饲料中非蛋白能量源对草鱼脂肪蓄积及脂肪代谢的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草鱼(Ctenopharyngodon idellus)是世界上产量第二大的鱼类,是我国主要的淡水养殖鱼类。草鱼是一种典型的草食性鱼类,在天然水域摄食水草,但在人工养殖中摄食配合饲料。然而,在养殖中由于营养不平衡,如长期投喂低蛋白高能量的人工饲料,结果导致草鱼体内脂肪大量蓄积的现象非常普遍,严重制约了草鱼养殖业的健康发展。为探讨草鱼脂肪蓄积及代谢调控机制,本文开展了饲料中不同非蛋白能量源对草鱼生长、体脂肪蓄积、血清生化指标及肝脏组织的影响。进而通过研究组织中脂肪代谢关键酶的基因表达和酶活来探讨饲料中不同非蛋白能量源对草鱼脂肪蓄积的主要机理,同时,研究在高糖、高脂饲料中添加氯贝丁酯对降低草鱼体脂肪含量、血清生化指标及脂肪代谢关键基因表达的影响。
     1.饲料中不同非蛋白能量源对草鱼生长、体组成及脂肪蓄积的影响
     为探讨饲料中不同非蛋白能量源对草鱼脂肪蓄积的影响,将360尾(40.10士0.15g)草鱼分为4组,每组3个重复,每个重复30尾鱼,分别投喂4种不同非蛋白能量源(对照组6.52kJ g-1、高纤维组5.32kJ g-1、高糖组8.46kJ g-1和高脂组8.54kJ g-1)的等氮(300gkg-1)饲料,进行为期9周的养殖实验。养殖实验结束,禁食24h,测定草鱼生长指标、饲料效率、体组成和形态指标,并统计草鱼各组织中脂肪含量。结果显示,与对照组相比,增加饲料中的非蛋白能量源(高糖组和高脂组)并没有显著提升草鱼的生长性能(p>0.05);而降低饲料中的非蛋白能量源(高纤维组)却显著降低了草鱼生长性能(p<0.05)。在饲料效率和蛋白质效率方面,含有高非蛋白能量的高糖组和高脂组与对照物显著性差异(p>0.05),而非蛋白能量水平较低的高纤维组较对照组有显著性的降低(p<0.05)。随着饲料中非蛋白能量源水平的增加,高糖组和高脂组草鱼的体脂肪含量与对照组相比有显著的升高(p<0.05),尤其是高脂组草鱼体脂肪含量最高;与之相反,较低水平非蛋白能量的高纤维组的草鱼脂肪显著低于对照组(P<0.05)。鱼体水分含量变化与脂肪含量呈相反趋势,粗蛋白含量无显著变化(P>0.05)。肌肉中脂肪含量与全鱼脂肪含量的趋势一致。增加饲料中的糖类水平显著增加草鱼的肝体比(HSI)和肝脏脂肪含量(p<0.05),而饲料中高水平的脂肪则显著增加草鱼的肠脂比(MFI)(P<0.05)。而在产肉率(FI)方面各组无显著性的差异(P>0.05)。通过计算得出草鱼肌肉、肝脏和肠系膜脂肪组织中脂肪蓄积比率,其中肌肉中脂肪含量占全鱼脂肪总量的11.46%-14.54%,肝脏中脂肪含量的比率为2.35%-4.85%,肠系膜中脂肪含量占全鱼脂肪含量的比例范围是22.93%-28.61%。结果表明,增加饲料中非蛋白能量源不仅不能提高草鱼的生长性能,反而会增加鱼体脂肪的蓄积。
     2.饲料中不同非蛋白能量源对草鱼血清生化指标和肝脏组织的影响
     在与实验一相同的条件下,检测饲料中不同非蛋白能量源对草鱼血清生化指标和肝脏组织的影响。养殖实验结束后禁食24小时,每组随机取6条鱼,尾静脉采血,肝脏采用石蜡包埋和H-E染色(苏木精-伊红)法,在显微镜下观察肝脏组织形态并拍照。结果表明,随着饲料中非蛋白能量源含量的升高,高糖组和高脂组的血液中的TG和CHO浓度显著高于对照组和高纤维组(P<0.05),而高纤维组相对于对照组有下降的趋势但不显著(P>0.05)。高糖组的ALT、 AST和ALP这三种酶活性显著高于对照组和纤维组(P<0.05),而高脂组与对照组没有显著性的差异(P>0.05)。高糖组和高脂组草鱼血液中的TP和BUN的浓度与对照组没有显著性差异(P>0.05),而高纤维组显著性低于对照组(P<0.05)。饲料中不同水平的非蛋白能量源对草鱼血液中的TBIL和DB含量没有显著的影响(P>0.05)。高纤维组的GLU浓度显著高于对照组和高糖组(P<0.05)。在肝脏组织学方面,高糖组的肝脏细胞严重肿大变形,细胞中充满脂肪滴,细胞核挤压至一侧,甚至出现细胞核萎缩或消失,呈现透明的空泡化。高脂组的肝细胞有稍许的肿大,细胞浆内有大小不一的脂肪滴出现,部分出现细胞核偏移和空泡化。高纤维组的肝细胞排列致密整齐,肝细胞索明显,细胞核位于细胞中央,细胞大小正常,没有脂肪滴。因此,饲料中高糖组对草鱼肝脏组织的损伤最严重。
     3.饲料中不同非蛋白能量源对草鱼脂肪代谢相关基因表达和酶活的影响
     本实验主要通过研究草鱼肝脏组织和脂肪组织中脂肪代谢主要酶的基因表达和酶活性,探讨饲料中不同非蛋白能量源对草鱼体脂肪蓄积的影响机理。结果表明,高糖组草鱼肝脏组织中脂肪生成相关酶活性(脂肪酸合成酶FAS,乙酰辅酶A羧化酶ACC和葡萄糖-6-磷酸脱氢酶G6PD)较对照组有显著性的升高(p<0.05),而高脂组和高纤维组则有降低。在基因表达方面,高糖组草鱼肝脏组织和脂肪组织中FAS和ACC的mRNA水平显著上调(p<0.05),尤其是肝脏组织中FAS基因相对表达量较对照组上调了3倍多。高纤维组草鱼肝脏中PPARa基因mRNA水平与对照组相比有显著升高(p<0.05),脂蛋白脂酶(LPL)基因相对表达在高纤维组和高脂组草鱼肝脏中较对照组有显著升高(P<0.05),而在脂肪组织中则是高糖组和高脂组均显著升高,高纤维组则显著下降P<0.05)。上述结果表明,虽然高糖和高脂饲料均能增加草鱼体脂肪的蓄积,但是两者增加脂肪蓄积的方式不同。
     4.高糖、高脂饲料中添加氯贝丁酯对草鱼体组成、血清生化指标及脂肪代谢的影响
     本实验是在高糖和高脂饲料中添加1.25g kgq的氯贝丁酯,探讨其对草鱼降脂作用。实验鱼是实验一结束后高糖组和高脂组的草鱼(205±12g),各分为两组,一组投喂无氯贝丁酯饲料,一组投喂添加氯贝丁酯饲料,投喂率为4%鱼体重/天,草鱼每天所摄取的氯贝丁酯的量为50mg/kg体重,养殖实验共进行4周。养殖实验结束后,禁食24h,检测体重、鱼体组成、血脂含量及肝脏组织中脂肪代谢基因PPARα、 CPTI、LPL的表达。结果表明,在高糖和高脂饲料中添加氯贝丁酯对草鱼生长性状无显著变化,而显著降低了草鱼VSI和MFI(P<0.05),尤其是高脂组添加氯贝丁酯的草鱼MFI降低程度较大。在体组成方面,高糖和高脂饲料中添加氯贝丁酯较未添加组显著降低了全鱼、肌肉和肝脏中的脂肪含量(P<0.05)。在血脂方面,氯贝丁酯也显著降低了草鱼血液中甘油三酯、总胆固醇、高密度脂蛋白胆固醇和低密度脂蛋白胆固醇(P<0.05)。高糖和高脂饲料中添加氯贝丁酯使草鱼肝脏中PPARa和LPL基因mRNA水平显著上调(P<0.05),而CPTI基因mRNA水平各组无显著差异(P>0.05)。上述结果表明,在高糖和高脂饲料中添加氯贝丁酯对草鱼有降脂作用。
     5.投喂青草、蚕豆和配合饲料对草鱼生长、肉质及脂肪蓄积的影响
     本实验通过投喂青草、蚕豆和配合饲料3种不同的饲料来探讨其对草鱼生长、肉质及体脂肪蓄积的影响。300尾草鱼(均重107+1.76g)分成3组,每组3个重复,每个重复30尾鱼,每天投喂2次,养殖16周。实验结果表明,摄食配合饲料组的草鱼增重率和特定生长率显著高于蚕豆组和青草组(p<0.05),蚕豆组草鱼生长性能最低。在体形特征方面,青草组草鱼VSI、HSI和MFI显著低于其它两组(P<0.05)。相反,蚕豆组草鱼的MFI显著高于配合饲料组和青草组(p<0.05)。在肌肉和肝脏组成组分方面,蚕豆组的草鱼肌肉粗蛋白和粗脂肪显著高于其它两组(P<0.05),青草组草鱼肌肉脂肪含量最低(p<0.05)。蚕豆组草鱼肝脏中脂肪含量显著高于其它两组(P<0.05),青草组最低。蚕豆组草鱼的肌肉质构参数(硬度、弹性、粘聚性、胶着性、咀嚼性和恢复性)是最高的。在血液生化指标方面,蚕豆组草鱼血清中胆固醇、谷草转氨酶和碱性磷酸酶含量都高于配合饲料组和青草组,青草组草鱼血清中谷丙转氨酶含量最低。在三组草鱼肝脏组织切片中可看到配合饲料组肝脏细胞排列混乱,细胞变形,细胞质中有脂滴;蚕豆组草鱼肝细胞明显肿大且充满脂滴,细胞核发生偏移,部分细胞核萎缩甚至消失;而青草组草鱼肝细胞排列整齐,细胞核清晰,细胞大小正常。上述结果表明,摄食蚕豆提高了草鱼肌肉的质构,但同时显著增加了草鱼体内脂肪的蓄积,造成肝脏一定程度的损伤。
Production of grass carp(Ctenopharyngodon idellus) is the second large fish species of the world, and constitutes the largest aquaculture industry of finfish in China. As a typical herbivorous finfish, grass carp can eat artificial diets in aquaculture as well as aquatic weeds in natural environment. However, there is a great common phenomenon that the grass carp deposit extensive of fat in fish body when the fish fed commercial diets containing low protein and high lipid and/or carbohydrate levels. In order to explore the fat accumulation and lipid metabolic regulation mechanisms of grass carp, we studied the effects of different dietary non-protein energy source level and dietary supplemention of clofibrate on the growth performance, body composition, lipid deposition site, serum biochemical indices, liver histology and genes expression and enzymes activities involved in lipid metabolism of grass carp, and we also analyzed the fat deposite, physiological and biochemical changes in grass carp fed with vegetable food, broad bean and formulated diet.
     1. The effects of dietary non-protein energy source levels on growth performance, body composition and fat accumulation in grass carp (Ctenopharyngodon idellus)
     A study was conducted to analyze the effect dietary non-protein energy source leves on fat accumulation of grass carp.360grass carp (average weight40.10±0.15g) were divided into four groups randomly, each group was triplicate. Four isonitrogenous (300g kg-1)practical diets were formulated to contain four non-protein energy levels (control diet6.52kJ g-1. high-CEL diet5.32kJ g-1、high-CHO diet8.46kJ g-1and high-LIP diet8.54kJ g-1). After rearing for9weeks, the fish were fasted for24h, then six fish were randomly selected from each group, and the growth performance, feed conversion ratio, whole body and tissue composition, biometric parameters and fat deposition were detected. The results show that, compared with the control group, fish fed the high-CHO diet and the high-LIP diet had no significant difference in the growth performance and feed conversion ratio (P>0.05). In contrast, the high-CEL diet containing lower non-protein energy level led to significant lower WG, SGR and PER (P<0.05). The whole body lipid and muscle lipid were significantly increased in fish fed he high-CHO diet and the high-LIP diet (P<0.05), and the high-LIP diet group showed the highest values among the all groups. The opposite appearances were found in the moisture of whole body and muscle. The high-CHO diet group had the highest liver lipid in all groups. The lowest lipid content of whole body, muscle and liver were found in the high-CEL diet group(P<0.05). The high-CHO diet group had the highest HSI among the all groups (P<0.05). The high-LIP diet group had the significantly highest VSI and MFI in the all group (P<0.05). Proportion of fat in muscle (11.46%-14.54%), liver (2.35%-4.85%) and mesentery (22.93%-28.61%) out of the total body fat did not change significantly among treatments. Those results indicated that increasing dietary non-protein energy source levels did not improve the growth, but can increase the fat deposite in fish body.
     2. The effects of dietary non-protein energy source levels on serum biochemical indices and histology of liver in grass carp {Ctenopharyngodon idellus)
     The conceptual design of rearing was the same as that of the test One. After the rearing for9weeks, the fish was fasted for24h, then three fish were randomly selected from each group, and the effects of dietary different non-protein energy source levels on serum biochemical indices and histology of liver were detected. The results showed that the triglyceride (TG) and cholesterol (CHO) of the fish fed the high-LIP diet and high-CHO diet were significantly higher than those of the contol group and the high-CELgroup (P<0.05). However, the fish fed the high-CEL diet had the lowest TG and CHO in all the groups. The serum activities of aspartate amninotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) of the fish fed the high-CHO diet group were significantly higer than those of the control group and the high-CEL group (P<0.05), and there was no significantly different between the high-LIP group and the control group (P>0.05). There was no significantly different of total protein (TP) and blood urine nitrogen (BUN)between the high-CHO diet group, the high-LIP diet group and the control group (P>0.05), but the high-CEL group was markedly lower than that of the control group (P<0.05). The high-CEL group had the highest level blood glucose (GLU) among the all groups (P<0.05). As the aspect of liver histology, the hepatocytes of the fish fed the high-CHO diet were swelling by extreme lipid infiltration, and there were extreme lipid droplets in the cytoplasm, and the nucleus were dislocation, loss of cytoplasm staining affinity. However, the hepatocytes of the fish fed the high-CELdiet were arranged tidy, the nucleus is located in the central of cell, and the size of cell is normal, no fat droplets in cytoplasm. Therefore, the fish fed the high-CHO diet led the poor liver status among the all groups.
     3. The effects of dietary non-protein energy source levels on the genes expression and enzymes activities involved in lipid metabolism in grass carp (Ctenopharyngodon idellus)
     This study was to detect the effects of dietary non-protein energy source levels on the genes expression and enzymes activities involved in lipid metabolism of liver and mesenteric adipose tissue of grass carp. The results showed that the activities of fatty acid synthetase (FAS), acetylcoenzyme-A carboxylase (ACC) and glucose-6-phosphate dehydrogenase (G6PD) were significantly elevated in the fish fed the high-CHO diet (P<0.05). Compared with the control diet group, there was a decreasing trend of the FAS, ACC and G6PD activities in the fish fed high-LIP diet and high-CEL diet. There was no significant differnce of malic enzyme (ME) activity among all the groups (P>0.05). The mRNA expressions of FAS and ACC in liver were significantly higher of the high-CHO diet group than those of other group (P<0.05). In the mRNA levels of FAS and ACC there appeared a decreased trend in the high-CEL and high-LIP diet group compared with the control group. The expression of PPARa was significantly higher in the high-CEL diet group than that of the other group (P<0.05). Meanwhie, the LPL mRNA abundant was significantly increased in the fish fed high-CEL diet and high-LIP diet (P<0.05). In the mesenteric adipose tissue, the expression of FAS and ACC had similar tendencies as those in the liver. The LPL gene expression was significantly down-regulated in the high-CEL diet group, but up-regulated in the high-CHO and high-LIP diet group (P<0.05). Those results indicated that although the high dietary carbohydrate and lipid both can induce the lipid deposition in fish, the metabolic mechanism is markedly different.
     4. The effects of dietary supplemention clofibrate on the body composition, surem biochemical indices and lipid metabolism in grass carp (Ctenopharyngodon idellus)
     This study was to detect the hypolipidaemic effect of clofibrate in the grass carp fed the high-CHO diet and high-LIP diet. The grass carp was the end of test one fish (average weight205±12g), they were then treated with clofibrate (50mg/kg body weight) in the same high-CHO diet and high-LIP diet for4weeks. Afert rearing4weeks, the fish were fasted for24h, and then body weight, body composition, plasma lipid parameters and lipid metabolism-related genes in liver were measured. The results showed that there were no significant differences in the growth performance of the fish treated with clofibrate (P>0.05). However, there were markedly reduced the VSI and MFI of fish treated with clofibrate (P<0.05), especially the fish fed the high-LIP diet containing clofibrate. Clofibrate treatment decreased the lipid content of whole body, muscle and liver (P<0.05). The plasma contents of TAG, cholesterol, LDL-C and HDL-C were all significantly lowered after clofibrate treatment (P<0.05). The mRNA of PPARα and LPL were significanlty up-regulated after the clofibrate treatment (P<0.05), but the mRNA of CPT I was no change between the group (P>0.05). These data suggest that clofibrate has the hypolipidaemic effect in the grass carp fed the high-carbohydrate diet and high-fat diet.
     5. The effects on growth, body composition,biochemical and fat deposition in grass carp fed with vegetable food, broad bean and formulated diet
     A17-week feeding trial was conducted to evaluate the effects on growth, muscle quality and serum biochemical profile of grass carp (Ctenopharyngodon idellus) fed with the formulated diet (FD), broad bean (BB) or lettuce (L)(Lactuca sativa L.). The FD (Huamei6300) was purchased from a feed company (Conti Huamei Feed Co., Ltd.), BB and L(Lactuca sativa L.) were collected from the farmer's market (Panyu, Guangdong province). The results showed that the weight gain of fish fed with the FD were significantly higher than the fish fed with L or BB. Fish fed with L had significantly lower lipid content in visceral and muscle than the fish fed with FD or BB. The hardness, springiness, choesiveness, gumminess, chewiness, resiliness of muscle in fish fed with the broad bean were all higher than that of the other two groups. Fish fed with the BB showed a significantly higher ALP activity and CHO content in serum than that with the L. The liver cell was big and loose when fish fed with BB or FD compared with the liver section of grass carp fed with L. The study proved that BB diet could increase the quality of texture, but with a slow growth ratio; FD could bring about a good growth ratio; and L or BB was not a proper feed when each was used alone for grass carp diet.
引文
1.艾春香.水产动物分子营养学研究进展.福建农业学报,2005(S1):46-50.
    2.曹俊明,刘永坚,劳彩玲,田丽霞,梁桂英.饲料中不同脂肪酸对草鱼组织脂质含量和脂肪酸构成的影响.动物营养学报,1997(03):36-44.
    3.曹俊明,田丽霞,陈竹,刘永坚,梁桂英.饲料中不同脂肪酸对草鱼生长和组织营养成分组成的影响.华南理工大学学报(自然科学版),1996(S1):158-163.
    4.曹彦,康玉凡,王若军,刘红开.草鱼脆化过程变化研究进展及其机理探讨.食品工业科技,2012(21):385-388+392.
    5.陈清华,肖调义,吴松山,章怀云.脆肉鲩肌肉游离氨基酸初步分析.水利渔业,2004(06):8-10.
    6.成成,谢小军,罗毅平,袁伦强,林小植.饲料碳水化合物水平对南方鲇(Silurus meridionalis)幼鱼肝脏、胰脏和肾脏的组织学影响.西南大学学报(自然科学版),2007(06):103-108.
    7.董晓慧,耿旭,郭云学,黄翔鹄,宋文东,王辉,李瑞伟.奥尼罗非鱼仔稚鱼饲料中适宜蛋白质水平的研究.中国饲料,2009(07):29-32+35.
    8.杜震宇,刘永坚,田丽霞,王骥腾,王勇,郭冉,梁桂英.草鱼摄食高脂饲料后血脂变化的初步研究.中山大学学报(自然科学版),2004(S1):77-79.
    9.冯健,贾刚.饵料中不同脂肪水平诱导红姑鱼脂肪肝病的研究.水生生物学报,2005(01):61-64.
    10.冯健,刘永坚,田丽霞,王勇,高玲.草鱼实验性镉中毒对肝胰脏、肾脏和骨骼的影响.水产学报,2004(02):195-200.
    11.甘承露,郭姗姗,荣建华,熊善柏.脆肉鲩肌肉主要营养成分的分析.营养学报,2010(05):513-515.
    12.甘晖,李坚明,冯广朋,龚竹林,黄凯,李家乐.饲料脂肪水平对奥尼罗非鱼幼鱼生长和血浆生化指标的影响.上海海洋大学学报,2009(01):35-41.
    13.高露姣,施兆鸿,艾春香.不同脂肪源对施氏鲟幼鱼血清生化指标的影响.海洋渔业,2005(04):319-323.
    14.戈贤平,刘波,谢骏,俞菊华,唐永凯,吴婷婷.饲料中不同碳水化合物水平对翘嘴红鲴生长及血液指标和糖代谢酶的影响.南京农业大学学报,2007(03):88-93.
    15.关磊,朱瑞俊,李小勤,冷向军.普通草鱼与脆化草鱼的肌肉特性比较.上海海洋大学学报,2011(05):748-753.
    16.黄忠志,廖朝兴,曹经晔.饲料配方中纤维素含量对草鱼生长及饲料利用的影响.淡水渔业,1983(06):1-4.
    17.吉红,曹艳姿,刘品,苏尚顺,林亚秋,曹福余,奥宏海,周继术,叶元土.饲料中HUFA影响草鱼脂质代谢的研究.水生生物学报,2009(05):881-889.
    18.蒋广震,刘文斌,王煜衡,李向飞,庄苏.饲料中蛋白脂肪比对斑点叉尾幼鱼生长、消化酶活性及肌肉成分的影响.水产学报,2010(07):1129-1135.
    19.焦凌梅,袁唯.蚕豆中抗营养因子的研究.粮油加工与食品机械,2004(02):51-53.
    20.邝雪梅,张环,陈斌,刘章瑛,黄银姬.草鱼脆化前后肌肉营养成分及其红细胞中葡萄糖-6-磷酸脱氢酶含量的比较.海南大学学报(自然科学版),2004(03):258-261.
    21.李宝山,冷向军,李小勤,李家乐.投饲蚕豆对草鱼生长和肌肉品质的影响.中国水产科学,2008(06):1042-1049.
    22.李宝山,冷向军,李小勤,刘贤敏,胡斌,李家乐.投饲蚕豆对不同规格草鱼生长、肌肉成分和肠道蛋白酶活性的影响.上海水产大学学报,2008(03):310-315.
    23.李贵锋,蒋广震,刘文斌,李向飞,蒋阳阳,邵仙萍.不同蛋白质和能量水平对建鲤幼鱼生长性能、体组成和消化酶活性的影响.上海海洋大学学报,2012(02):225-232.
    24.李小勤,胡斌,冷向军,李家乐,文华.VC对草鱼成鱼生长、肌肉品质及血清非特异性免疫的影响.上海海洋大学学报,2010(06):787-791.
    25.李小勤,胡斌,冷向军,李家乐,文华.VE对草鱼成鱼肌肉品质和抗氧化性能的影响.水生生物学报,2009(06):1132-1139.
    26.林浩然,谗舜华,范尤平.草鱼的营养代谢生理研究—Ⅲ、应用放射性同位素(14)C研究草鱼对粗纤维的消化吸收.中山大学学报(自然科学版),1978(04):106-109.
    27.林婉玲,关熔,曾庆孝,朱志伟.影响脆肉鲩鱼背肌质构特性的因素.华南理工大学学报(自然科学版),2009(04):134-137.
    28.林小植,罗毅平,谢小军.饲料碳水化合物水平对南方鲇幼鱼餐后糖酵解酶活性及血糖浓度的影响.水生生物学报,2006(03):304-310.
    29.林亚秋,吉红,郑玉才.草鱼PPARa和PPAR7基因的克隆与组织表达差异.水产科学,2011(02):94-97
    30.刘安龙.草鱼幼鱼对饲料中核黄素、生物素和泛酸需要量的研究.2007,华中农业大学.
    31.刘建波,陈开健,佘曙明,肖调义,费来华,唐湘北.脆肉鲩肌肉超微结构分析.水利渔业,2005(03):65-67.
    32.刘迁,谭青松,陈孝煊,杜玉东,夏君,杨倩,马艳霞.“肝胆综合症”草鱼血液生化特性及组织结构变化.安徽农业科学,2009(14):6463-6465+6467.
    33.刘永坚,陈竹,刘栋辉,田丽霞,钟创光.草鱼对葡萄糖的代谢研究.中山大学学报(自然科学版),1999(S1):99-103.
    34.伦峰,冷向军,李小勤,李宝山.投饲蚕豆对草鱼生长和肉质影响的初步研究.淡水渔业,2008(03):73-76.
    35.缪凌鸿,刘波,戈贤平,谢骏,周传鹏,潘良坤,陈汝丽,周群兰.高碳水化合物水平日粮对异育银鲫生长、生理、免疫和肝脏超微结构的影响.水产学报,2011(02):221-230.
    36.秦志清,林建斌,朱庆国,梁萍,陈度煌,李学贵.投喂蚕豆对草鱼肉品质的影响.中国饲料,2011(08):30-32.
    37.宋理平,韩勃,王爱英,胡斌,冒树泉.碳水化合物水平对厚唇弱棘蒯生长和血液指标的影响.大连海洋大学学报,2010(04):293-297.
    38.孙长颢.分子营养学(上).国外医学(卫生学分册),2004(01):1-5.
    39.谭乾开,黎华寿.食物与水环境因子对草鱼(Cenopharyngodon idellus C.et V)脆化过程的影响.生态学报,2006(07):2409-2415.
    40.田丽霞,刘永坚,刘栋辉,梁桂英,廖翔华.葡萄糖和玉米淀粉对草鱼生长和肠系膜脂肪沉积的影响.水产学报,2000(05):438-441.
    41.田丽霞,刘永坚,刘栋辉,梁桂英,赵小奎.草鱼对葡萄糖和淀粉作为能源的利 用研究.中山大学学报(自然科学版),2001(02):104-106.
    42.汪福保,罗莉,文华,高开进,陈任孝,郭玉阳,朱根廷.镁对草鱼生长、形体、肝功能和糖代谢的影响.淡水渔业,2011(02):5-62+68.
    43.汪开毓,苗常鸿,黄锦炉,王均,连海,吴春艳,牟巧凤,付希.投喂高脂饲料后草鱼主要生化指标和乙酰辅酶A羧化酶1 mRNA表达的变化.动物营养学报,2012(12):23752383.
    44.王爱民,韩光明,封功能,杨文平,郭家豪,王恬,徐跑.饲料脂肪水平对吉富罗非鱼生产性能、营养物质消化及血液生化指标的影响.水生生物学报,2011(01):80-87.
    45.王春明,刘洋.蚕豆组成及加工利用进展.农业机械,2011(17):91-93.
    46.王道尊,赵亮,谭玉钧.草鱼鱼种对胆碱需要量的研究.水产学报,1995(02):133-139.
    47.王志忠,孙鹤田,刘汉华,马俊岭,轩子群,任维美,吴亚恒.草鱼种对配合饵料中钙磷的需要量及适宜钙磷比.水产学报,2002(02):127-132.
    48.邬小兵,乐国伟,施用晖,张必武.营养物质调控动物基因表达作用机制.生理科学进展,2002(01):51-53.
    49.吴凡,文华,蒋明,刘伟,刘波,田娟,杨长庚.饲料碳水化合物水平对吉富罗非鱼幼鱼生长性能和血液主要生化指标的影响.西北农林科技大学学报(自然科学版),2012(12):8-14.
    50.吴凡,文华,蒋明,刘伟,仲维玮,田娟.饲料碳水化合物水平对奥尼罗非鱼幼鱼生长、体成分和血清生化指标的影响.华南农业大学学报,2011(04):91-95.
    51.吴国豪.分子营养学的研究及进展.中国实用外科杂志,2004(01):16-18.
    52.吴建开,曹俊明,梁海鸥,谭永刚,朱旺明,周萌,蓝汉兵,马利.饲料中碳水化合物水平对军曹鱼幼鱼生长、血清生化指标和肝脏糖代谢酶的影响.中国畜牧兽医学会动物营养学分会—第九届学术研讨会.2004.中国重庆.
    53.雍文岳,黄忠志,廖朝兴,曹经晔,游文章,马琳,吴达辉.饲料中脂肪含量对草鱼生长的影响.淡水渔业,1985(06):11-14
    54.袁丹宁,文华,蒋明,吴凡,刘太亮,丁俊仁,冷向军.草鱼幼鱼对饲料中钴的需要量.西北农林科技大学学报(自然科学版),2009(05):74-80+88.
    55.张芳林.肉碱棕榈酰转移酶-I的研究进展.国外医学.内分泌学分册,2002(03):166-169.
    56.赵万鹏,刘永坚,潘庆,林鼎.草鱼摄食后血糖和肝糖原质量分数的变化.中山大学学报(自然科学版),2002(03):64-67.
    57.朱大世.饥饿和不同脂肪源对草鱼体脂含量及脂肪酸合成酶的影响.[硕士学位论文].武汉:华中农业大学图书馆,2005.
    58. Ai Q, Mai K, Li H, Zhang C, Zhang L, Duan Q, Tan B, Xu W, Ma H, Zhang W. Effects of dietary protein to energy ratios on growth and body composition of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture,2004,230(1): 507-516.
    59. Aksnes A, Gjerde B, Roald SO. Biological, chemical and organoleptic changes during maturation of farmed Atlantic salmon, Salmo salar. Aquaculture,1986, 53(1):7-20.
    60. Albalat A, Sanchez-Gurmaches J, Gutierrez J, Navarro I. Regulation of lipoprotein lipase activity in rainbow trout (Oncorhynchus mykiss) tissues. General and comparative endocrinology,2006,146(3):226-235.
    61. Albalat A, Saera-Vila A, Capilla E, Gutierrez J, Perez-Sanchez J, Navarro I. Insulin regulation of lipoprotein lipase (LPL) activity and expression in gilthead sea bream (Sparus aurata). Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2007,148(2):151-159.
    62. Anderson J, Jackson A, Matty A, Capper B. Effects of dietary carbohydrate and fibre on the tilapia Oreochromis niloticus (Linn.). Aquaculture,1984,37(4):303-314.
    63. Aoki T, Takada K, Kunisaki N. On the study of proximate composition, mineral, fatty acid, free amino acid, muscle hardness, and color difference of six species of wild and cultured fishes. Bulletin of the Japanese Society of Scientific Fisheries, 1991,57.
    64. Arnault F, Etienne J, Noe L, Raisonnier A, Brault D, Harney J, Berry M, Tse C, Fromental-Ramain C, Hamelin J. Human lipoprotein lipase last exon is not translated, in contrast to lower vertebrates. Journal of molecular evolution,1996, 43(2):109-115.
    65. Arnesen P, Krogdahl A, Kristiansen 10. Lipogenic enzyme activities in liver of atlantic salmon (Salmo salar, L). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,1993,105(3):541-546.
    66. Arranz-Pena M-L, Tasende-Mata J, Martin-Gil FJ. Comparison of two homogeneous assays with a precipitation method and an ultracentrifugation method for the measurement of HDL-cholesterol. Clinical chemistry,1998,44(12):2499-2505.
    67. Arzel J, Martinez Lopez FX, Metailler R, St6phan G, Viau M, Gandemer G, Guillaume J. Effect of dietary lipid on growth performance and body composition of brown trout (Salmo trutta) reared in seawater. Aquaculture,1994,123(3): 361-375.
    68. Auwerx J, Leroy P, Schoonjans K. Lipoprotein lipase:recent contributions from molecular biology. Critical reviews in clinical laboratory sciences,1992,29(3-4): 243-268.
    69. Azzaydi M, Martinez F, Zamora S, Sanchez-Vazquez F, Madrid J. The influence of nocturnal vs. diurnal feeding under winter conditions on growth and feed conversion of European sea bass (Dicentrarchus labrax, L.). Aquaculture,2000, 182(3):329-338.
    70. Baldner GL, Flatt RE, Shaw RN, Beitz DC. Fatty acid biosynthesis in liver and adipose tissue from dogs. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,1985,82(1):153-156.
    71. Bandarra N, Nunes M, Andrade A, Prates J, Pereira S, Monteiro M, Rema P, Valente L. Effect of dietary conjugated linoleic acid on muscle, liver and visceral lipid deposition in rainbow trout juveniles (Oncorhynchus mykiss). Aquaculture,2006, 254(1):496-505.
    72. Batista-Pinto C, Rodrigues P, Rocha E, Lobo-da-Cunha A. Identification and organ expression of peroxisome proliferator activated receptors in brown trout (Salmo trutta f. fario). Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2005,1731(2):88-94.
    73. Bautista J, Garrido-Pertierra A, Soler G. Glucose-6-phosphate dehydrogenase from Dicentrarchus labrax liver:kinetic mechanism and kinetics of NADPH inhibition. Biochimica et Biophysica Acta (BBA)-General Subjects,1988,967(3):354-363.
    74. Beamish F, Medland T. Protein sparing effects in large rainbow trout, Salmo gairdneri. Aquaculture,1986,55(1):35-42.
    75. Bell JG, McEvoy J, Tocher DR, McGhee F, Campbell PJ, Sargent JR. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. The Journal of nutrition, 2001,131(5):1535-1543.
    76. Berthou L, Duverger N, Emmanuel F, Langouet S, Auwerx J, Guillouzo A, Fruchart J-C, Rubin E, Denefle P, Staels B. Opposite regulation of human versus mouse apolipoprotein AI by fibrates in human apolipoprotein AI transgenic mice. Journal of Clinical Investigation,1996,97(11):2408.
    77. Bjerkeng B, Refstie S, Fjalestad K, Storebakken T, R(?)dbotten M, Roem A. Quality parameters of the flesh of Atlantic salmon (Salmo salar) as affected by dietary fat content and full-fat soybean meal as a partial substitute for fish meal in the diet. Aquaculture,1997,157(3):297-309.
    78. Black D, Kirkpatrick S, Skinner E. Lipoprotein lipase and salt-resistant lipase activities in the livers of the rainbow trout and cod. Biochem Soc Trans,1983,11: 708-795.
    79. Black D, Roy Skinner E. Changes in plasma lipoproteins and tissue lipoprotein lipase and salt-resistant lipase activities during spawning in the rainbow trout (salmo gairdneriir.). Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1987,88(1):261-267.
    80. Boujard T, Gelineau A, Coves D, Corraze G, Dutto G, Gasset E, Kaushik S. Regulation of feed intake, growth, nutrient and energy utilisation in European sea bass (Dicentrarchus labrax) fed high fat diets. Aquaculture,2004,231(1):529-545.
    81. Boukouvala E, Antonopoulou E, Favre-Krey L, Diez A, Bautista JM, Leaver MJ, Tocher DR, Krey G. Molecular characterization of three peroxisome proliferator-activated receptors from the sea bass (Dicentrarchus labrax). Lipids, 2004,39(11):1085-1092.
    82. Bouraoui L, SANCHEZ-GURMACHES J, CRUZ-GARCIA L, Gutierrez J, BENEDITO-PALOS L, PEREZ-SANCHEZ J, Navarro I. Effect of dietary fish meal and fish oil replacement on lipogenic and lipoprotein lipase activities and plasma insulin in gilthead sea bream (Sparus aurata). Aquaculture Nutrition,2011, 17(1):54-63.
    83. Boyd CE. Phosphorus dynamics in ponds. Proc.Annu.Conf.South Assoc.Game Comm.1971,25,418-426.
    84. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry,1976,72(1):248-254.
    85. Brandt JM, Djouadi F, Kelly DP. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor a. Journal of Biological Chemistry,1998,273(37): 23786-23792.
    86. Brauge C, Corraze G, M6dale F. Effects of dietary levels of carbohydrate and lipid on glucose oxidation and lipogenesis from glucose in rainbow trout, Oncorhynchus mykiss, reared in freshwater or in seawater. Comparative Biochemistry and Physiology Part A:Physiology,1995,111(1):117-124.
    87. Bremer J. The role of carnitine in cell metabolism, In:De Simone C, Famularo G, eds., Carnitine Today. Heidelberg:Springer-Verlag:1997.1-37.
    88. Bremer J. The biochemistry of hypo-and hyperlipidemic fatty acid derivatives: metabolism and metabolic effects. Progress in lipid research,2001,40(4):231-268.
    89. Brett J, Shelbourn JE, Shoop CT. Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. Journal of the Fisheries Board of Canada,1969,26(9):2363-2394.
    90. Brodal BP, Eliassen KA, Ronning H, Osmundsen H. Effects of dietary polyamines and clofibrate on metabolism of polyamines in the rat. The Journal of nutritional biochemistry,1999,10(12):700-708.
    91. Bromley P. Effect of dietary protein, lipid and energy content on the growth of turbot (Scophthalmus maximus L.). Aquaculture,1980,19(4):359-369.
    92. Burgaya F, Peinado J, Vilaro S, Llobera M, Ramirez I. Lipoprotein lipase activity in neonatal-rat liver cell types. Biochem. J,1989,259:159-166.
    93. Caballero M, Lopez-Calero G, Socorro J, Roo F, Izquierdo M, Fernandez A. Combined effect of lipid level and fish meal quality on liver histology of gilthead seabream (Sparus aurata). Aquaculture,1999,179(1):277-290.
    94. Camps L, Reina M, Llobera M, Vilaro S, Olivecrona T. Lipoprotein lipase:cellular origin and functional distribution. American Journal of Physiology-Cell Physiology, 1990,258(4):C673-C681.
    95. Chaiyapechara S, Casten MT, Hardy RW, Dong FM. Fish performance, fillet characteristics, and health assessment index of rainbow trout (Oncorhynchus mykiss) fed diets containing adequate and high concentrations of lipid and vitamin E. Aquaculture,2003,219(1):715-738.
    96. Chen YJ, Tian LX, Yang HJ, Chen PF, Yuan Y, Liu YJ, Liang GY. Effect of Protein and Starch Level in Practical Extruded Diets on Growth, Feed Utilization, Body Composition, and Hepatic Transaminases of Juvenile Grass Carp, Ctenopharyngodon idella. Journal of the World Aquaculture Society,2012,43(2): 187-197.
    97. Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W, Peng J. HNF factors form a network to regulate liver-enriched genes in zebrafish. Developmental biology,2006, 294(2):482-496.
    98. Cheung MC, Albers JJ, Wahl PW, Hazzard WR. High density lipoproteins during hypolipidemic therapy:a comparative study of four drugs. Atherosclerosis,1980, 35(3):215-228.
    99. Chilliard Y. Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: a review. Journal of Dairy Science,1993,76(12):3897-3931.
    100. Cho C, Hynes J, Wood K, Yoshida H. Development of bigh-nutrient-dense, low-pollution diets and prediction of aquaculture wastes using biological approaches. Aquaculture,1994,124(1):293-305.
    101. Cho HK, Kong HJ, Kim HY, Cheong J. Characterization of Paralichthys olivaceus peroxisome proliferator-activated receptor-a gene as a master regulator of flounder lipid metabolism. General and comparative endocrinology,2012,175(1):39-47.
    102. Chou R, Her B, Su M, Hwang G, Wu Y, Chen H. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture,2004, 229(1):325-333.
    103. Christiansen DC, Skarstein L, Klungs(?)yr L. Uptake studies in adipocytes isolated from rainbow trout (Salmo gairdnerii). A comparison with adipocytes from rat and cat. Comparative Biochemistry and Physiology Part A:Physiology,1985,82(1): 201-205.
    104. Cornu-Chagnon M-C, Dupont H, Edgar A. Fenofibrate:metabolism and species differences for peroxisome proliferation in cultured hepatocytes. Toxicological Sciences,1995,26(1):63-74.
    105. Cowey CB, Walton MJ. Intermediary metabolism. Fish nutrition,1989,2:259-329.
    106. Craig S, Washburn B, Gatlin D. Effects of dietary lipids on body composition and liver function in juvenile red drum, Sciaenops ocellatus. Fish Physiology and Biochemistry,1999,21(3):249-255.
    107. Cruz-Garcia L, Sanchez-Gurmaches J, Bouraoui L, Saera-Vila A, Perez-Sanchez J, Gutierrez J, Navarro I. Changes in adipocyte cell size, gene expression of lipid metabolism markers, and lipolytic responses induced by dietary fish oil replacement in gilthead sea bream (Sparus aurata L.). Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2011,158(4): 391-399.
    108. Cui XJ, Zhou QC, Liang HO, Yang J, Zhao LM. Effects of dietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenile cobia(Rachycentron canadum Linnaeus.). Aquaculture Research,2010,42(1):99-107.
    109. Dabrowski K. Protein requirements of grass carp fry(Ctenopharyngodon idella Val.). Aquaculture,1977,12(1):63-73.
    110. Dashti N, Ontko JA. Alterations in rat serum lipids and apolipoproteins following clofibrate treatment. Atherosclerosis,1983,49(3):255-266.
    111. De Silva SS, Gunasekera RM, Shim K. Interactions of varying dietary protein and lipid levels in young red tilapia:evidence of protein sparing. Aquaculture,1991, 95(3):305-318.
    112. Dias J, Alvarez M, Diez A, Arzel J, Corraze G, Bautista J, Kaushik S. Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax). Aquaculture,1998,161(1):169-186.
    113. Dias J, Corraze G, Arzel J, Alvarez M, Bautista J, Lopez-Bote C, Kaushik S. Nutritional control of lipid deposition in rainbow trout and European seabass: Effect of dietary protein energy ratio. Cybium,1999,23(1):127-137.
    114. Donohue M, Baldwin L, Leonard D, Kostecki P, Calabrese E. Effect of hypolipidemic drugs gemfibrozil, ciprofibrate, and clofibric acid on peroxisomal β-oxidation in primary cultures of rainbow trout hepatocytes. Ecotoxicology and environmental safety,1993,26(2):127-132.
    115. Du ZY, Clouet P, Degrace P, Zheng W-H, Fr(?)yland L, Tian L-X, Liu Y-J. Hypolipidaemic effects of fenofibrate and fasting in the herbivorous grass carp (Ctenopharyngodon idella) fed a high-fat diet. British Journal of Nutrition,2008, 100(06):1200-1212.
    116. Du ZY, Clouet P, Zheng WH, Degrace P, Tian LX, Liu YJ. Biochemical hepatic alterations and body lipid composition in the herbivorous grass carp (Ctenopharyngodon idella) fed high-fat diets. British Journal of Nutrition,2006, 95(05):905-915.
    117. Du ZY, Demizieux L, Degrace P, Gresti J, Moindrot B, Liu YJ, Tian LX, Cao JM, Clouet P. Alteration of 20:5n-3 and 22:6n-3 fat contents and liver peroxisomal activities in fenofibrate-treated rainbow trout. Lipids,2004,39(9): 849-855.
    118. Du ZY, Liu YJ, Tian LX, Wang JT, Wang Y, Liang GY. Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella). Aquaculture Nutrition,2005,11(2):139-146.
    119. Eroldogan O, Kumlu M, Aktas M. Optimum feeding rates for European sea bass Dicentrarchus labrax L. reared in seawater and freshwater. Aquaculture,2004, 231(1):501-515.
    120. Fajas L, Debril M, Auwerx J. Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. Journal of molecular endocrinology,2001, 27(1):1-9.
    121. Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors a and δ. Proceedings of the National Academy of Sciences,1997,94(9):4312-4317.
    122. Freyland L, Lie 0, Berge R. Mitochondrial and peroxisomal β-oxidation capacities in various tissues from Atlantic salmon Salmo salar. Aquaculture Nutrition,2000, 6(2):85-89.
    123. Fr(?)yland L, Madsen L, Eckhoff KM, Lie 0, Berge RK. Carnitine palmitoyltransferase I, carnitine palmitoyltransferase Ⅱ, and acyl-CoA oxidase activities in Atlantic salmon (Salmo salar). Lipids,1998,33(9):923-930.
    124. Francis G, Makkar HP, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture,2001,199(3): 197-227.
    125. Fynn-Aikins K, Hung SS, Liu W, Li H. Growth, lipogenesis and liver composition of juvenile white sturgeon fed different levels of D-glucose. Aquaculture,1992, 105(1):61-72.
    126. Gelineau A, Corraze G, Boujard T, Larroquet L, Kaushik S. Relation between dietary lipid level and voluntary feed intake, growth, nutrient gain, lipid deposition and hepatic lipogenesis in rainbow trout. Reproduction Nutrition Development, 2001,41(6):487-504.
    127. Gao W, Liu YJ, Tian LX, Mai KS, Liang GY, Yang HJ, Huai MY, Luo WJ. Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella). Aquaculture Nutrition,2010,16(3):327-333.
    128. Gao W, Liu YJ, Tian LX, Mai KS, Liang GY, Yang HJ, Huai MY, Luo WJ. Protein-sparing capability of dietary lipid in herbivorous and omnivorous freshwater finfish:a comparative case study on grass carp (Ctenopharyngodon idella) and tilapia (Oreochromis nilotlcus× O. aureus). Aquaculture Nutrition,2011,17(1): 2-12.
    129. Gavino VC, Gavino GR. Adipose hormone-sensitive lipase preferentially releases polyunsaturated fatty acids from triglycerides. Lipids,1992,27(12):950-954.
    130. Ghanawi J, Roy L, Davis DA, Saoud IP. Effects of dietary lipid levels on growth performance of marbled spinefoot rabbitfish Siganus rivulatus. Aquaculture,2011, 310(3):395-400.
    131. Griffin ME, Wilson KA, White MR, Brown PB. Dietary Choline Requirement of Juvenile Hybrid Striped Bass. Nutrient Requirements and Interactions,1994,124: 1685-1689.
    132. Grimaldi PA. The roles of PPARs in adipocyte differentiation. Progress in lipid research,2001,40(4):269-281.
    133. Guerreiro I, Peres H, CASTRO-CUNHA M, OLIVA-TELES A. Effect of temperature and dietary protein/lipid ratio on growth performance and nutrient utilization of juvenile Senegalese sole (Solea senegalensis). Aquaculture Nutrition, 2012,18(1):98-106.
    134. Guo Q, Wang PR, Milot DP, Ippolito MC, Hernandez M, Burton CA, Wright SD, Chao YS. Regulation of lipid metabolism and gene expression by fenofibrate in hamsters. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2001,1533(3):220-232.
    135. Gutieres S, Damon M, Panserat S, Kaushik S, Medale F. Cloning and tissue distribution of a carnitine palmitoyltransferase I gene in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,2003,135(1):139-151.
    136. Han C, Wen X, Zheng Q, Li H. Effect of starvation on activities and mRNA expression of lipoprotein lipase and hormone-sensitive lipase in tilapia (Oreochromis niloticus x O. areus). Fish Physiology and Biochemistry,2011,37(1): 113-122.
    137. Hansen J(?), Berge GM, Hillestad M, Krogdahl A, Galloway TF, Holm H, Holm J, Ruyter B. Apparent digestion and apparent retention of lipid and fatty acids in Atlantic cod (Gadus morhua) fed increasing dietary lipid levels. Aquaculture,2008, 284(1):159-166.
    138. Heller F, Harvengt C. Effects of clofibrate, bezafibrate, fenofibrate and probucol on plasma lipolytic enzymes in normolipaemic subjects. European journal of clinical pharmacology,1983,25(1):57-63.
    139. Hemre GI, Kahrs F.14C-glucose injection in Atlantic cod, Gadus morhua, metabolic responses and excretion via the gill membrane. Aquaculture Nutrition, 1997,3(1):3-8.
    140. Hemre GI, Mommsen T, Krogdahl A. Carbohydrates in fish nutrition:effects on growth, glucose metabolism and hepatic enzymes. Aquaculture Nutrition,2002, 8(3):175-194.
    141. Hemre GI, Storebakken T. Tissue and organ distribution of 14C - activity in dextrin-adapted Atlantic salmon after oral administration of radiolabelled 14C1 - glucose. Aquaculture Nutrition,2000,6(4):229-234.
    142. Henderson R, Sargent J. Lipid biosynthesis in rainbow trout, Salmo Gairdnerii, fed diets of differing lipid content. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology,1981,69(1):31-37.
    143. Henderson R, Sargent J. Fatty acid metabolism in fish. Nutrition and feeding in fish, 1985:349-364.
    144. Henderson RJ, Tocher DR. The lipid composition and biochemistry of freshwater fish. Progress in lipid research,1987,26(4):281-347.
    145. Hertz R, Bishara-Shieban J, Bar-Tana J. Mode of action of peroxisome proliferators as hypolipidemic drugs. Suppression of apolipoprotein C-III. Journal of Biological Chemistry,1995,270(22):13470-13475.
    146. Herzberg GR, Rogerson M. Tissue distribution of lipogenesis in vivo in the common murre (Uria aalge) and the domestic chicken (Gallus domesticus). Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1990,96(4):767-769.
    147. Hillestad M, Johnsen F. High-energy/low-protein diets for Atlantic salmon:effects on growth, nutrient retention and slaughter quality. Aquaculture,1994,124(1): 109-116.
    148. Hillgartner FB, Salati LM, Goodridge AG. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiological Reviews,1995,75(1):47-76.
    149. Hilton J, Atkinson J. Response of rainbow trout (Salmo gairdneri) to increased levels of available carbohydrate in practical trout diets. British Journal of Nutrition, 1982,47(03):597-607.
    150. Holland R, Witters LA, Hardie DG. Glucagon inhibits fatty acid synthesis in isolated hepatocytes via phosphorylation of acetyl-CoA carboxylase by cyclic-AMP-dependent protein kinase. European Journal of Biochemistry,1984,140(2): 325-333.
    151. Hood R, Cook L, Mills S, Scott T. Effect of feeding protected lipids on fatty acid synthesis in ovine tissues. Lipids,1980,15(9):644-650.
    152. Hoogwerf BJ, Peters JR, Frantz Jr ID, Hunninghake DB. Effect of clofibrate and colestipol singly and in combination on plasma lipids and lipoproteins in type III hyperlipoproteinemia. Metabolism,1985,34(10):978-981.
    153. Hsu RY, Butterworth PH, Porter JW. Pigeon liver fatty acid synthase. Methods in enzymology,1969,14:33-39.
    154. Huang HH, Feng L, Liu Y, Jiang J, Jiang WD, Hu K, LI SH, ZHOU XQ. Effects of dietary thiamin supplement on growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition, 2011,17(2):e233-e240.
    155. Hung SS, Conte FS, Hallen EF. Effects of feeding rates on growth, body composition and nutrient metabolism in striped bass (Morone saxatilis) fingerlings. Aquaculture,1993,112(4):349-361.
    156. Hung SS, Fynn-Aikins FK, Lutes PB, Xu R. Ability of juvenile white sturgeon (Acipenser transmontanus) to utilize different carbohydrate sources. Journal of Nutrition,1989,119:727-733.
    157. Hung SS, Storebakken T. Carbohydrate utilization by rainbow trout is affected by feeding strategy. Journal of Nutrition,1994,124:223-223.
    158. Hunninghake DB, Bell C, Olson L. Effect of colestipol and clofibrate, singly and in combination, on plasma lipid and lipoproteins in type JIB hyperlipoproteinemia. Metabolism,1981,30(6):610-615.
    159. Hutchins C, Rawles S, Gatlin D. Effects of dietary carbohydrate kind and level on growth, body composition and glycemic response of juvenile sunshine bass {Morone chrysops(?)×M. saxatilis (?)). Aquaculture,1998,161(1):187-199.
    160. Ibabe A, Bilbao E, Cajaraville MP. Expression of peroxisome proliferator-activated receptors in zebrafish (Danio rerio) depending on gender and developmental stage. Histochemistry and cell biology,2005,123(1):75-87.
    161. Ibabe A, Herrero A, Cajaraville M. Modulation of peroxisome proliferator-activated receptors (PPARs) by PPARa-and PPARγ-specific ligands and by 17β-estradiol in isolated zebrafish hepatocytes. Toxicology in vitro,2005,19(6):725-735.
    162. Ingle D, Bauman D, Garrigus U. Lipogenesis in the ruminant:in vivo site of fatty acid synthesis in sheep. The Journal of Nutrition,1972,102(5):617-623.
    163. Iniesta M, Cano M, Garrido-Pertierra A. Properties and function of malate enzyme from Dicentrarchus labrax L. liver. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1985,80(1):35-39.
    164. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature,1990,347(6294):645-650.
    165. Jafri A. Effect of dietary carbohydrate-to-lipid ratio on growth and body composition of walking catfish (Clarias batrachus). Aquaculture,1998,161(1): 159-168.
    166. Ji H, Li J, Liu P. Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2011,159(1):49-56.
    167. Jose Ibafiez A, Peinado-Onsurbe J, Sanchez E, Cerda-Reverter JM, Prat F. Lipoprotein lipase (LPL) is highly expressed and active in the ovary of European sea bass(Dicentrarchus labrax L.), during gonadal development. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2008, 150(3):347-354.
    168. Jyothi B, Narayan G. Effect of phorate on certain protein profiles of serum in freshwater fish, Clarias batrachus(Linn.). Journal of Environmental Biology,1997, 18(2):137-140.
    169. Katsutani N, Sekido T, Aoki T, Sagami F. Hepatic drug metabolizing enzymes induced by clofibrate in rasH2 mice. Toxicology letters,2000,115(3):223-229.
    170. Kaushik S, Coves D, Dutto Q Blanc D. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture,2004,230(1):391-404.
    171. Kaushik SJ, de Oliva Teles A. Effect of digestible energy on nitrogen and energy balance in rainbow trout. Aquaculture,1985,50(1):89-101.
    172. Kelley DS, Nelson GJ, Serrato CM, Schmidt PC. Nutritional regulation of hepatic lipogenesis in the rat. Nutrition Research,1987,7(5):509-517.
    173. Ketola H. Choline metabolism and nutritional requirement of lake trout (Salvelinus namaycush). Journal of Animal Science,1976,43(2):474-477.
    174. Khan M, Ang K, Ambak M, Saad C. Optimum dietary protein requirement of a Malaysian freshwater catfish, Mystus nemurus. Aquaculture,1993,112(2): 227-235.
    175. Kiessling A, Storebakken T, Asgard T, Kiessling K-H. Changes in the structure and function of the epaxial muscle of rainbow trout (Oncorhynchus mykiss) in relation to ration and age:Ⅰ. Growth dynamics. Aquaculture,1991,93(4):335-356.
    176. Koditschek L, Umbreit W. α-Glycerophosphate oxidase in Streptococcus faecium F 24. Journal of bacteriology,1969,98(3):1063-1068.
    177. Kondo H, Misaki R, Gelman L, Watabe S. Ligand-dependent transcriptional activities of four torafugu pufferfish Takifugu rubripes peroxisome proliferator-activated receptors. General and comparative endocrinology,2007, 154(1):120-127.
    178. Kondo H, Misaki R, Watabe S. Transcriptional activities of medaka Oryzias latipes peroxisome proliferator-activated receptors and their gene expression profiles at different temperatures. Fisheries Science,2010,76(1):167-175.
    179. Lanari D, Poli BM, Ballestrazzi R, Lupi P, D'Agaro E, Mecatti M. The effects of dietary fat and NFE levels on growing European sea bass (Dicentrarchus labrax L.). Growth rate, body and fillet composition, carcass traits and nutrient retention efficiency. Aquaculture,1999,179(1):351-364.
    180. Larsson A, Fange R. Cholesterol and free fatty acids (FFA) in the blood of marine fish. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1977,57(3):191-196.
    181. Le May C, Cauzac M, Diradourian C, Perdereau D, Girard J, Burnol AF, Pegorier JP. Fatty acids induce L-CPT Ⅰ gene expression through a PPARα-independent mechanism in rat hepatoma cells. The Journal of nutrition,2005,135(10): 2313-2319.
    182. Leaver M, Tocher DR, Obach A, Jensen L, Henderson RJ, Porter MJ, Krey G. Effect of dietary conjugated linoleic acid (CLA) on lipid composition, metabolism and gene expression in Atlantic salmon (Salmo salar) tissues. Comparative Biochemistry and Physiology Part A:Molecular and Integrative Physiology,2006, 145(2):258-267.
    183. Leaver MJ, Bautista JM, Bjornsson BT, Jonsson E, Krey G, Tocher DR, Torstensen BE. Towards fish lipid nutrigenomics:current state and prospects for fin-fish aquaculture. Reviews in Fisheries Science,2008,16(S1):73-94.
    184. Leaver MJ, Boukouvala E, Antonopoulou E, Diez A, Favre-Krey L, Ezaz MT, Bautista JM, Tocher DR, Krey G. Three peroxisome proliferator-activated receptor isotypes from each of two species of marine fish. Endocrinology,2005,146(7): 3150-3162.
    185. Leaver MJ, Ezaz MT, Fontagne S, Tocher DR, Boukouvala E, Krey G Multiple peroxisome proliferator-activated receptor β subtypes from Atlantic salmon (Salmo salar). Journal of molecular endocrinology,2007,38(3):391-400.
    186. Leaver M, Tocher DR, Obach A, Jensen L, Henderson RJ, Porter MJ, Krey G. Effect of dietary conjugated linoleic acid (CLA) on lipid composition, metabolism and gene expression in Atlantic salmon (Salmo salar) tissues. Comparative Biochemistry and Physiology Part A:Molecular and Integrative Physiology,2006, 145(2):258-267.
    187. Lee C-H, Olson P, Evans RM. Minireview:lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology,2003,144(6): 2201-2207.
    188. Lee D, Putnam G. The response of rainbow trout to varying protein/energy ratios in a test diet. The Journal of Nutrition,1973,103(6):916-922..
    189. Lee SM, Jeon IG, Lee JY. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli). Aquaculture,2002,211(1):227-239..
    190. Lee SM, Kim KD, Lall SP. Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus). Aquaculture,2003,221(1):427-438.
    191. Lee SM, Kim KD. Effects of dietary carbohydrate to lipid ratios on growth and body composition of juvenile and grower rockfish, Sebastes schlegeli. Aquaculture Research,2009,40(16):1830-1837.
    192. Leng X, Wu X, Tian J, Li X, Guan L, Weng D. Molecular cloning of fatty acid synthase from grass carp (Ctenopharyngodon idella) and the regulation of its expression by dietary fat level. Aquaculture Nutrition,2012,18(5):551-558.
    193. Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor a (PPARa) in the cellular fasting response:the PPARa-null mouse as a model of fatty acid oxidation disorders. Proceedings of the National Academy of Sciences,1999,96(13):7473-7478.
    194. Leuno T, Bauman D. In vitro studies of the pathways of fatty acid synthesis in the rabbit. International Journal of Biochemistry,1976,7(1):7-12.
    195. Li XF, Liu WB, Jiang YY, Zhu H, Ge XP. Effects of dietary protein and lipid levels in practical diets on growth performance and body composition of blunt snout bream (Megalobrama amblycephala) fingerlings. Aquaculture,2010,303(1): 65-70.
    196. Liang J, Tian L, Liu Y, Yang H, Liang G Dietary magnesium requirement and effects on growth and tissue magnesium content of juvenile grass carp (Ctenopharyngodon idella). Aquaculture Nutrition,2012a,18(1):56-64.
    197. Liang JJ, Liu YJ, Tian LX, Yang HJ, Liang GY. Dietary available phosphorus requirement of juvenile grass carp (Ctenopharyngodon idella). Aquaculture Nutrition,2012b,18(2):181-188.
    198. Liang X-F, Ogata HY, Oku H. Effect of dietary fatty acids on lipoprotein lipase gene expression in the liver and visceral adipose tissue of fed and starved red sea bream Pagrus major. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2002a,132(4):913-919.
    199. Liang X-F, Oku H, Ogata HY. The effects of feeding condition and dietary lipid level on lipoprotein lipase gene expression in liver and visceral adipose tissue of red sea bream Pagrus major. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,2002b,131(2):335-342.
    200. Lie (?), Lied E, Lambertsen G. Feed optimization in atlantic cod (Gadus morhua): Fat versus protein content in the feed. Aquaculture,1988,69(3):333-341.
    201. Likimani TA, Wilson RP. Effects of diet on lipogenic enzyme activities in channel catfish hepatic and adipose tissue. The Journal of nutrition,1982,112(1):112-117.
    202. Lim C, Yildirim - Aksoy M, Barros MM, Klesius P. Thiamin requirement of Nile tilapia, Oreochromis niloticus. Journal of the World Aquaculture Society,2011, 42(6):824-833.
    203. Lin H, Romsos DR., Tack PI, Leveille GA. Effects of fasting and feeding various diets on hepatic lipogenic enzyme activities in coho salmon{Oncorhynchus kisutch (Walbaum)). The Journal of nutrition,1977a,107(8):1477.
    204. Lin H, Romsos DR, Tack PI, Leveille GA. Influence of dietary lipid on lipogenic enzyme activities in coho salmon, Oncorhynchus kisutch (Walbaum). The Journal of nutrition,1977b,107(5):846-854.
    205. Lin WL, Zeng QX, Zhu ZW. Different changes in mastication between crisp grass carp(Ctenopharyngodon idellus C. et V) and grass carp (Ctenopharyngodon idellus) after heating:The relationship between texture and ultrastructure in muscle tissue. Food Research International,2009,42(2):271-278.
    206. Lindberg A, Olivecrona G. Lipoprotein lipase from rainbow trout differs in several respects from the enzyme in mammals. Gene,2002,292(1):213-223.
    207. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2" ΔΔCT Method, methods,2001,25(4): 402-408.
    208. Louet J, Chatelain F, Decaux J, Park E, Kohl C, Pineau T, Girard J, Pegorier J. Long-chain fatty acids regulate liver carnitine palmitoyltransferase I gene (L-CPT I) expression through a peroxisome-proliferator-activated receptor a (PPARa)-independent pathway. Biochem. J,2001,354:189-197.
    209. Lovell T. Nutrition and feeding of fish. Kluwer Academic Pub.1998.
    210. Luci S, Giemsa B, Kluge H, Eder K. Clofibrate causes an upregulation of PPAR-a target genes but does not alter expression of SREBP target genes in liver and adipose tissue of pigs. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2007,293(1):R70-R77.
    211. Luo Z, Liu YJ, Mai KS, Tian LX, Liu DH, Tan XY, Lin HZ. Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating netcages. Aquaculture International,2005,13(3):257-269.
    212. Mai K, Zhang C, Ai Q, Duan Q, Xu W, Zhang L, Liufu Z, Tan B. Dietary phosphorus requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture,2006,251(2):346-353.
    213. Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor a (PPARa) in the cellular fasting response:the PPARa-null mouse as a model of fatty acid oxidation disorders. Proceedings of the National Academy of Sciences,1999,96(13):7473-7478.
    214. Mandrup S, Lane MD. Regulating adipogenesis. Journal of Biological Chemistry, 1997,272(9):5367-5370.
    215. Martino RC, Cyrino JEP, Portz L, Trugo LC. Effect of dietary lipid level on nutritional performance of the surubim, Pseudoplatystoma coruscans. Aquaculture, 2002,209(1):209-218.
    216. Martins DA, Valente LM, Lall SP. Effects of dietary lipid level on growth and lipid utilization by juvenile Atlantic halibut(Hippoglossus hippoglossus, L.). Aquaculture,2007,263(1):150-158.
    217. McClelland G, Weber J-M, Zwingelstein G, Brichon G Lipid composition of tissue and plasma in two mediterranean fishes, the gilt-head sea bream (Chrysophyrys auratus) and the European seabass (Dicentratchus labrx). Canadian Journal of Fisheries and Aquatic Sciences,1995,52(1):161-170.
    218. McGoogan BB, Gatlin DM. Dietary manipulations affecting growth and nitrogenous waste production of red drum, Sciaenops ocellatus I. Effects of dietary protein and energy levels. Aquaculture,1999,178(3):333-348.
    219. Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase:structure, function, regulation, and role in disease. Journal of Molecular Medicine,2002,80(12):753-769.
    220. Mennes W, Wortelboer H, Hassing G, Van Sandwijk K, Timmerman A, Schmid B, Jahn U, Blaauboer B. Effects of clofibric and beclobric acid in rat and monkey hepatocyte primary culture:influence on peroxisomal and mitochondrial P-oxidation and the activity of catalase, glutathione S-transferase and glutathione peroxidase. Archives of toxicology,1994,68(8):506-511.
    221. Menoyo D, Diez A, Lopez-Bote CJ, Casado S, Obach A, Bautista JM. Dietary fat type affects lipid metabolism in Atlantic salmon (Salmo salar L.) and differentially regulates glucose transporter GLUT4 expression in muscle. Aquaculture,2006, 261(1):294-304.
    222. Mesia-Vela S, Sanchez RI, Roberts KG, Reuhl KR, Conney AH, Kauffman FC. Dietary clofibrate stimulates the formation and size of estradiol-induced breast tumors in female August-Copenhagen Irish (ACI) rats. Toxicology,2008,246(1): 63-72.
    223. Mihelakakis A, Tsolkas C, Yoshimatsu T. Optimization of Feeding Rate for Hatchery-Produced Juvenile Gilthead Sea Bream Sparus aurata. Journal of the World Aquaculture Society,2002,33(2):169-175.
    224. Mimeault C, Trudeau V, Moon T. Waterborne gemfibrozil challenges the hepatic antioxidant defense system and down-regulates peroxisome proliferator-activated receptor beta (PPARβ) mRNA levels in male goldfish (Carassius auratus). Toxicology,2006,228(2):140-150.
    225. Mohanta KN, Mohanty SN, Jena J, Sahu NP, Patro B. Carbohydrate level in the diet of silver barb, Puntius gonionotus (Bleeker) fingerlings:effect on growth, nutrient utilization and whole body composition. Aquaculture Research,2009,40(8): 927-937.
    226. Muzio G, Maggiora M, Trombetta A, Martinasso G, Reffo P, Colombatto S, Canuto RA. Mechanisms involved in growth inhibition induced by clofibrate in hepatoma cells. Toxicology,2003,187(2):149-159.
    227. Nakamura MT, Cheon Y, Li Y, Nara TY. Mechanisms of regulation of gene expression by fatty acids. Lipids,2004,39(11):1077-1083.
    228. Nankervis L, Matthews S, Appleford P. Effect of dietary non-protein energy source on growth, nutrient retention and circulating insulin-like growth factor Ⅰ and triiodothyronine levels in juvenile barramundi, Lates calcarifer. Aquaculture,2000, 191(4):323-335.
    229. Nanton D, Lall S, McNiven M. Effects of dietary lipid level on liver and muscle lipid deposition in juvenile haddock, Melanogrammus aeglefinus L. Aquaculture Research,2001,32(s1):225-234.
    230. Nauck M, Marz W, Haas B, Wieland H. Homogeneous assay for direct determination of high-density lipoprotein cholesterol evaluated. Clinical chemistry, 1996,42(3):424-429.
    231. Neu D, Furuya W, Boscolo W, Potrich F, Lui T, Feiden A. Glycerol inclusion in the diet of Nile tilapia (Oreochromis niloticus) juveniles. Aquaculture Nutrition,2012.
    232. Ng W-K, Lu K-S, Hashim R, Ali A. Effects of feeding rate on growth, feed utilizationand body composition of a tropical bagrid catfish. Aquaculture International,2000,8(1):19-29.
    233. Nijhof M, Bult T. Metabolizable energy from dietary carbohydrates in turbot, Scophthalmus maximus (L.). Aquaculture Research,1994,25(3):319-327.
    234. Nunes B, Carvalho F, Guilhermino L. Acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholinesterase, lactate dehydrogenase and catalase of the mosquitofish, Gambusia holbrooki. Chemosphere,2004,57(11): 1581-1589.
    235. OHea EK, Leveille GA. Significance of adipose tissue and liver as sites of fatty acid synthesis in the pig and the efficiency of utilization of various substrates for lipogenesis. The Journal of nutrition,1969,99(3):338-344.
    236. Ochoa S, Colowick S, Kaplan N. Methods in Enzymology, vol. New York: Academic Press Inc,1955,1055:730.
    237. Oku H, Koizumi N, Okumura T, Kobayashi T, Umino T. Molecular characterization of lipoprotein lipase, hepatic lipase and pancreatic lipase genes:Effects of fasting and refeeding on their gene expression in red sea bream Pagrus major. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2006,145(2):168-178.
    238. Oku H, Ogata HY, Liang XF. Organization of the lipoprotein lipase gene of red sea bream Pagrus major. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,2002,131(4):775-785.
    239. Oku H, Umino T. Molecular characterization of peroxisome proliferator-activated receptors (PPARs) and their gene expression in the differentiating adipocytes of red sea bream Pagrus major. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,2008,151(3):268-277.
    240. Om A, Umino T, Nakagawa H, Sasaki T, Okada K, Asano M, Nakagawa A. The effects of dietary EPA and DHA fortification on lipolysis activity and physiological function in juvenile black sea bream Acanthopagrus schlegeli (Bleeker). Aquaculture Research,2001,32(s1):255-262.
    241. Opstvedt J, Aksnes A, Hope B, Pike IH. Efficiency of feed utilization in Atlantic salmon (Salmo salar L.) fed diets with increasing substitution of fish meal with vegetable proteins. Aquaculture,2003,221(1):365-379.
    242. Ozorio RO, Valente LM, Pousao-Ferreira P, Oliva-Teles A. Growth performance and body composition of white seabream(Diplodus sargus) juveniles fed diets with different protein and lipid levels. Aquaculture Research,2006,37(3):255-263.
    243. Peinado-Onsurbe J, Staels B, Deeb S, Ramirez I, Llobera M, Auwerx J. Neonatal extinction of liver lipoprotein lipase expression. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,1992,1131(3):281-286.
    244. Peres H, Oliva-Teles A. Effect of dietary lipid level on growth performance and feed utilization by European sea bass juveniles (Dicentrarchus labrax). Aquaculture, 1999,179(1):325-334.
    245. Philips A, Podoliak H, Brockway D, Vaughn R. The nutrition of trout. Cortland Hatch.1958, Report.
    246. Pourbaix S, Heller F, Harvengt C. Effect of fenofibrate and LF 2151 on hepatic peroxisomes in hamsters. Biochemical pharmacology,1984,33(22):3661-3666.
    247. Prindiville JS, Mennigen JA, Zamora JM, Moon TW, Weber J-M. The fibrate drug gemfibrozil disrupts lipoprotein metabolism in rainbow trout. Toxicology and applied pharmacology,2011,251(3):201-208.
    248. Qu B, Li Q-T, Wong KP, Ong CN, Halliwell B. Mitochondrial damage by the "pro-oxidant" peroxisomal proliferator clofibrate. Free Radical Biology and Medicine,1999,27(9):1095-1102.
    249. R(?)rvik KA, Alne H, Gaarder M, Ruyter B, Maseide N, Jakobsen J, Berge R, Sigholt T, Thomassen M. Does the capacity for energy utilization affect the survival of post-smolt Atlantic salmon, Salmo salar L., during natural outbreaks of infectious pancreatic necrosis. Journal of Fish Diseases,2007,30(7):399-409.
    250. Raingeard D, Cancio I, Cajaraville MP. Cloning and expression pattern of peroxisome proliferator-activated receptors, estrogen receptor a and retinoid X receptor a in the thicklip grey mullet Chelon labrosus. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2009,149(1):26-35.
    251. Rawles S, Smith S, Gatlin D. Hepatic glucose utilization and lipogenesis of hybrid striped bass(Morone chrysops× Morone saxatilis) in response to dietary carbohydrate level and complexity. Aquaculture nutrition,2008,14(1):40-50.
    252. Regost C, Arzel J, Cardinal M, Robin J, Laroche M, Kaushik S. Dietary lipid level, hepatic lipogenesis and flesh quality in turbot (Psetta maxima). Aquaculture,2001, 193(3):291-309.
    253. Reigh RC, Ellis SC. Effects of dietary soybean and fish-protein ratios on growth and body composition of red drum (Sciaenops ocellatus) fed isonitrogenous diets. Aquaculture,1992,104(3):279-292.
    254. Ren M, Ai Q, Mai K, Ma H, Wang X. Effect of dietary carbohydrate level on growth performance, body composition, apparent digestibility coefficient and digestive enzyme activities of juvenile cobia, Rachycentron canadum L. Aquaculture Research,2011,42(10):1467-1475.
    255. Reyne Y, Teyssier J, Nougues J, Tebibel S. Longitudinal study of adipose cell size in the dorsoscapular and perirenal depots of the growing rabbit. Journal of lipid research,1985,26(9):1036-1046.
    256. Richard MJ, Holck JT, Beitz DC. Lipogenesis in liver and adipose tissue of the domestic cat (Felis domestica). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,1989,93(3):561-564.
    257. Richard N, Kaushik S, Larroquet L, Panserat S, Corraze G Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). British Journal of Nutrition,2006, 96(02):299-309.
    258. Richard N, Mourente Q Kaushik S, Corraze G. Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.). Aquaculture,2006,261(3): 1077-1087.
    259. Richmond W. Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clinical Chemistry,1973,19(12):1350-1356.
    260. Robelin J. Cellularity of bovine adipose tissues:developmental changes from 15 to 65 percent mature weight. Journal of Lipid Research,1981,22(3):452-457.
    261. Roberts RA, James NH, Woodyatt NJ, Macdonald N, Tugwood JD. Evidence for the suppression of apoptosis by the peroxisome proliferator activated receptor alpha (PPAR alpha). Carcinogenesis,1998,19(1):43-48.
    262. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM. PPARy is required for the differentiation of adipose tissue in vivo and in vitro. Molecular cell,1999,4(4):611-617.
    263. Roy PK, Lall SP. Dietary phosphorus requirement of juvenile haddock (Melanogrammus aeglefinus L.). Aquaculture,2003,221(1):451-468.
    264. Rueda-Jasso R, Conceicao L, Dias J, De Coen W, Gomes E, Rees J, Soares F, Dinis M, Sorgeloos P. Effect of dietary non-protein energy levels on condition and oxidative status of Senegalese sole (Solea senegalensis) juveniles. Aquaculture, 2004,231(1):417-433.
    265. Ruyter B, Andersen (?), Dehli A, Ostlund Farrants A-K, Gj(?)en T, Thomassen MS. Peroxisome proliferator activated receptors in Atlantic salmon (Salmo solar): effects on PPAR transcription and acyl-CoA oxidase activity in hepatocytes by peroxisome proliferators and fatty acids. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,1997,1348(3):331-338.
    266. Sanchez-Gurmaches J,(?)stbye T-K, Navarro I, Torgersen J, Hevroy EM, Ruyter B, Torstensen BE. In vivo and in vitro insulin and fasting control of the transmembrane fatty acid transport proteins in Atlantic salmon (Salmo salar). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2011,301(4):R947-R957.
    267. Saera-Vila A, Calduch-Giner JA, Gomez-Requeni P, Medale F, Kaushik S, Perez-Sanchez J. Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2005,142(2):224-232.
    268. Sakamoto S, Yone Y. Effect of dietary phosphorus level on chemical composition of red sea bream. Bulletin of the Japanese Society of Scientific Fisheries,1978,44.
    269. Scarano LJ, Calabrese EJ, Kostecki PT, Baldwin LA, Leonard DA. Evaluation of a rodent peroxisome proliferator in two species of freshwater fish:Rainbow trout (Onchorynchus mykiss) and Japanese medaka (Oryzias latipes). Ecotoxicology and environmental safety,1994,29(1):13-19.
    270. Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. Journal of lipid research,1996,37(5):907-925.
    271. Schoonjans K, Staels B, Devos P, Szpirer J, Szpirer C, Deeb S, Verhoeven G, Auwerx J. Developmental extinction of liver lipoprotein lipase mRNA expression might be regulated by an NF-1-like site. FEBS letters,1993,329(1):89-95.
    272. Segal P, Roheim PS, Eder HA. Effect of clofibrate on lipoprotein metabolism in hyperlipidemic rats. Journal of Clinical Investigation,1972,51(7):1632.
    273. Segner H, Juario J. Histological observations on the rearing of milkfish, Chanos chanos, fry using different diets. Journal of applied ichthyology,1986,2(4): 162-172.
    274. Shao Q, Ma J, Xu Z, Hu W, Xu J, Xie S. Dietary phosphorus requirement of juvenile black seabream, Sparus macrocephalus. Aquaculture,2008,277(1): 92-100.
    275. Sheridan MA. Alterations in lipid metabolism accompanying smoltification and seawater adaptation of salmonid fish. Aquaculture,1989,82(1):191-203.
    276. Sheridan MA. Regulation of lipid metabolism in poikilothermic vertebrates. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1994,107(4):495-508.
    277. Shiau SY, Chuang JC. Utilization of disaccharides by juvenile tilapia, Oreochromis niloticus × O. aureus. Aquaculture,1995,133(3):249-256.
    278. Shiau S-Y, Peng C-Y. Protein-sparing effect by carbohydrates in diets for tilapia, Oreochromis niloticus× O. aureus. Aquaculture,1993,117(3):327-334.
    279. Shiau SY. Utilization of carbohydrates in warmwater fish with particular reference to tilapia, Oreochromis niloticu x O. aureu. Aquaculture,1997,151(1):79-96.
    280. Shim K, Ng S. Magnesium requirement of the guppy (Poecilia reticulata Peters). Aquaculture,1988,73(1):131-141.
    281. Shimeno S, Kheyyali D, Shikata T. Metabolic response to dietary lipid to protein ratios in common carp. Fisheries Science,1995,61.
    282. Siddiqui TQ, Khan MA. Effects of dietary protein levels on growth, feed utilization, protein retention efficiency and body composition of young Heteropneustes fossilis (Bloch). Fish physiology and biochemistry,2009,35(3):479-488.
    283. Silva-Carrillo Y, Hernandez C, Hardy RW, Gonzalez-Rodriguez B, Castillo-Vargasmachuca S. The effect of substituting fish meal with soybean meal on growth, feed efficiency, body composition and blood chemistry in juvenile spotted rose snapper Lutjanus guttatus (Steindachner,1869). Aquaculture,2012.
    284. Skonberg DI, Yogev L, Hardy RW, Dong FM. Metabolic response to dietary phosphorus intake in rainbow trout (Oncorhynchus mykiss). Aquaculture,1997, 157(1):11-24.
    285. Staels B, Auwerx J. Perturbation of developmental gene expression in rat liver by fibric acid derivatives:lipoprotein lipase and alpha-fetoprotein as models. Development,1992,115(4):1035-1043.
    286. Staels B, Auwerx J. Regulation of apo AI gene expression by fibrates. Atherosclerosis,1998,137:S19-S23.
    287. Stickney RR, Andrews JW. Combined effects of dietary lipids and environmental temperature on growth, metabolism and body composition of channel catfish (Ictalurus punctatus). The Journal of Nutrition,1971,101(12):1703-1710.
    288. Stubhaug I, Lie 0, Torstensen B. β-Oxidation capacity in liver increases during parr - smolt transformation of Atlantic salmon fed vegetable oil and fish oil. Journal of fish biology,2006,69(2):504-517.
    289. Takeuchi M, Nakazoe J. Effect of dietary phosphorus on lipid content and its composition in carp(Cyprinus carpio). Bulletin of the Japanese Society of Scientific Fisheries,1981,47.
    290. Tan Q, Xie S, Zhu X, Lei W, Yang Y. Effect of dietary carbohydrate-to-lipid ratios on growth and feed utilization in Chinese longsnout catfish (Leiocassis longirostris Gunther). Journal of Applied Ichthyology,2007,23(5):605-610.
    291. Tan XY, Luo Z, Xie P, Li XD, Liu XJ, Xi WQ. Effect of dietary conjugated linoleic acid (CLA) on growth performance, body composition and hepatic intermediary metabolism in juvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture,2010, 310(1):186-191.
    292. Tian LX, Liu YJ, Hung SS. Utilization of glucose and cornstarch by juvenile grass carp. North American Journal of Aquaculture,2004,66(2):141-145.
    293. Tian LX, Liu YJ, Yang HJ, Liang GY, Niu J. Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (Ctenopharyngodon idella). Aquaculture International,2012,20(2):283-293.
    294. Tocher DR. Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science,2003,11(2):107-184.
    295. Todorcevic M, Kjaer MA, Djakovic N, Vegusdal A, Torstensen BE, Ruyter B. N-3 HUFAs affect fat deposition, susceptibility to oxidative stress, and apoptosis in Atlantic salmon visceral adipose tissue. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2009,152(2):135-143.
    296. Torstensen B, Nanton D, Olsvik P, Sundvold H, Stubhaug I. Gene expression of fatty acid-binding proteins, fatty acid transport proteins (cd36 and FATP) and β oxidation-related genes in Atlantic salmon (Salmo salar L.) fed fish oil or vegetable oil. Aquaculture Nutrition,2009,15(4):440-451.
    297. Towle HC, Kaytor EN, Shih H-M. Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annual review of nutrition,1997,17(1):405-433.
    298. Tsai M-L, Chen H-Y, Tseng M-C, Chang R-C. Cloning of peroxisome proliferators activated receptors in the cobia(Rachycentron canadum) and their expression at different life-cycle stages under cage aquaculture. Gene,2008,425(1):69-78.
    299. Twibell RG, Watkins BA, Brown PB. Dietary conjugated linoleic acids and lipid source alter fatty acid composition of juvenile yellow perch, Perca flavescens. The Journal of nutrition,2001,131(9):2322-2328.
    300. Van Ham EH, Berntssen MH, Imsland AK, Parpoura AC, Wendelaar Bonga SE, Stefansson SO. The influence of temperature and ration on growth, feed conversion, body composition and nutrient retention of juvenile turbot(Scophthalmus maximus). Aquaculture,2003,217(1):547-558.
    301. Venkatachalam A, Lall S, Denovan-Wright E, Wright J. Tissue-specific differential induction of duplicated fatty acid-binding protein genes by the peroxisome proliferator, clofibrate, in zebrafish(Danio rerio). BMC evolutionary biology,2012, 12(1):112.
    302. Vergara J, Lopez-Calero G, Robaina L, Caballero M, Montero D, Izquierdo M, Aksnes A. Growth, feed utilization and body lipid content of gilthead seabream (Sparus auratd) fed increasing lipid levels and fish meals of different quality. Aquaculture,1999,179(1):35-44.
    303. Vu-Dac N, Schoonjans K, Kosykh V, Dallongeville J, Fruchart J-C, Staels B, Auwerx J. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. Journal of Clinical Investigation,1995,96(2):741.
    304. Walton MJ, Cowey CB. Aspects of intermediary metabolism in salmonid fish. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1982,73(1):59-79.
    305. Walzem RL, Storebakken T, Hung SS, HANSEN AJ. Relationship Between Growth and Selected Liver Enzyme Activities of Individual Rainbow Trout.1991.
    306. Wang C-S, Hartsuck J, McConathy WJ. Structure and functional properties of lipoprotein lipase. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,1992,1123(1):1-17.
    307. Wang JT, Liu YJ, Tian LX, Mai KS, Du ZY, Wang Y, Yang HJ. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadian). Aquaculture,2005,249(1):439-447.
    308. Wang XX, Li YJ, Hou CL, Gao Y, Wang YZ. Influence of different dietary lipid sources on the growth, tissue fatty acid composition, histological changes and peroxisome proliferator-activated receptor y gene expression in large yellow croaker (Pseudosciaena crocea R.). Aquaculture Research,2012,43(2):281-291.
    309. Wang Y, Liu YJ, Tian LX, Du ZY, Wang JT, Wang S, Xiao WP. Effects of dietary carbohydrate level on growth and body composition of juvenile tilapia, Oreochromis niloticus x O. aureus. Aquaculture research,2005,36(14): 1408-1413.
    310. Wassef EA, Wahbi OM, Shalaby SH. Effects of dietary vegetable oils on liver and gonad fatty acid metabolism and gonad maturation in gilthead seabream (Sparus aurata) males and females. Aquaculture International,2012,20(2):255-281.
    311. Watanabe T. Lipid nutrition in fish. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1982,73(1):3-15.
    312. Weber J-M, Zwingelstein G. Circulatory substrate fluxes and their regulation. Biochemistry and molecular biology of fishes,1995,4:15-32.
    313. Webster C, Thompson K, Muzinic L. Feeding fish and how feeding frequency affects sunshine bass. World Aquaculture-Baton Rouge,2002,33(1):20-24.
    314. Wilson R. Utilization of dietary carbohydrate by fish. Aquaculture,1994,124(1): 67-80.
    315. Wilson RP, Poe WE. Choline nutrition of fingerling channel catfish. Aquaculture, 1988,68(1):65-71.
    316. Woo N, Bern H, Nishioka R. Changes in body composition associated with smoltification and premature transfer to seawater in coho salmon (Oncorhynchus kisutch) and king salmon (O. tschawytscha). Journal of Fish Biology,1978,13(4): 421-428.
    317. Xu JH, Qin J, Yan BL, Zhu M, Luo G Effects of dietary lipid levels on growth performance, feed utilization and fatty acid composition of juvenile Japanese seabass (Lateolabrax japonicus) reared in seawater. Aquaculture International, 2010,19(1):79-89.
    318. Xu W, Liu W, Lu K, Jiang Y, Li G Effect of trichlorfon on oxidative stress and hepatocyte apoptosis of Carassius auratus gibelio in vivo. Fish physiology and biochemistry,2012a,38(3):769-775.
    319. Xu W, Liu W, Shao X, Jiang G, Li X. Effect of Trichlorfon on Hepatic Lipid Accumulation in Crucian Carp Carassius auratus gibelio. Journal of Aquatic Animal Health,2012b,24(3):185-194..
    320. Xu X, Fontaine P, Melard C, Kestemont P. Effects of dietary fat levels on growth, feed efficiency and biochemical compositions of Eurasian perch Perca fluviatilis. Aquaculture International,2001,9(5):437-449.
    321. Yaacob N-S, Norazmi M-N, Gibson GG, Kass GE. The transcription of the peroxisome proliferator-activated receptor a gene is regulated by protein kinase C. Toxicology letters,2001,125(1):133-141.
    322. Yang JH, Kostecki PT, Calabrese EJ, Baldwin LA. Induction of peroxisome proliferation in rainbow trout exposed to ciprofibrate. Toxicology and Applied Pharmacology,1990,104(3):476-482.
    323. Yang SD, Liou CH, Liu FG Effects of dietary protein level on growth performance, carcass composition and ammonia excretion in juvenile silver perch (Bidyanus bidyanus). Aquaculture,2002,213(1):363-372.
    324. Yang SD, Lin TS, Liou CH, Peng HK. Influence of dietary protein levels on growth performance, carcass composition and liver lipid classes of juvenile Spinibarbus hollandi (Oshima). Aquaculture Research,2003,34(8):661-666.
    325. Ye CX, Liu YJ, Tian LX, Mai KS, Du ZY, Yang HJ, Niu J. Effect of dietary calcium and phosphorus on growth, feed efficiency, mineral content and body composition of juvenile grouper, Epinephelus coioides. Aquaculture,2006,255(1):263-271.
    326. Zechner R. The tissue-specific expression of lipoprotein lipase:implications for energy and lipoprotein metabolism. Current opinion in lipidology,1997,8(2): 77-88.
    327. Zhang C, Mai K, Ai Q, Zhang W, Duan Q, Tan B, Ma H, Xu W, Liufu Z, Wang X. Dietary phosphorus requirement of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture,2006,255(1):201-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700