雌激素受体介导的报告基因试验方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雌激素受体报告基因试验也称雌激素受体转录激活试验,是EPA推荐的用于环境雌激素筛选的in vitro方法之一。雌激素受体报告基因试验是以受体介导理论为基础,应用基因重组技术,将报告基因置于外源性激素反应元件(ERE)的调控之下,构建重组报告基因载体,应用基因转染技术导入真核细胞内,通过检测化学物作用下报告基因编码的酶活性或蛋白表达的变化,间接反映内源性基因的表达情况。这种方法既可检测化学物与受体的结合能力,又可检测结合后引起的生物学效应,而且能够区分激动剂和拮抗剂,与受体结合试验相比可提供更多的信息,因此成为环境雌激素筛选的有力工具。本研究构建了两种不同ERα介导的报告基因试验,并探讨了它们对三种拟除虫菊酯类农药的雌激素活性的影响。
     第一部分雌激素受体介导的报告基因试验方法的建立
     目的
     建立人ERα和大鼠ERα介导的报告基因试验体系,并比较这两种方法的反应性和灵敏度。
     方法
     1.将表达人ERα配体结合域和Gal4-BD(酵母转录因子结合域)融合蛋白的质粒pGal4-ERαdef与Gal4反应的报告基因质粒pUAS-tk-luc、对照质粒phRL-tk分别转染CV-1细胞,转染方式为瞬时转染,建立ER介导的报告基因试验。以E_2为阳性对照检测方法的筛选效率。
     2.将表达大鼠ERα的质粒rERα/pCI与重组Luc报告基因质粒pERE-aug-Luc、对照质粒phRL-tk共转染CV-1细胞,转染方式为瞬时转染,建立rERα介导的报告基因试验。以雌二醇(E_2)为阳性对照检测方法的筛选效率。
     结果
     1.在两种ERα体系中,E_2能明显的诱导Luc的表达,并呈显著的剂量-反应关系,10~(-7)M达到最大值,最大诱导倍数分别为19.6和21.6倍,EC_(50)为2.4 nM和0.9 nM。
     2.用浓度从10~(-10)M到10~(-8)M的DES染毒hERα体系时,Luc的表达量与E_2相似,且10μM的ICI182,780能完全阻断这一效果。
     结论
     1.本研究建立的两种ERα报告基因试验具有较高的灵敏度和重复性。E_2对Luc的诱导是ER依赖性的,并呈剂量-效应关系。表明该实验系统能够用来检测拟雌激素活性的物质。
     2.在hERα体系中,ICI182,780能有效抑制E_2诱导的Luc的表达,表明hERα体系可以用来检测化学物的抗雌激素活性。
     3.两种ERα对报告基因试验E_2的反应性无明显区别,两种体系的灵敏度也相似。
     第二部分雌激素受体介导的报告基因试验方法的应用
     目的
     应用两种雌激素受体介导的报告基因试验体系检测三种拟除虫菊酯类农药的拟或(抗)雌激素活性,并比较它们对这几种化学物的反应性和灵敏度。
     方法
     1.CV-1细胞转染pUAS-tk-luc、pGal4-ERαdef和phRL-tk质粒后用三种拟除虫菊酯类农药(氰戊菊酯,氯氰菊酯,苄氯菊酯)染毒,根据该物质能否诱导Luc的表达,判断化学物的ER激动作用。根据该物质能否拮抗E_2诱导的Luc表达,判断化学物的ER拮抗作用。
     2.CV-1细胞转染rERα/pCI、pERE-aug-Luc和phRL-tk质粒后用三种拟除虫菊酯类农药染毒,根据该物质能否诱导Luc的表达,判断化学物的ER激动作用。
     结果
     1.三种拟除虫菊酯类农药在两种体系中可以诱导Luc的表达,并呈显著的剂量-反应关系,在10~(-4)M达到最大值。
     2.三种拟除虫菊酯类农药均无法抑制10~(-9)M E_2所诱导的Luc表达。
     结论
     1.所研究的三种拟除虫菊酯类农药都具有一定的拟雌激素活性,但活性强度均远远低于E_2。
     2.三种拟除虫菊酯类农药均无抗雌激素活性。
     3.两种体系对化学物的反应性和灵敏度基本相同,即两种ERα对报告基因试验筛选雌激素活性物质无明显区别。
The estrogen receptor mediated reporter gene assay,also named receptor transcriptional activation assay,is an in vitro methods to screen the environmental estrogens proposed by the US EPA.On the basic of receptor-mediated theory,the estrogen receptor mediated reporter gene assays were designed to identify substances that might interfere with normal estrogenic activity by acting as an agonist or antagonist through ligand-receptor interaction.The DNA fragment containing estrogen responsive element(ERE)was cloned into a reporter gene plasmid, making the reporter gene regulated by the ERE.The reconstructed reporter plasmid and the corresponding expression plasmid of the estrogen receptor were co-transfected into a host cell to create an artificial gene expression system.The estrogen receptor mediated reporter gene assay provided a relatively simple way to indirectly reveal whether a substance could activate or inhibit the transcriptional activation of receptor-regulated genes by the measurement of the reporter gene product, typically an enzyme or a protein.The assays possessed some advantages over the receptor binding assays because they provided the information on both the ability of receptor binding and the biological response after binding(i.e.,RNA transcription).In addition,unlike receptor binding assays,the assays could distinguish a receptor agonist from an antagonist. In this study,we conducted two different types of ERαmediated reporter gene assays in African green monkey kidney cell line CV-1 to clarify the relationship between these two assays for three pyrethroids.
     PartⅠDevelopment of estrogen receptor mediated reporter gene assays
     Objective
     Two ER reporter gene assays employing the human ERαand rat ERαwas developed in order to evaluate the(anti)estrogen effects of chemicals,and the assays was applied to clarify the relationship between these two different types of ERα.
     Methods
     1.The plasmid expression Gal4-BD fused human ERαwas constructed and transiently co-transfected into CV-1 cell with Gal4 responsed reporter plasmid pUAS-tk-luc and the control plasmid phRL-tk to develop the hERαmediated reporter gene assays.The reference estrogen E_2 was used to verify the performance of the assays.ER agonist assay was generally performed by quantifying the induction of the reporter gene Luc product in response to activation of the ERαby the test chemicals.ER antagonist assay was performed by measure the ability of a test substance to inhibit the induction of the reporter gene Luc product by E_2
     2.The CV-1 was transiently co-transfected with three plasmids including rat ERαexpression plasmid rERα/pCI,reporter plasmid pERE-aug-Luc containing the reporter gene Luc regulated by the estrogen responsive element(ERE)and the control plasmid phRL-tk to develop the rERαmediated reporter gene assays.The reference estrogen 17β-estradiol(E_2)was used to verify the performance of the assays.ER agonist assay was generally performed by quantifying the induction of the reporter gene Luc product in response to activation of the ERαby the test chemicals.
     Result
     1.Following a 24-h exposure to E_2,the luciferase activity in these two reporter gene assays was stimulated in a dose-dependent manner at concentrations of more than 10~(-11)M.The maximal induction of 19.6-fold and 21.6-fold of vehicle controls were obtained at 10~(-7)M,with EC_(50) values of 2.4nM and 0.9nM respectively.
     2.In hERαreporter assay,the potent synthetic estrogen,DES was evaluated at concentrations from 10~(-10)M to 10~(-8)M.As expected,it induced luciferase activity at concentrations similar to that seen with E_2.And the ER antagonist ICI182,780 could completely inhibit the response to E_2 in this assay.
     Conclusion
     1.The assays showed high sensitivity and acceptable repeatability to E_2.The reference estrogen E_2 induced Luc activity in an ER-depended and dose-response manner.The assays were useful in identifying ER agonists from a large number of chemicals.
     2.The results revealed that hERαreporter assay could be adapted for evaluation of the antiestrogenic activity of diverse synthetic chemicals.
     3.The two assays showed the similar reliability and responsiveness.
     PartⅡApplication of estrogen receptor mediated reporter gene assays
     Objective
     Two reporter gene assays employing the human ERαand rat ERαwas applied to evaluate the(anti)estrogen effects of three frequently encountered pyrethroid insecticides and clarify the relationship between these two different types of ERα.
     Methods
     1.The reporter plasmid pUAS-tk-luc、pGal4-ERαdef and the control plasmid phRL-tk was transiently co-transfected into CV-1 cell for screening the(anti)estrogenic activity of three pyrethroid insecticides.ER agonist assay was generally performed by quantifying the induction of the reporter gene Luc product in response to activation of the ER by the test chemicals.ER antagonist assay was performed by measure the ability of a test substance to inhibit the induction of the reporter gene Luc product by E_2.
     2.The reporter plasmid rERα/pCI、pERE-aug-Luc and the control plasmid phRL-tk was transiently co-transfected into CV-1 cell to screen the(anti)estrogenic activity of three pyrethroid insecticides.ER agonist assay was generally performed by quantifying the induction of the reporter gene Luc product in response to activation of the ER by the test chemicals.
     Result
     1.Three pyrethroid insecticides(cypermethrin,fenvalerate, permethrin)increased the luciferase expression in a dose-dependent manner,and the maximum induction was observed at a dose of 10~(-4)M in both assays.
     2.In hERαreporter assay,the tested pesticide was added to the assay system along with 1 nM of E_2 in the medium.As a result,none of the three test chemicals could reduce the E_2-inducing luciferase expression in this assay.
     Conclusion
     1.All of the three pyrethroids possessed estrogenic activities,but they were much less potent than E_2.
     2.None of the three pyrethroids exhibited statistically significant antiestrogenic activity in hERαgene assay.
     3.No marked differences in the estrogenic activities of pyrethroids were found between these two assays.
引文
[1] Colborn T. Environmental estrogens: health implications for humans and wildlife. Environmental Health Perspectives 1995; 103:135-6.
    [2] Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us? Endocrine Reviews 1999;20:358-417.
    [3] Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environmental Health Perspectives 1995; 103:113-22.
    [4] Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proceedings of the National Academy of Sciences of the United States of America 1986;83:2496-500.
    [5] Korach KS, Metzler M, Mclachlan JA. Estrogen activity in vivo and in vitro of some diethylstilbestrol metabolites and analogs. Proceedings of the National Academy of Sciences of the United States of America 1978;75:468-71.
    [6] Arnold SF, Robinson MK, Notides AC, Guillette LJ, Jr, McLachlan JA. A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens. Environmental Health Perspectives 1996;104:544-8.
    [7] Markiewicz L, Hochberg RB, Gurpide E. Intrinsic estrogenicity of some progestagenic drugs. The Journal of Steroid Biochemistry and Molecular Biology 1992;41:53-8.
    [8] Markiewicz L, Garey J, Adlercreutz H, Gurpide E. In vitro bioassays of non-steroidal phytoestrogens. The Journal of Steroid Biochemistry and Molecular Biology 1993;45:399-405.
    [9] Pons M, Gagne D, Nicolas JC, Mehtali M. A new cellular model of response to estrogens: a bioluminescent test to characterize (anti) estrogen molecules. Biotechniques 1990;9:450-9.
    [10] Legler J, van den Brink CE, Brouwer A, Murk AJ, van der Saag PT, Vethaak AD, van der Burg B. Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicological sciences: an official journal of the Society of Toxicology 1999;48:55-66.
    [11] Mueller SO. Overview of in vitro tools to assess the estrogenic and antiestrogenic activity of phytoestrogens. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 2002;777:155-65.
    [12] Bonefeld-Jorgensen, E.C., H.T. Grunfeld, and I.M. Gjermandsen, Effect of pesticides on estrogen receptor transactivation in vitro: a comparison of stable transfected MVLN and transient transfected MCF-7 cells. Mol Cell Endocrinol, 2005;244:20-30.
    [13] Charles, G.D., C. Gennings, B. Tornesi, H.L. Kan, T.R. Zacharewski, B. Bhaskar Gollapudi, and E.W. Carney, Analysis of the interaction of phytoestrogens and synthetic chemicals: an in vitro/in vivo comparison. Toxicol Appl Pharmacol, 2007;218:280-288.
    [14] Goodin, M.G., K.C. Fertuck, T.R. Zacharewski, and R.J. Rosengren, Estrogen receptor-mediated actions of polyphenolic catechins in vivo and in vitro. Toxicol Sci, 2002;69:354-361.
    [15] Gaido, K.W., S.C. Maness, D.P. McDonnell, S.S. Dehal, D. Kupfer, and S. Safe, Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: structure-activity studies. Mol Pharmacol, 2000;58:852-858.
    [16] Kojima, H., E. Katsura, S. Takeuchi, K. Niiyama, and K. Kobayashi, Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environ Health Perspect, 2004; 112:524-531.
    [17] Mao, C. and DJ. Shapiro, A histone deacetylase inhibitor potentiates estrogen receptor activation of a stably integrated vitellogenin promoter in HepG2 cells. Endocrinology, 2000; 141:2361-2369.
    [18] Tremblay, G.B., A. Tremblay, F. Labrie, and V. Giguere, Ligand-independent Activation of the Estrogen Receptors {alpha} and {beta} by Mutations of a Conserved Tyrosine Can Be Abolished by Antiestrogens. Cancer Res, 1998;58:877-881.
    [19] Takeyoshi, M., N. Kuga, and K. Yamasaki, Development of a high-performance reporter plasmid for detection of chemicals with androgenic activity. Arch Toxicol, 2003;77:274-279.
    [20] Takeyoshi, M., K. Yamasaki, M. Sawaki, M. Nakai, S. Noda, and M. Takatsuki, The efficacy of endocrine disruptor screening tests in detecting anti-estrogenic effects downstream of receptor-ligand interactions. Toxicology Letters, 2002; 126:91-98.
    [21] Matthews JB, Zacharewski T. Differential binding affinities of PCBs, HO-PCBs, and aroclors with recombinant human, rainbow trout (Onchorhynkiss mykiss), and green anole (Anolis carolinensis) estrogen receptors, using a semi-high throughput competitive binding assay. Toxicological sciences: an official journal of the Society of Toxicology 2000;53:326-39.
    [22] Matthews J, Celius T, Halgren R, Zacharewski T. Differential estrogen receptor binding of estrogenic substances: a species comparison. The Journal of Steroid Biochemistry and Molecular Biology 2000;74:223-34.
    [23] Fitzpatrick DW, Picken CA, Murphy LC, Buhr MM. Measurement of the relative binding affinity of zearalenone, alpha-zearalenol and beta-zearalenol for uterine and oviduct estrogen receptors in swine, rats and chickens: an indicator of estrogenic potencies. Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology 1989;94:691-4.
    [24] Casida JE, Quistad G.B. Golden age of insecticide research: past, present or future? Annual Review of Entomology 1998;43:1-16.
    [25] Garey J, Wolff MS. Estrogenic and antiprogestagenic activities of pyrethroid insecticides. Biochemical and Biophysical Research Communications 1998;251:855-9.
    [26] Go V, Garey J, Wolff MS, Pogo BG. Estrogenic potential of certain pyrethroid compounds in the MCF-7 human breast carcinoma cell line. Environmental Health Perspectives 1999; 107:173-7.
    [27] Chen H, Xiao J, Hu G, Zhou J, Xiao H, Wang X. Estrogenicity of organophosphorus and pyrethroid pesticides. Journal of Toxicology and Environmental Health. 2002;Part A 65:1419-35.
    [28] Saito K, Tomigahara Y, Ohe N, Isobe N, Nakatsuka I, Kaneko H. Lack of significant estrogenic or antiestrogenic activity of pyrethroid insecticides in three in vitro assays based on classic estrogen receptor alpha-mediated mechanisms. Toxicological sciences: an official journal of the Society of Toxicology 2000;57:54-60.
    [29] Sumida K, Ooe N, Nagahori H, Saito K, Isobe N, Kaneko H, Nakatsuka I. An in vitro reporter gene assay method incorporating metabolic activation with human and rat S9 or liver microsomes. Biochemical and Biophysical Research Communications 2001;280:85-91.
    [30] Takeyoshi M, Yamasaki K, Sawaki M, Nakai M, Noda S, Takatsuki M. The efficacy of endocrine disruptor screening tests in detecting anti-estrogenic effects downstream of receptor-ligand interactions. Toxicology Letters 2002; 126:91-8.
    [31] Koike S, Sakai M, Muramatsu M. Molecular cloning and characterization of rat estrogen receptor cDNA. Nucleic Acids Research 1987; 15:2499-513.
    [32] Yamasaki K, Takeyoshi M, Yakabe Y, Sawaki M, Imatanaka N, Takatsuki M. Comparison of reporter gene assay and immature rat uterotrophic assay of twenty-three chemicals. Toxicology 2002;170:21-30.
    [33] Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, Tong W, Shi L, Perkins R, Sheehan DM. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicological sciences: an official journal of the Society of Toxicology 2000;54:138-53.
    [34] Branham WS, Dial SL, Moland CL, Hass BS, Blair RM, Fang H, Shi L, Tong W, Perkins RG, Sheehan DM. Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor. The Journal of nutrition 2002; 132:658-64.
    [35] Yamasaki K, Sawaki M, Takatsuki M. Immature rat uterotrophic assay of bisphenol A. Environmental Health Perspectives 2000;108:1147-50.
    [36] Kojima H, Katsura E, Takeuchi S, Niiyama K, Kobayashi K. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environmental Health Perspectives 2004; 112:524-31.
    [37] Sumida K, Ooe N, Saito K, Kaneko H. Limited species differences in estrogen receptor alpha-medicated reporter gene transactivation by xenoestrogens. The Journal of Steroid Biochemistry and Molecular Biology 2003;84:33-40.
    [38] Yamasaki K, Takeyoshi M, Yakabe Y, Sawaki M, Takatsuki M. Comparison of the reporter gene assay for ER-alpha antagonists with the immature rat uterotrophic assay of 10 chemicals. Toxicology Letters 2003;142:119-31.
    [39] Akahori Y, Nakai M, Yamasaki K, Takatsuki M, Shimohigashi Y, Ohtaki M. Relationship between the results of in vitro receptor binding assay to human estrogen receptor alpha and in vivo uterotrophic assay: Comparative study with 65 selected chemicals. Toxicology in Vitro 2008;22: 225-31.
    [40] Kim SS, Lee RD, Lim KJ, Kwack SJ, Rhee G.S, Seok JH, Lee G.S, An BS, Jeung EB, Park KL. Potential estrogenic and antiandrogenic effects of permethrin in rats. The Journal of Reproduction and Development 2005;51:201-10.
    [41] Kunimatsu T, Yamada T, Ose K, Sunami O, Kamita Y, Okuno Y, Seki T, Nakatsuka I. Lack of (anti-) androgenic or estrogenic effects of three pyrethroids (esfenvalerate, fenvalerate, and permethrin) in the Hershberger and uterotrophic assays. Regulatory Toxicology and Pharmacology: RTP 2002;35:227-37.
    [42] Kim IY, Shin JH, Kim HS, Lee SJ, Kang IH, Kim TS, Moon HJ, Choi KS, Moon A, Han SY. Assessing estrogenic activity of pyrethroid insecticides using in vitro combination assays. The Journal of Reproduction and Development 2004;50:245-55.
    [43] Sun H, Xu XL, Xu LC, Song L, Hong X, Chen JF, Cui LB, Wang XR. Antiandrogenic activity of pyrethroid pesticides and their metabolite in reporter gene assay. Chemosphere 2007;66:474-9.
    [1]. Davis DL, Axelrod D, Bailey L, Gaynor M, Sasco AJ. Rethinking breast cancer risk and the environment: the ease for the precautionary principle. Environ Health Perspect 1998;106:523—9.
    [2]. Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect 1996; 104:715—40.
    [3]. U.S. EPA. Endocrine Disrupter Screening and Testing Advisory Committee (EDSTAC) Final Report. Washington, DC:U.S. Environmental Protection Agency 1998.
    [4]. Zacharewski T. Identification and assessment of endocrine disruptors: limitations of in vivo and in vitro assays. Environ Health Perspect 1998;106:577-82.
    [5]. Diel P, Schmidt S, Vollmer G. In vivo test systems for the quantitative and qualitative analysis of the biological activity of phytoestrogens. J Chromatogr B Analyt Technol Biomed Life Sci 2002;777:191-202.
    [6]. Kanno J, Onyon L, Peddada S, Ashby J, Jacob E, Owens W. The OECD program to validate the rat uterotrophic bioassay. Phase 2: coded single-dose studies. Environ Health Perspect 2003; 111:1550-8.
    [7]. Odum J, Lefevre PA, Tittensor S, Paton D, Routledge EJ, Beresford NA, Sumpter JP, Ashby J. The rodent uterotrophic assay: critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regul Toxicol Pharmacol 1997;25:176-88.
    [8]. Ashby J, Odum J, Foster JR. Activity of raloxifene in immature and ovariectomized rat uterotrophic assays. Regul Toxicol Pharmacol 1997;25:226-31.
    [9]. Odum J, Lefevre PA, Tittensor S, Paton D, Routledge EJ, Beresford NA, Sumpter JP, Ashby J. The rodent uterotrophic assay: critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regul Toxicol Pharmacol 1997;25:176-88.
    [10]. Ashby J, Tinwell H. Oestrogenic activity of burgen bread to female rats. Hum Exp Toxicol 1998; 17:598-9.
    [11].O'Connor JC,Frame SR,Biegel LB,Cook JC,Davis LG.Sensitivity of a Tier I screening battery compared to an in utero exposure for detecting the estrogen receptor agonist 17beta-estradiol.Toxicol Sci 1998;44:169-84.
    [12].O'Connor JC,Cook JC,Slone TW,Makovec GT,Frame SR,Davis LG.An ongoing validation of a Tier I screening battery for detecting endocrine-active compounds(EACs).Toxicol Sci 1998;46:45-60.
    [13].Christian MS,Hoberman AM,Bachmann S,Hellwig J.Variability in the uterotrophic response assay(an in vivo estrogenic response assay)in untreated control and positive control(DES-DP,2.5microG/kg,bid)Wistar and Sprague-Dawley rats.Drug Chem Toxicol 1998;21:51-100.
    [14].Padilla-Banks E,Jefferson WN,Newbold RR.The immature mouse is a suitable model for detection of estrogenicity in the uterotropic bioassav_ Environ Health Perspect 2001:109:821-6.
    [15].张玉敏,李海山,崔金山.子宫增重法检测壬基酚、双酚A雌激素样活性及其联合作用.中国工业医学杂志 2006;19:269-272.
    [16].范奇元,申立军,丁训诚,蒋学之.用子宫增重试验检测壬基酚的雌激素样作用.劳动医学 2000;17:196-7.
    [17].Ireland JS Mukku VR Robison AK Stancel GM.Stimulation of uterine deoxyribonucleic acid synthesis by 1,1,1-trichloro2-(/7-chlorophenyl)-2-(o-chlorophenyl)ethane(o,p'-DUT).Biochem.Pharmacol 1980;29:1469-74.
    [18].Shelby MD,Newbold RR,Tully DB,Chae K,Davis VL.Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays.Environ Health Perspect 1996;104:1296-300.
    [19].Bolger R,Wiese TE,Ervin K,Nestich S,Checovich W.Rapid screening of environmental chemicals for estrogen receptor binding capacity.Environ Health Perspect 1998;106:551-7.
    [20].Soto AM,Sonnenschein C.Mechanism of estrogen actionon cellular proliferation:Evidence for indirect and negative control on cloned breast tumor cells.Biochem.Biophys.Res.Commun.1984;122:1097-103.
    [21].Soto AM,Sonnenschein C,Chung KL,Fernandez MF,Olea N,Serrano FO.The E-SCREEN assay as a tool to identify estrogens:an update on estrogenic environmental pollutants.Environ Health Perspect 1995;103:113-22.
    [22].常艳,朱心强,祝慧娟.用人乳腺癌细胞增殖法检测化学物的雌激素样作用.浙江大学学报(医学版)2002;31:281-3.
    [23].王亚东,陈小玉,吴逸明,许东,徐玉宝.氯化汞诱导MCF-7人乳腺癌细胞增殖的实验研究.河南医学研究 2005;14:11-3.
    [24].Orn S,Yamani S,Norrgren L.Comparison of vitellogenin induction,sex ratio,and gonad morphology between zebrafish and Japanese medaka after exposure to 17alpha-ethinylestradiol and 17beta-trenbolone.Arch Environ Contam Toxicol 2006;51:237-43.
    [25].温茹淑,方展强,陈伟庭.17β-雌二醇对雄性唐鱼卵黄蛋白原的诱导及性腺发育的影响.动物学研究 2008;29:43-8.
    [26].Duda RB,Taback B,Kessel B,Dooley DD,Yang H,Marchiori J,Slomovic BM,Alvarez JG.pS2 expression induced by American ginseng in MCF-7 breast cancer cells.Ann Surg Oncol 1996;3:515-20.
    [27].Arnold SF,Robinson MK,Notides AC,Guillette LJ Jr,McLachlan JA.A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens.Environ Health Perspect 1996;104:544-8.
    [28].Pons M,Gagne D,Nicolas JC,Mehtali M.A new cellular model of response to estrogens:a bioluminescent test to characterize(anti)estrogen molecules.Biotechniques 1990;9:450-9.
    [29].Jausons-Loffreda N,Balaguer P,Roux S,Fuentes M,Pons M,Nicolas JC,Gelmini S,Pazzagli M.Chimeric receptors as a tool for luminescent measurement of biological activities of steroid hormones.J Biolumin Chemilumin 1994;9:217-21.
    [30].Kojima H,Katsura E,Takeuchi S,Niiyama K,Kobayashi K.Screening for estrogen and androgen receptor activities in 200pesticides by in vitro reporter gene assays using Chinese hamster ovary cells.Environ Health Perspect 2004;112:524-31.
    [31].Freyberger A,Schmuck G.Screening for estrogenicity and anti-estrogenicity:a critical evaluation of an MVLN cell-based transactivation assay.Toxicol Lett 2005;155:1-13.
    [32].Legler J,van den Brink CE,Brouwer A,Murk AJ,van der Saag PT,Vethaak AD,van der Burg B.Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line.Toxicol Sci 1999;48:55-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700