非线性分段光滑动力系统的最优控制及稳定性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据三维水平井轨道设计的实际背景,研究了一类非线性分段光滑动力系统最优控制问题。在此基础上又对固定时刻脉冲微分系统的稳定性进行了定性分析,并讨论了非线性动力系统关于初始时刻偏差的稳定性。该项研究,一方面可以丰富非线性动力系统最优控制理论和稳定性理论,另一方面可以为水平井轨道优化设计提供理论指导,因此具有一定的理论意义和应用价值。所取得的主要结果概括如下:
     1.根据三维水平井轨道控制的特征,建立了以井斜角、方位角、北坐标、东坐标和垂深坐标为状态变量,曲率半径、工具面角和弧长为控制变量的非线性分段光滑动力系统。以入靶精度和总弧长的加权和为性能指标,建立一个三维水平井轨道最优控制系统。本文利用极大值原理得到了非线性分段光滑动力系统最优控制的必要条件。由于性能指标的非线性程度高,这就限制了传统的依赖梯度的的优化算法的应用;遗传算法和模拟退火算法这类算法在求解这种最优控制问题时计算量很大。故我们构造了一个基于均匀设计的改进的Hooke-Jeeves算法。首先利用均匀设计选择初始迭代点,将可行域分解成多个子域。在每个子域上用改进的Hooke-Jeeves算法求解。数值结果表明改进的Hooke-Jeeves算法能够很好的解决该问题。我们进一步考虑了带有扰动的水平井轨道最优控制问题,建立了以脉冲微分方程为动态约束的水平井轨道最优控制模型,证明了最优控制的存在性。为了获得脉冲最优控制系统的最优解,将原最优控制问题转化成一个参数规划问题。现有的参数规划算法理论上都得计算目标函数和约束的梯度,而我们的目标函数的梯度不易计算。所以我们首先证明了参数规划问题的最优解关于参数的稳定性的性质。利用这个性质,以不含扰动的最优控制模型的最优解作为初始点,仍用改进的Hooke-Jeeves算法求解参数规划问题。数值模拟结果与结论相一致,这表明我们的算法是有效的。
     2.利用扰动Lyapunov函数方法讨论了固定时刻脉冲微分系统的稳定性。在具体问题中,要找到满足所有条件的Lyapunov函数比较困难,因此,要能够减弱对Lyapunov函数的要求将是非常有意义的。本文利用扰动Lyapunov函数得到了在弱假设条件下的脉冲微分系统的稳定性、渐近稳定性、实用稳定性、有界性和最终有界性的充分条件。并将扰动Lyapunov函数推广到脉冲微分系统的两测度稳定性中,得到了脉冲微分系统的(h_0,h)-稳定性、(h_0,h)-渐近稳定性、(h_0,h)-实用稳定性以及(h_0,h)-有界性。本文所得结论都需要利用两个Lyapunov函数,但对每一个Lyapunov函数的限制较少,更易于在实际问题中应用。
     3.研究了非线性动力系统关于初始时刻偏差的稳定性。传统的稳定性概念都假设初始值有扰动而初始时刻不变化,但是在实际应用中,由于各种干扰因素存在,初始时刻也会出现误差。所以研究动力系统关于初始时刻偏差的稳定性在实际应用中是很有意义的。现有的关于这种稳定性的判据不易验证,所以也没有例子来检验。本文证明了一个新的比较引理,利用向量Lyapunov函数得到了非线性动力系统关于初始时刻偏差的等稳定性、实用等稳定性、等有界性的充分条件。为了得到更弱条件下的等稳定性判定准则,我们利用扰动Lyapunov函数证明了非线性动力系统关于初始时刻偏差的等稳定性和实用等稳定性。所得结论条件简洁,且易于检验。我们构造了三个例子来说明所得的结论。
This dissertation, based on the engineering background of design of 3D-trajeetory of horizontal wells, studies the optimal control problem of nonlinear piecewise smooth dynamical systems. Furthermore, the qualitative analysis on the stability of piecewise smooth systems with impulses at fixed times are discussed, and the stability analysis of nonlinear dynamical systems with initial time difference are made. These results can not only develop the theory and application of nonlinear dynamical systems and optimal control, but also provide some guidance for the design of the trajectory of horizontal wells. Therefore, this research is very interesting in both theory and practice. The main results, obtained in this dissertation, may be summarized as follows:
     1. According to the features of 3D-trajectory formed in horizontal wells, we construct a nonlinear piecewise smooth dynamical system in which the state variables are inclination, azimuth, north coordinate, east coordinate and vertical depth coordinate and the controls are radius, tool-face angle and arc length. Taking the weight sum of precision of hitting target and the total length of the trajectory as a performance criterion, we construct an optimal control model of the trajectory of horizontal wells. The necessary conditions for optimality of nonlinear piecewise smooth dynamical system are proved via maximum principle. Because the performance criterion is highly nonlinear and computationally expensive to evaluate, it limits the efficient use of classical gradient based optimization methods. So we construct a new algorithm in which the uniform design technique has been incorporated into the revised Hooke-Jeeves algorithm to handle the multimodal function. Firstly, we use uniform design method to generate many initial points in control domain, and decompose the control domain into many subdomains. Then we get the locally optimal solutions in each subdomains by the revised Hooke-Jeeves algorithm. It is shown from the real example that the revised Hooke-Jeeves method is efficient. Furthermore, we take fully into account the effect of unknown disturbances in drilling. We present an impulsive optimal control model to solve the optimal designing problem of the trajectory of horizontal wells with disturbances, and we prove that the optimal control exists. To obtain the optimal solutions, the optimal control problem can be converted into a nonlinear parametric optimization by integrating the state equation. The general algorithms for nonlinear parametric optimization problems are all need to calculate the gradient of objective function. Since it is difficult to achieve the gradient of our objective function, these algorithms are not appropriate for our nonlinear parametric optimization problem. We discuss here that the locally optimal solution depends in a continuous way on the parameters (disturbances) and utilize this property to propose a revised Hooke-Jeeves algorithm. The numerical simulation is in accordance with theoretical results. The numerical results illustrate the validity of the model and efficiency of the algorithm.
     2. The stability, practical stability and boundedness of impulsive differential systems are proved by using the method of perturbing Lyapunov functions. It is hard to find a Lyapunov function satisfying all the desired conditions. We obtain the stability, asymptotical stability, practical stability and boundedness properties of nonlinear impulsive differential systems using perturbing Lyapunov functions in a manner that provide weaker assumptions. We generalize the concepts of perturbing Lyapunov functions to impulsive differential systems and prove several stability results of nonlinear impulsive systems in terms of two measures by perturbing Lyapunov functions. We find that the method of perturbing Lyapunov functions yields better results since each function can satisfy less rigid requirement.
     3. This dissertation investigates the stability and boundedness of nonlinear differential dynamical systems relative to initial time difference. The traditional stability concept assumes that only state variable perturbs and the initial time keeps unchanged. However, it is impossible not to make errors in the starting time in practical applications. Therefore, it is important to study the deviation in initial time. We establishes several criteria on stability and boundedness for nonlinear differential dynamical systems relative to initial time difference by employing a new comparison principle. The conditions for our results are more easy to test in applications than the existing results. We initiate three examples to test our results.
引文
[1]Lyapunov A M.Stability of Motion.New York:Academic Press,1966.
    [2]Birkhoff G D.Dynamical systems.New York:American Mathematical Society,1927.
    [3]MacKay R S,Meiss J D.Hamiltonlan Dynamical Systems:A Reprint Selection.CRC Press,1987.
    [4]Roger T.Infinite-Dimensional Dynamical Systems in Mechanics and Physics.New York:Springer,1997.
    [5]Smale S.Differentiable dynamical systems.Bulletin of the American Mathematical Society,1967,73:747-817.
    [6]Bajaj A K.Resonant Parametric Perturbations of the Hopf Bifurcation.Journal of Mathematical Analysis and Applications,1986,115(1):214-224.
    [7]Bajaj A K.Bifurcations in a Parametrically Excited Nonlinear Oscillator.International Journal of Non-Linear Mechanics,1987,22(1):47-59.
    [8]Lorenz E N.The Essence of Chaos.Seattle:University of Washington Press,1993.
    [9]叶彦谦.多项式微分系统定性理论.上海:上海科学技术出版社,1995.
    [10]张芷芬.关于方程(x|¨)+μsin+x=0在|x|≤n(n+1)上恰好存在n个极限环的定理.中国科学,1980,10(10):941-948.
    [11]Ding Tongren,Iannacci R,Zanolin F.Existence and multiplicity results for periodic solutions of semilinear Duffing equations.Journal of differential equations,1993,105(2):364-409.
    [12]Li An,Feng Enmin.Optimization model and algorithm of the trajectory of horizontal well with perturbation.Journal of Applied Mathematics and Computing,2006,20:391-399.
    [13]Guo Yuzhen,Feng Enmin.Nonlinear Dynamical Systems of trajectory design for 3D horizontal well and their optimal controls.Journal of Computational and Applied Mathematics,2008,212(2):179-186.
    [14]陈兰荪,陈健.非线性生物动力系统.北京:科学出版社,1993.
    [15]Gao Caixia,Li Kezan,Feng Enmin.Nonlinear impulsive system of fed-batch culture in fermentative production and its properties.Chaos,Soliton and Fractals,2006,28:271-277.
    [16]Lawrence C.Evans.Partial Differential Equations.New York:American Mathematical Society,1998.
    [17]Lv Wei,Feng Enmin,Zhijun Li.A coupled thermodynamic system of sea ice and its parameter identification.Applied Mathematical Modelling,2008,32(7):1198-1207.
    [18]Guo Yuzhen,Feng Enmin.A nonlinear model and viscosity solution for the temperature field of an oil-immersed self-cooled three-phrase transformer.Nonlinear Analysis:Theory,Methods and Applications,2007,66(9):2098-2107.
    [19]Ma Yongfeng,Sun Lihua,Feng Enmin.Bifurcation and chaos analysis of microbial continuous culture model with time delay.International Journal of Nonlinear Sciences and Numerial Simulation,2006,7(3):305-308.
    [20]钱学森.工程控制论.上海:上海交通大学出版社,2007.
    [21]Bellman R.Dynamic Programming.New York:Courier Dover Publications,2003.
    [22]Kalman R E.On the general theory of control systems.IRE Transactions on Automatic Control,1959,4:110-112.
    [23]Loewen P D,Rockafellar R T.New Necessary Conditions for the Generalized Problem of Bolza.SIAM Journal on Control and Optimization,1996,34(5):1496-1551.
    [24]Loewen P D,Rockafellar R T.Bolza Problems with General Time Constraints.SIAM Journal on Control and Optimization,1997,35(6):2050-2069.
    [25]Clarke F H,Ledyaev S,Stern R J.Nonsmooth analysis and control theory.New York:Springe-Verlag,1998.
    [26]Hartl R F,Sathi S P,Vickson R G.A Survey of the Maximum Principles for Optimal control problem with state Constraints.SIAM Review,1995,37(2):181-218.
    [27]Zeiden V.The Riccati Equation for Optimal Control Problems with Mixed State-control.Constraints:Necessity and Sufficiency.SIAM Journal on Control and Optimization,1994,32(5):1297-1321.
    [28]Elijah Polak.Optimization Algorithms and Consistent Approximations.New York:Springer-Verlag,1997.
    [29]Dontchev A S,Hager W W,Poore A B.Optimality,Stability and Convergence in Nonlinear Control.Journal of Applied Mathematics and Optimization,1995,31(3):297-326.
    [30]Schwartz A,Polak E.Consistent Approximations for Optimal Control Problems Based on Runge-Kutta Integration.SIAM Journal on Control and Optimization,1996,34(4):1235-1269.
    [31]Li Xunjing,Yong Jongmin.Necessary conditions for optimal control of distributed parameter systems.SIAM Journal on Control and Optimization,1991,29(4):895-908.
    [32]Li Xunjing,Yong Jongmin.Optimal Control Theory for Infinite Dimensional Systems.Boston:Birkhauser,1995.
    [33]Wang Gengsheng,Wang Lijuan.State-constrained Optimal Control Governed by Nonwellposed Parabolic Differential Equations.SIAM Journal on Control and Optimizaition,2002,40(5):1517-1539.
    [34]Wang Gengsheng,Wang Lijuan.The Carlman Inequality and its application to periodic optimal control governed by semilinear parabolic differential equations.Journal of Optimization Theory and Applications,2003,118(2):429-461.
    [35]Lou Hongwei.Maximum Principle of Optimal Control for Degenerate Quasilinear Elliptic Equations.SIAM Journal on Control and Optimization,2003,42(1):1-23.
    [36]王康宁.最优控制的数学基础.北京:国防工业出版社,1995.
    [37]李健全,陈任昭.时变种群系统最优生育率控制的非线性问题.应用数学学报,2002,25(4):626-641.
    [38]江胜宗,冯恩民.三维水平井井眼轨迹设计最优控制模型及算法.大连理工大学学报,2002,42(3):261-264.
    [39]Li An,Feng Enmin,Sun Xuelian.Stochastic optimal control and algorithm of the trajectory of horizontal wells.Journal of Computational and Applied Mathematics,2008,212:419-430.
    [40]Li Xiaohong,Feng Enmin,Xiu Zhilong.Stability and optimal control of microorganisms in continuous culture.Journal of Applied Mathematics and Computing,2006,22:425-434.
    [41]Tsang T H.Optimal Control via Collocation and Nonlinear Programming.International Journal of Control,1975,21(5):763-768.
    [42]Tanartkit P,Biegler L T,A Nested Simultaneous Approach for Dynamic Optimization Problems.Computers and Chemical Engineering,1996,20(6):735-741.
    [43]Levin A U,Mareendra K S.Control of Nonlinear Dynamical Systems Using Neural Networks Ⅱ.Observability,identification and control.IEEE Transactions on Neural Networks,1996,7(1):30-42。
    [44]Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations.Singapore:World scientific,1989.
    [45]Bainov D D,Simeonov P S.Impulsive differential equations:Asymptotic properties of the solutions.Singapore:World Scientific,1995.
    [46]Bainov D D,Simeonov P S.Impulsive Differential Equations:Stability Theory and Applications.Ellis Horwood:Chichester,1989.
    [47]Bainov D D,Simeonov P S.Systems with Impulse Effect:Stability,Theory and Application.England:Ellis Horwood Limited,1989.
    [48]Lakshmikantham V,Leela S,Kaul S.Comparison Principle for Impulsive Differential Equation with Variable Times and Stability Theory.Nonlinear Analysis,1994,22:499-503.
    [49]Liu Xinzhi.Impulsive Stabilizability of Autonomous Systems.Journal of Mathematical Analysis and Application,1997,187:17-39.
    [50]Ahmed N U.Some Remarks on the Dynamics of Impulsive Systems in Banach Spaces.Dynamics of Continuous,Discrete and Impulsive Systems,2001,8:261-274.
    [51]Ahmed N U,Teo K L,Hou S H.Nonlinear Impulsive Systems on Infinite Dimensional Spaces.Nonlinear Analysis,2003,54:907-925.
    [52]Kaul S K,Liu Xinzhi.Generalized Variation of Parameters and Stability of Impulsive Systems.Nonlinear Analysis,2000,40:295-307.
    [53]Cooke,Kroll J.The Existence of Periodic Solutions to Certain Impulsive Differential Equations.Computers and Mathematics with Applications,2002,44(5-6):667-676.
    [54]Guo Dajun,Liu Xinzhi.Multiple Positive Solutions of Boundary-value Problems for Impulsive Differential Equations.Nonlinear Analysis,1995 25(4):327-337.
    [55]Shen Jianhua.New Maximum Priciples for First-order Impulsive Boundary Value Problems.Applied Mathematics Letters.2003.16(1):105-112.
    [56]Luo Zhiguo,Shen Jianhua.Stability and Boundness for Impulsive Functional Differential Equations with Infinite Delays.Nonlinear Analysis,2001,46(4):475-493.
    [57]Qi Jianggang,Fu Xilin.Existence of Limit Cycles of Impulsive Differential Equations with Impulsives at Variable Times.Nonlinear Analysis,2001,44(3):345-353.
    [58]Yah Jurang.Oscillation of Nonlinear Delay Impulsive Differential Equations and Inequalities.Journal of Mathematical Analysis and Applications,2002,265:332-342.
    [59]Liu Xianning,Chen Lansun.Global Dynamical of the Period Logistic System with periodic Impulsive Perturbations.Journal of Mathematical Analysis and Applications,2004,289(1):279-291.
    [60]Zhen Jin,Ma Zhien,Han Maoan.The existence of periodic solutions of the n-species Lotka-Volterra competition systems with impulse.Chaos,Solitons & Fractals,2004,22(1):181-188.
    [61]Zhang Xiaoying,Shual Zhisheng,Wang Ke.Optimal Impulsive Harvesting Policy for Single Population.Nonlinear Analysis,2003.4:639-651.
    [62]Abdelkader L,Ovide A.Nonlinear Mathematical Model of Pulsed-theraph of Heterogeneous Tumors.Nonlinear Analysis,2001,2:455-465.
    [63]Ahmed N U.Existence of Optimal Control for a General Class of Impulsive Systems on Banach Spaces.SIAM Journal on Control and Optimization,2003,42(2):669-685.
    [64]Ahmed N U.Impulsive Evolution Equations in Infinite Dimensional Spaces.Dynamics of Continuous,Discrete and Impulsive Systems,2003,10:11-24.
    [65]Ahmed N U.Necessary Conditions of Optimality for Impulsive Systems on Baaach Spaces.Nonlinear Analysis,2002,51:409-424.
    [66]Akhmetov M U,Zafer A.Successive Approximation Method for Quasilinear Impulsive Differential Equations with Control.Applied Mathematics Letters,2000,13(5):99-105.
    [67]Lakshmikantham V,Leela S.Differential and integral inequalities.New York:Academic Press,1969.
    [68]Dnanan F,Elaydi S.Lipschitz stability of nonlinear systems of differential equations.Journal of Mathematical Analysis and Application,1986,113(2):562-577.
    [69]Kulev G K,Balnov D D.Lipschitz quasistability of impulsive systems of differential equations.Journal of Mathematical Analysis and Application,1993,127:24-32.
    [70]Soliman A A.On stabiliy of perturbing impulsive differential systems.Applied Mathematics and Computation,2002,133:105-117.
    [71]Sun Jitao.Stability criteria of impulsive differential systems.Applied Mathematics and Computation,2004,156:85-91.
    [72]Lakshmikantham V,Leela S,Martynyuk A A.Practical stability of nonlinear systems.Singapore:World Scientific,1990.
    [73]阿.阿.玛尔德纽克,孙振绮.实用稳定性及应用.北京:科学出版社,2004.
    [74]Bainov D D,Stamova I M.On the practical stability of the solutions of impulsive systems of differential difference equations with variable impulsive perturbations.Journal of Mathmatical Analysis and Applieations,1996,200:272-288.
    [75]Stamova I M.Vector Lyapunov functions for practical stability of nonlinear impulsive functional differential equations.Journal of Mathmatical Analysis and Applieations,2007,325:612-623.
    [76]Liu Yang,Zhao Shouwei.A new approach to practical stability of impulsive functional differential equations in terms of two measures.Journal of Computational and Applied Mathematics(2008),doi:10.1016/j.cam.2008.01.029.
    [77]Lakshmikantham V,Liu Xinzhi.Stability theory in terms of two measures.Singapore:World Scientific,1993.
    [78]Lakshmikantham V.Uniform asymptotic stability criteria for functional differential equations in terms of two measures.Nonlinear Analysis,1998,34:1-6.
    [79]Zhang Yu,Sun Jitao.practical stability of impuslive functional differential systems in terms of two measurements.Computers and Mathematics with Applications,2004,48:1549-1556.
    [80]Zhang Yu,Sun Jitao.Eventual practical stability of impulsive differential equations with time delay in terms of two measurements.Journal of Computational and Appllied Mathematics,2005,176:223-229.
    [81]Kou Chunhai,Zhang Shunian.Practical stability of finite delay differential systems in terms of two measures.Acta Mathematicae Applicatae Sinica,2002,253:476-483.
    [82]Jones H H.How to drill a vertical oil well or drilling straight holes by gravity.Oil and Gas Journal,1929,3(1):76-82.
    [83]Clark L W.A theoretical examinational straight and directed drilling techniques.Journal of Petroleum Techniques.1931,22(3):87-94,
    [84]Lubinski A.Factors affecting the angle of inclination and dog-leging in rotary bore holes.Drilling and Production Practice,1958,37(2):222-226.
    [85]刘修善.井眼轨道设计理论与描述方法.黑龙江:科学教育出版社,1993.
    [86]Briggs G M.How to design a medium-radius horizontal well.Petroleum Engineer International,1989,61(9):1164-1169.
    [87]Solomon S T,Ross K C.Multidissciplined approach to designing targets for horizontal wells.Journal of Petroleum Technology,1994,46(2):143-149.
    [88]Wiggins M L.Single equation simplifies horizontal directional drilling plans.Oil and Gas Journal,1992,90(44):74-79.
    [89]刘福齐.计算井眼实际轨迹的弦步法.天然气工业,1986,6(4):40-46.
    [90]杜春常.用三次样条模拟定向井井眼轨迹.石油学报,1988,9(1):112-120.
    [91]刘修善,石在虹.一种测斜计算新方法-自然参数法.石油学报,1998,19(4):87-92.
    [92]Helmy M W,Khalf F.Well design using a computer model.SPE Drilling and Completion,1998,13(1):42-46.
    [93]Mccann R C,Rudolf R L,Suryanarayana P V R.Mathematical technique improves directional well-path planning.Oil and Gas Journal,1998,96(34):64-68.
    [94]江胜宗,冯恩民.侧钻水平井轨道三维优化设计模型及应用.石油学报,2001,22(3):86-90.
    [95]韦艳华,冯恩民.侧钻水平井轨道设计模型、算法及应用.运筹与管理,2002,11(2):60-65.
    [96]马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2005.
    [97]王朝珠,秦化淑.最优控制理论.北京:科学出版社,2003.
    [98]Lakshmikantham V,Vatsala A S.Differential inequalities with initial time difference and applications.Journal of Inequality and Applicaiton,1999,3:233-244.
    [99]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,2003.
    [100]Dempe S.Foundations of bilevel programming.Boston:Kluwer Academic Publishers,2002.
    [101]Mccann R C,Suryanarayana P V R.Horizontal well path planning and correction using optimization techniques.Journal of Energy Resources,2001,123:187-193.
    [102]Rudolf R L,Mccann R C.An algorithm and program to plan optimal horizontal well paths.Proceedings of the 1998 ASME Energy Sources Technology Conference,Feb.2-4,1998.
    [103]Qian Weiyi,Feng Enmin.Multi-objectives fuzzy models for designing 3D trajectory in horizontal wells.Journal of Applied Mathematics and Computing,2004,15:265-275.
    [104]Elnagar A,Hussein A.On optimal constrained trajectory planning in 3D environments.Robotics and Autonomous systems,2000,33:195-206.
    [105]方开泰.均匀设计与均匀设计表.北京:科学出版社,2001.
    [106]Akhmet M U.On the general problem of stability for impulsive differential equations.Journal of Mathematical Analysis and Applications,2003,288:182-196.
    [107]Akinyele O.Cone-valued Lyapunov functions and stability of impulsive control systems.Nonlinear Analysis,2000,39:247-259.
    [108]Soliman A A.On cone perturbing Lyapunov function for impulsive differential systems.Applied Mathematics and Computation,2005,163:1069-1079.
    [109]Zhao Haiqing,Feng Enmin.φ_0-Stability of an impulsive system obtained from perturbing Lyapunov functions.Nonlinear Analysis,2007,66:962-967.
    [110]Zhao Haiqing,Feng Enmin.Stability of impulsive system by perturbing Lyapunov functions.Applied Mathematics Letters,2007,20:194-198.
    [111]McRae F A.Practical Stability of Impulsive Control Systems.Journal of Mathematical Analysis and Applications,1994,181(3):656-672.
    [112]Stutson D,Vatsala A S.Composite boundedness and stability results by perturbing Lyapunov functions.Nonlinear Analysis,1994,26:761-766.
    [113]Zhai G S,Michel A N.Generalized practical stability analysis of discontinuous dynamical system.International Journal of Applied Mathematics and Computer Sciences,2004,14(1):5-12.
    [114]Lakshmikantham V,Matrosov V M,Sivasundaram S.Vector Lyapunov functions and stability analysis of nonlinear systems.Kluwer Academic Publishers,1991.
    [115]Lakshmikantham V,Leela S,Devi J V.Stability criteria for solutions of differential equations relative to initial time difference.International Journal of Nonlinear Differential Equations,1999,5:109-114.
    [116]Lakshmikantham V,Leela S,Devi J V.Another approach to the theory of differential inequalities relative to changes in the initial times.Journal of Inequality and Applicaiton,1999,4:163-174.
    [117]Shaw M D,Yakar C.Generalised variation of parameters with initial time difference and a comparison result in terms of Lyapunov like functions.International Journal of Nonlinear Differential Equations,1999,5:86-108.
    [118]Zhang Y,Zhang B.Impulsive differential equations with initial time difference and applications.Dynamics of Continuous,Discrete and Impuslive Systems,2002,9(3):439-447.
    [119]Zhang Y.Theory of functional differential equations with initial data difference.Dynamic Systems and Applications,2001,10(4):523-532.
    [120]Yakar C,Deo S G.Variation of parameters formulae with initial time difference for linear integrodifferential equations.Applicable Analysis,2006,85(4):333-343.
    [121]Ahmad B.Integro-differential equations with initial time difference.Dynamic Systems and Applications,2007,16(3):497-506.
    [122]Mcrae F A.Perturbing Lyapunov functions and stability criteria for initial time difference.Applied Mathematics and Computation,2001,117:313-320.
    [123]Jankowski T.Differential inequalities with initial time difference.Applicable Analysis,2002,81:627-635.
    [124]Jankowski T.Delay integro-differential inequalities with initial time difference and applications.Journal of Mathematical Analysis and Applications,2004,291:605-624.
    [125]Song Xinyu,Li Senlin,Li An.Practical stability of nonlinear differential equation with initial time difference.Applied Mathematics and Computation(2008),doi:10.1016/j.amc.2008.04.014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700