups and downs, roll placed horizontally, swinging left and right. This vibration intensifies the wheel and rail vibration wear, increasing the track irregularities. With increasing the train speed, researching the track irregularities is more significant.
     First, the track irregularities research current situation was summarized, then the non-stationary signals features of EMU running gear was analyzed. To analyze the track irregularities based on the axle-box acceleration, a method based on Empirical Mode Decomposition (EMD) and Cohen's class distribution was advanced. Compared with the result by track inspection car, the consistent results were getting. It indicated that this approach was a good method to compensate some shortage for track inspection vehicle, and it play an important role in the high-speed high-density test track irregularities by means of contact methods.
     This dissertation included the following research contents:
     (1) The algorithm in exponential kernel was improved. In traditional way, time-frequency representation method using exponential kernel is only suitable in the condition that self-variable is along theξandτaxis. An improved time-frequency representation method was proposed to solve this problem. Using coordinates rotations, Self-terms in fuzzy function can as far as possible all pass the exponential kernels function, and the cross-terms in fuzzy function can far away from the exponential kernels function. This approach was testified affected through a chirp signal and the simulation result proved that this method cans repression the interference satisfactorily, and an ideal time-frequency analysis result can be acquired.
     (2) Several key issues in EMD were studies. In EMD, to suppress the ending effect, extending the data near the two end points was used by mathematics fitting usually. In practice, extending the sampling-time can also extend the end points and suppress the ending effect. Comparison has been made among the data extending method between the Mathematics fitting and terminal intercept near the two end points. To test the effect of EMD, the correlation coefficient between the practical results and ideal results were calculated. As a result of simulation and numerical experiment, it is shown that:if the signal intercept around half the length of data signals, better results can be obtained than endpoint extending. More the interception of points approximates more ending effect can be effectively restrained.
     (3) To minimize the cross-term interference in quadratic time-frequency distribution, a method based on EMD and Cohen class distribution was advanced. For the method, at first, the time-domain signal was separated into multiple intrinsic mode functions (IMFs) using EMD, then the Cohen class distributions of the IMFs were calculated. At last a sum of all Cohen class distributions was acquired. By this way, the cross terms between IMFs can be restrained. So the general cross-term interference was restrained in theory. This approach was testified effected through three typical simulation signals and the result was consistent with the theory. Compared with Wigner-Ville distribution, and Cohen class distributions; it indicates that this approach can repression the interference satisfactorily, and the time-frequency analysis result is a better reflection of signal.
     (4) The theory aforementioned was applied in track irregularity monitoring. To minimize the cross-term interference, a method based on EMD and Cohen's class distribution was advanced. For the method, at first, the time-domain signal was separated into multiple IMFs using EMD, then the Cohen's class distributions of the IMFs were calculated. And a sum of all Cohen's class distributions was acquired. This approach was testified effected through three typical simulation signals and the result was consistent with the theory. At last this approach was applied to analyze the track irregularities based on the axle-box acceleration. Compared with the result by track inspection car, the Consistent results were getting. It indicated that this approach was a good can compensate some shortage for track inspection vehicle, and it plays an important role in the high-speed high-density test track irregularities.
引文
[1]孙永福.中国高速铁路的成功之路.铁道学报.2009,31(6):封二,封三
    [2]钱立新.世界高速列车技术的最新进展.中国铁道科学.2003,24(4):1-11
    [3]黄采伦,樊晓平,陈特放.列车故障在线诊断技术及应用.北京:国防工业出版社,2006
    [4]王伯铭.高速动车组总体即转向架.成都:西南交通大学出版社,2008
    [5]张洁.轨道不平顺非均匀采样信号谱分析.西南交通大学博士学位论文.2004
    [6]郑树彬.高速磁浮轨检信号的数字滤波方法研究.西南交通大学博士学位论文.2007
    [7]Daniel L,Magnus. Non-contact technology for track speed rail measurements (ORIAN). SPIE Vol.2458:45-51
    [8]William T. McCarthy,Track geometry measurement on Burlington Northern Railroad Proceedings of SPIE-The International Society for Optical Engineering, v 2458,1995: 148-164
    [9]Clemens Mair, Dr Saeed Fararooy. Practice and Potential of Computer Vision for Railways Condition Monitoring for Rail Transport Systems (Ref. No.1998/501), IEE Seminar on 10 Nov,1998 Page(s):10/1-10/3
    [10]D. V. Popov,R.B.Ryabichenko, E. A. Krivosheina. Calibration of the CCD photonic measuring system for railway inspection. Ultrafast X-Ray Detectors, High-Speed Imaging, and Applications, Proc. of SPIE Vol.5920(SPIE, Bellingham, WA,2005):1-9
    [11]Dmitry V,Popov, Roman B. Ryabichenko, High speed imaging and processing for rail track inspection.26th International Congress on High-Speed Photography and Photonics,Proc. of SPIE Vol.5580(SPIE, Bellingham, WA,2005):367-375
    [12]Roman B, Ryabichenko, Sergey V, Popov, Olga S. Smoleva. CCD photonic system for rail width measurement. SPIE Vol.3901:37-44
    [13]Dmitry V, Popov, Olga S. Smoleva. Algorithms and software to determine rail profile using moving distorted images. Second Conference on Photonics for Transportation, Proceedings of SPIE Vol.4761(2002):48-55
    [14]Igor D. Kashlakova, Alexey A. Yakuscheva, Roman B. Ryabichenko 1,Vladimir P. Yuraskin. Photonic subsystem for rail track hollows measurement. Second Conference on Photonics for Transportation, Proceedings of SPIE Vol.4761(2002):76-81
    [15]O. S. Smoleva, N. Ya. Lju. Single-chip microcomputer for image processing of in the photonic measuring system. Second Conference on Photonics for Transportation, Proceedings of SPIE Vol.4761(2002):64-69
    [16]杜鹤亭,高林奎,张继元等.安全综合检测车的研制.中国铁道科学.2003,24(1):49-53
    [17]唐献康,李均良.机车安全信息综合监测装置的研制机车电传动.2000(4):22-25
    [18]刘峰,黄强,李伟,赵玉其,倪纯双.旅客列车动力学状态实时监测系统的研究.铁道机车车辆.2001(5):14-15
    [19]谢小玲,王黎,赵全轲,高晓蓉,王泽勇.CCD轨道状态研制动态检测装置的研制.四川大学学报.38 sup:119-125
    [20]Yoichi SUNAGA,Kosuke TAKEGAMI. Use of Acceleration to Detect Track and Rail Irregularities. WCRR. TOKYO.1999
    [21]J. Real, P. Salvador, L. Montalban, M.Bueno. Determination of rail vertical profile through inertial methods. Proc. IMechE Vol.224 Part F:J. Rail and Rapid Transit:1-10
    [22]M. Bocciolone, A. Caprioli, A. Cigada,A. Collina. A measurement system for quick rail inspection and effective track maintenance strategy. Mechanical Systems and Signal Processing. Volume 21, Issue 3,2007:1242-1254
    [23]A. Caprioli, A. Cigada,D. Raveglia. Rail inspection in track maintenance A benchmark between the wavelet approach and the more conventional Fourier analysis. Mechanical Systems and Signal Processing.21 (2),2007:631-652
    [24]曹志礼.铁路车辆振动状态的试验模拟与特性分析.铁道车辆.1994(6),1-4
    [25]刘秀波.基于经验模式分解的钢轨波浪弯曲不平顺提取方法.中国铁道科学.2006,27(2):26-30
    [26]罗林,魏世斌等.我国干线轨道不平顺功率谱的研究.北京:铁道部科学研究院.1999
    [27]陈宪麦.轨道不平顺时频域分析及预测方法的研究.铁道部科学研究院博士学位论文.2006
    [28]张伟.基于轴箱谱的轨道短波不平顺识别方法研究.北京交通大学硕士学位论文.2008
    [29]张洁.轨道不平顺非均匀采样信号谱分析.西南交通大学博士学位论文.2004
    [30]郑树彬.高速磁浮轨检信号的数字滤波方法研究.西南交通大学博士学位论文.2007
    [31]A. Leluan(法)等.高速轴箱技术的试验研究.国外铁道车辆.1995(4):44-47
    [32]彭朝勇,高晓蓉.国外接触网导线磨耗检测系统.中国铁路.2007,(4):66-68
    [33]Bazin V, Chugui Y, Kalichkin S, Makarov S, Verkhogliad A, Vykhristyuk I. A laser structured light system for inspection of wear and defects of contact wire in train's electro-supply network. Third International Symp. on Precision Mechanical Measurements. P. O. Box 10, Bellingham WA, WA 98227-0010. United States:SPIE,2006:1-6
    [34]Borromeo. S. Aparicio JL. Automatic systems for wear measurement of contact wire in railways. IECON Proceedings (Industrial Electronics Conference). Industrial Electronics Society, SICE. Universidad de Sevilla:IEEE.2002:2700-2705.
    [35]宁静,高品贤,林建辉.计算机视觉技术在列车运行状态综合检测中的应用前景.计算机系统应用.2010.19(6):158-161,198
    [36]骆志明,冯庚斌.机车车辆滚动轴承故障BP网络诊断研究.中国铁道科学.1998,19(4):26-32
    [41]木村裕恒.振动法在设备诊断中的应用.国外机车车辆工艺.1991(4):36-41,32
    [42]Gerald B-Anderson, James E. Cline etal. Advanced Roller Bearing Inspection Systems. In: 12th International Wheelset Congress Proceeding.273-278-
    [43]丁福焰,杜永平.机车车辆故障诊断技术的发展铁道机车车辆.2004(04)
    [44]漆瑾.高速机车走行部实时在线监测与诊断方法的研究.西南交通大学硕士学位论文.2006
    [45]唐德尧.共振解调故障诊断技术的特点及应用.铁道经济研究.2000(4):45-47
    [46]唐德尧,王定晓,杨政明,等.共振解调技术与机车车辆传动装置故障诊断.电力机车技术.2002.5
    [47]唐德尧.广义共振共振解调故障诊断与安全工程--铁路篇.中国铁道工业出版社.2006
    [48]黄采伦,樊晓平,张剑,陈特放,陈艳子,周华.机车走行部故障在线诊断的特征分析方法研究.仪器仪表学报.2007
    [49]郭世明.动车组检测与故障诊断技术.西南交通大学出版社.2008:293-325
    [50]杨文忠,练松良.铁路轨检车轴箱振动加速度消趋方法的比较.石家庄铁道学院学报.2008,21(3): 9-13
    [51]张永贵.CRH2_300型动车组拖车轮轴振动性能研究.北京交通大学硕士学位论文.2009
    [52]张曙光.京津城际高速铁路系统调试技术.北京.中国铁道出版社.2008
    [53]黄采仑.机车走行部在线故障诊断系统.湖南大学硕士学位论文.2002
    [54]陈特放,黄采伦,樊晓平.基于小波分析的机车走行部故障诊断方法.中国铁道科学.2005,26(4):89-92.
    [55]黄采伦,樊晓平,陈春阳,陈特放,张剑,基于小波系数提取及离散余弦包络分析的机车牵引齿轮故障诊断方法.铁道学报.2008
    [56]陈安华,余小华,黄采伦.Hilbert-Huang变换在列车踏面故障识别中的应用.电子测量与仪器学报.2009,23(8):90-94
    [57]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法.北京:科学出版社.2006:1-35.
    [58]于德介,程军圣,杨宇.Hilbert-Huang变换在滚动轴承故障诊断中的应用.中国机械工程.2003,24(14):2140-2143
    [59]Yuping Zhang. Hilbert-Huang Transform and Marginal Spectrum for Detection of Bearing Localized Defects. Proceedings of the 6th World Congress on Intelligent Control and Automation. June 21-23,2006:5457-5461
    [60]J. Rosero, A.Garcia, J. Cusido, L. Romeral, J. A. Ortega. Fault detection by means of Hilbert-Huang Transform of the stator current in a PMSM with demagnetization.
    [61]Ruqiang Yan and Robert X..A Tour of the Hilbert-Huang Transform:An Empirical An Empirical T ool for Tool for Signal Analysis Signal Analysis GaoIEEE Instrumentation & Measurement Magazine.2007(10):40-45
    [62]N. E. Huang, Z. Shen, S. R. Long. A new view of nonlinear water waves:The Hilbert spectrum. Annual Review of Fluid Mechanics 31.1999:417-457.
    [63]N. E. Huang, S. S. P. Shen. Hilbert-Huang Transform and Its Applications. World Scientific Press. Singapore,2005.
    [64]Huang, N. E, N. O. Attoh-Okine. Hilbert-Huang Transform in Engineering. CRC Press.2005.
    [65]N. E. Huang, M. L. Wu, S. R. Long, S. S. Shen, W. D. Qu, P. Gloersen, K. L. Fan. A confidence limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis. London:Proc. Roy. Soc.,459A.2003:2317-2345
    [66]Wu. Z, N. E. Huang. A study of the characteristics of white noise using the empirical mode decomposition method. London:Proc. Roy. Soc.460A.2004:1597-1611
    [67]Wu. Z, N. E. Huang. Ensemble Empirical Mode Decomposition:a noise-assisted data analysis method. Advances in Adaptive Data Analysis.2008(2)
    [68]王春林,彭冬林Hilbert-Huang变换及其在去噪方面的应用.仪器仪表学报,2004,4(25):42-45
    [69]杨宇, 于德介,程军圣. 基于Hilbert边际谱的滚动轴承故障诊断方法.振动与冲击.2005,24(1):70-72,7
    [70]刘慧婷,张旻,程家兴.基于多项式拟合算法的EMD端点问题的处理.计算机工程与应用.2004(16):84-86
    [71]邓拥军,王伟,钱成春.EMD方法及Hilbert变换中边界问题的处理.科学通报.2001,46(3):257-263
    [72]黄大吉,赵进平,苏纪兰,希尔伯特—黄变换的端点延拓.海洋学报.2003,25(1):1-2
    [73]CHEN Q H, HUANGN E, RIEMENSCHNEIDER S, XU Y S. A B spline approach for empiricalmode decompositions. Advances in Computational Mathematics,2006(24):171-195
    [74]黎洪生,吴小娟,葛源.EMD信号分析方法端点问题的处理.电力自动化设备.2005,25(9): 47-49
    [75]郑天翔,杨力华.经验模式分解算法的探讨和改进.中山大学学报:自然科学版.2007,46-1-6.
    [76]STEVENSON N, MESBAH M, BOASHASH B. A sampling limit for the Empirical Mode Decomposition. Pro. of 8th International Symposium on Signal Processing and its Applications, ISSPA 2005, Sydney. Australia:IEEE.2005:647-650
    [77]胡维平,杜明辉,信号采样率对经验模态分解的影响研究.信号处理.2007,23(4):637-640
    [78]赵文忠,基于经验模态分解的算法改进.自动化与仪器仪表.2009,(5):25-26,33
    [79]林丽,余轮.基于相关系数的EMD改进算法.计算机与数字工程.2008,(12):28-29,38
    [80]胡广书.数字信号处理—理论、算法与实现.清华大学出版社.1997
    [81][美]L.科恩著.白居宪译.时频分析:理论与应用.西安:西安交通大学出版社.1998
    [82]D. Gabor. Theory of commumication. J Inst Elec Eng,1946,93:429-457
    [83]R. K. Potter, etal. Van Nostrand.New York. NY.1947
    [84]J. Ville, Theorie et.applications de la notion de signal analytique.Cables et Tranmmissions.1948,2A:61-74.
    [85]L. Cohen. Time-frequency analysis. IEEE Signal Processing Magazine.1999,16(1):22-28
    [86]陈光化,马世伟.基于分数阶傅立叶变换的自适应时频表示.系统工程与电子技术.2001,23(4): 69-71
    [87]郭福成,皇甫堪,基于滤波器组的改进型Wigner-Ville分布.信号处理.2001,17(1):1-4
    [88]程军圣.基于Hilbert_Huang变换的旋转机械故障诊断方法研究.湖南大学博士学位论文.2005
    [89]王宏禹.非平稳随机信号分析与处理.北京:国防工业出版社.1999:5-72.
    [90]NORDEN E H, ZHENG S, STEVEN R L. The empirical decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. of the Mathematical, Physical and Engineering Sciences. London:The Royal Society.1998:903-995
    [91]ROBERT C S, VESSELIN V. Analysis of the Intrinsic Mode Functions. Constructive Approximation.2006,24(1):17-47
    [92]宁静,诸昌钤,朱肇昆.一种改进的指数核时频表示.计算机应用研究.2010,27(6):2078-2079,2083
    [93]张贤达,现代信号处理.清华大学出版社.1995
    [94]纪跃波,秦树人,汤宝平.Wigner分布干扰项抑制及其算法.重庆大学学报.2001,24(4):26-30
    [95]沈国际,陶利民,徐永成,陈仲生.基于Wigner分布和经验模态分解的减速器故障诊断.航空动力学报.2005,20(2):236-239
    [96]RILLING G, FLANDRIN P. On the influence of sampling on the Empirical Mode Decomposition[C].//2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006, Toulouse, France,2006, IEEE,2006 (3):Ⅲ 444-Ⅲ447.
    [97]N. Stevenson,M. Mesbah and B. Boashash,"A sampling limit for the Empirical Mode Decomposition," in Proc. Int. Symp.on Signal Proc. and its Appl. ISSPA-05, pp.647-650, Sydney (A),2005
    [98]胡广书,数字信号处理—理论、算法与实现.清华大学出版社,1997(缺参考文献99)
    [99]李舜酩,李香莲等.振动信号的现代分析技术与应用.国防工业出版社,2008
    [100]宁静,诸昌钤,高品贤,林建辉.EMD分解中端点数据的延长方法问题研究,计算机工程与应用
    [101]http://www.chinavib.com/forum/
    [102]CHOI H L,WILLIAMS W J. Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37 (6):862-871
    [103]JEONG J, WILLIANMS W J. A new formulation of generalized discrete time-frequency distribution. Pro. of the 1991 International Conference on Acoustics, Speech, and Signal Processing-ICASSP 91, Toronto, Can,1991', Piscataway IEEE Press,1991:3189-3192.
    [104]CUNNINGGHAM G S. WILLIAMS W J. High-resolution signal synthesis for time-frequency distribution. Pro. of Acoustics, Speech, and Signal Processing,1993, Minneapolis, MN,1993, IEEE 1993:(4):400-403.
    [105]余志斌,金炜东.多分量LFM雷达辐射源信号的经验模式分解.西南交通大学学报,2009,44(1):49-54
    [106]初孟,邱天爽.时频分布中交叉项抑制的研究进展.世界科技研究与发展,2005,27(4):14-20
    [107]王小品,于海南.基于模糊函数的等高线设计核函数及其时频分布.电力系统通信.2002,(11):21-22
    [108]刘永红,王宏禹.自适应径向巴特沃思核时频表示.通信学报,1998,19(7):13-17
    [109]王玲,万建伟,孙孔峰.时频域中自适应核设计研究.信号处理.2001,17(3):210-217
    [110]李亚安,王军,雷粉霞.自适应核时频分布在抑制交叉项中的应用.系统工程与电子技术.2004.26(11):14-20
    [111]刘庆云,李志舜.基于自适应核时频分布的多普勒频移及多径时延估计.西北工业大学学报,2004,22(1):29-32
    [112]徐春光,谢维信.自适应线性核时频信号分析.系统工程与电子技术.2000.22(6):22-24
    [113]张宇辉,金国彬,李天云.基于自适应最优核时频分布理论的间歇波分析新方法.中国电机工程学报,2006,26(18):84-89
    [114]LI H, ZHENG H Q, TANG L W. Hilbert-Huang Transform and its application in gear faults diagnosis. Key Engineering Materials,2005(291-292):655-660
    [115]RILLING G, FLANDRIN P. On the influence of sampling on the Empirical Mode Decomposition.2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006, Toulouse, France,2005, IEEE,2006, (3):Ⅲ 444-Ⅲ447
    [116]宁静,朱肇昆.ENID和cohen核结合抑制交叉项的时-频分析方法.西南交通大学学报,2010,45(3):400-404
    [117]胡昌华,周涛,夏启兵,张伟.基于MATLAB的系统分析与设计——时频分析[M].西安:西安电子科技大学出版社,2001
    [118]葛哲学,陈仲生.Matlab时频分析技术及其应用[M].人民邮电出版社,2006
    [119]罗林,张格明,吴旺青,柴雪松.轮轨系统轨道平顺状态的控制.北京:中国铁道出版社,2006(缺少参考文献的连续性)
    [120]GB5599—85,铁道车辆动力学性能评定和试验鉴定规范,1985
    [121]翟婉明.车辆—轨道耦合动力学(第二版).中国铁道出版社,2001.8
    [122]张兵.列车关键部件安全监测理论与分析研究.博士论文.西南交通大学.2008
    [123]高品贤.振动、冲击及噪声测试技术(第二版).西南交通大学出版社,2010
    [124]伍川辉,朱云芳,宁静.测控信号分析与处理.西南交通大学出版社,2009
    [125]张韧,杨世锡,任达千,杨国仁.一种应用重采样技术的整周期采样方法.机电工程:57-59
    [126]A.V.奥本海姆,R.W.谢弗,J.R.巴克.刘树棠,黄建国译.离散时间信号处理.西安:西安交通大学出版社,2001
    [127]胡劲松,面向旋转机械故障诊断的经验模态分解时频分析方法及实验研究.浙江大学博士论文.2003
    [128]http://www.chinavib.com/index.php
    [129]丁康,孔正国.振动调幅调频信号的调制边频带分析及其解调方法.振动与冲击,24(6):9-12,20
    [130]丁康,李巍华。朱小勇.齿轮及齿轮箱故障诊断实用技术.机械工业出版社.2005
    [131]林建辉,陈建政.振动测试中冲击隔离滤波器特性研究.西南交通大学学报,1995,30(1):82-85
    [132]张曙光,康熊,刘秀波.京津城际铁路轨道不平顺谱特征分析.中国铁道科学.29(5):25-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700