不同茶树品种抗假眼小绿叶蝉机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
假眼小绿叶蝉Empoasca vitis G the(同翅目,叶蝉科)是我国重要的茶树害虫,其为害严重影响到茶叶的质量和产量。由于成虫将卵产于植物组织内部,化学防治很难达到理想的效果。本文从品种抗虫性的角度出发,根据假眼小绿叶蝉在茶树品种上的田间虫口密度、生命周期、成虫繁殖力等指标,对供试品种的抗假眼小绿叶蝉水平进行分级。其次,利用电子刺探图谱(Electrical penetration graph,EPG)技术研究了假眼小绿叶蝉在不同抗虫水平茶树品种上的电生理反应,实现茶树品种抗性因子的定位。以此为基础,调查了不同抗虫水平茶树品种的外观形态、物理结构和生化特征的差异,并对相关生化成分进行生物测定,最终确定茶树对假眼小绿叶蝉的抗性因子和抗性机理。主要结果如下:
     1.通过对天台(TT)等12个茶树品种的田间茶枝幼虫孵化数、笼内接虫产卵若虫孵化数和田间虫口密度的调查,筛选出恩标(EB)、竹山一号(ZS)、蓝天(LT)、斑竹园(BZY)、长兴紫笋(CX)、举岩(JY)、建德(JD)和德清(DQ)8个品种做进一步研究。
     2.调查假眼小绿叶蝉在8个初筛品种上的生命周期、每雌产若量和若虫成活率,根据结果将其分为两大类。第Ⅰ类:举岩、德清、建德和长兴紫笋,抗假眼小绿叶蝉品种;第Ⅱ类:蓝天、斑竹园、竹山一号和恩标,感假眼小绿叶蝉品种。其中,举岩对假眼小绿叶蝉抗性最强,恩标对假眼小绿叶蝉抗性最弱。
     3.运用EPG、TEM(Transmission electronic microscope)等昆虫行为学和植物组织学手段,明确假眼小绿叶蝉在茶树上的取食过程,首次证实假眼小绿叶蝉是破损细胞取食者(Cell rupture feeder)。假眼小绿叶蝉取食茶树过程中产生7种EPG波形。其中,主要波形Np (non-probing)、E1、E2和E3分别代表口针的非刺探、渠道开通和多细胞刺探、叶肉主动取食和维管束主动取食行为。假眼小绿叶蝉在茶树上一次完整的刺探行为通常为Np-E1-E2-E3-E1-Np。
     4. EPG非连续型参数的分析结果显示,假眼小绿叶蝉在感虫品种上的取食时间长于抗虫品种,恩标和竹山一号与抗虫品种之间的差异达到显著水平;另一方面,EPG连续型参数的分析发现,长兴紫笋、德清和建德表面均存在抗性,而蓝天显然缺少这种抗性;举岩、建德和德清的叶片下表皮-叶肉层存在抗性,但感虫品种在这个层面上均没有抗性;举岩、长兴紫笋和建德的叶肉组织都表现出对假眼小绿叶蝉的抗性,斑竹园和恩标却明显缺乏这种抗性。
     5.外观形态上,抗虫品种与感虫品种的当年生新梢色泽(抗虫品种深于感虫品种)、一芽三叶长度(抗虫品种<感虫品种)、叶片大小(抗虫品种<感虫品种)、叶片硬度(抗虫品种>感虫品种)和叶身伸展状态都存在差异。物理结构上,抗虫品种的茸毛长度和密度都显著大于感虫品种;抗虫品种的蜡质含量也显著高于除恩标以外的其它感虫品种;此外,抗虫品种的下表皮厚度均大于感虫品种。生化成分上,抗虫品种的茶多酚和绿原酸含量显著低于感虫品种,相反,γ-氨基丁酸含量却明显高于感虫品种。
     6.茶树品种理化指标与假眼小绿叶蝉每雌产若量和生命周期的相关性分析显示,茸毛长度、茸毛密度、叶表皮蜡质含量和γ-氨基丁酸含量与假眼小绿叶蝉每雌产若量呈负相关,相关性均达到极显著;下表皮厚度与每雌产若量也呈显著负相关;茶多酚与假眼小绿叶蝉的每雌产若量呈极显著正相关。另一方面,茸毛长度和茸毛密度与假眼小绿叶蝉生命周期呈极显著正相关;下表皮厚度与假眼小绿叶蝉的生命周期呈显著正相关;茶多酚与假眼小绿叶蝉的生命周期呈显著负相关。绿原酸与假眼小绿叶蝉每雌产若量和生命周期均没有相关关系。
     7.配制全纯人工饲料进行γ-氨基丁酸、茶多酚、绿原酸、天冬氨酸和茶氨酸的生物测定。高浓度茶多酚对假眼小绿叶蝉若虫的生长和存活表现抑制作用,与茶树品种中茶多酚含量和假眼小绿叶蝉生命周期的相关性分析结果不一致;高浓度γ-氨基丁酸对假眼小绿叶蝉若虫的生长发育和成活率有负面影响;虽然假眼小绿叶蝉的成活率不受绿原酸浓度的影响,但第1、2龄历期随其浓度的逐步升高呈现出递增趋势。另外,天冬氨酸与茶树抗虫性没有相关关系,但假眼小绿叶蝉1、2龄历期随其浓度的增加而缩短;茶氨酸对假眼小绿叶蝉的存活和龄期没有影响。
     8.茶树不同抗虫品种具有不同的抗虫机理。蜡质含量、茸毛长度和密度决定表面抗性,其中,蜡质含量是关键因子;下表皮厚度是形成叶片下表皮-叶肉层抗性的重要原因;生化成分可能是叶肉组织抗性的主要决定因素。而且,叶肉层面的化学抗性是决定茶树抗假眼小绿叶蝉水平的关键作用因子,γ-氨基丁酸可能正是关键因子之一。
Tea green leafhopper Empoasca vitis G the (Hemiptera: Cicadellidae), is an importantpest of tea plant in China, and seriously affect the tea quality and yield. Because the eggs werelaid in plant tissues, chemical pesticide applications usually fail to achieve the desired result.Standing on the piont of view of variety resistance, the tea cultivars were grouped basing onthe results of leafhopper’s field population density, life cycle duration, adult reproduction, etc..Secondly, resistance factors location of tea cultivars were achieved through the study ofleafhopper’s feeding behavior on different cultivars, which was investgited by electricalpenetration graph (EPG) technique. Based on these results, the morphology, anatomicalstucture and biochemical compositions of different tea cultivars were analyzed, as for thecompositions with significantly different content between resistant and susceptible cultivars,the bioassay experiment were then carried out to determine the resistance factors and theresistance mechanism in resistant tea cultivars. The main results are as follows:
     1. The eight tea cultivars including En biao (EB), Zhu shan1(ZS), Lan tian (LT), Banzhu yuan (BZY), Chang xing zi sun (CX), Ju yan (JY), Jian de (JD) and De qing (DQ) wereselected for the further study according to the results of hatched nymph number from the fieldtea shoots, hatched nymph number from the artificially infested tea shoots and fieldpopulation density on12tea cultivars such as TT etc.
     2. Life cycle duration, nymph number from per female and nymph survival rate of E.vitis on the eight tea cultivars were investigated, and two groups were classified according towhich results. Ⅰ: resistant group including JY, DQ, JD and CX, which were resistant to E.vitis; Ⅱ: susceptible group including LT, BZY, ZS and EB, which were susceptible to E. vitis.JY is the most resistant to E. vitis and EB is the most susceptible to E. vitis in the eight teacultivars.
     3. The feeding behaviors of E. vitis on tea plant were identified by using planthistological and insect behavioral mothods, which including EPG, transmission electronicmicroscope and other techniques. Thus the result firstly comfirmed that E. vitis blongs to cellrupture feeder. Seven EPG waveforms were produced by E. vitis on tea plant, the mainwaveforms Np, E1, E2and E3were correlated with stylet non-probing, channel-cutting and multiple-cell laceration, mesophyll active ingestion and vascular active ingestion, respectively.The whole process of a probe was used to performing as Np-E1-E2-E3-E1-Np.
     4. The result of EPG non-sequential parameters analysis showed that the ingestiondurations of E. vitis on susceptible cultivars are longer than resistant cultivars, although onlyEB and ZS were significantly longer than all of resistant cultivars. On the other hand, EPGsequential parameters caculation showed that the surface resistance was existed on CX, DQand JD, but this resistance was absent from LT; the epidermis-mesophyll of JY, JD and DQshowed resistace to E. vitis, but all of the four susceptible cultivars were lack of the resistance;the mesophyll tissue of JY, CX and JD were resistant to E. vitis, but this resistance have notbeen discovered in BZY and EB.
     5. In morphology, the difference between resistant and susceptible cultivars wasdiscovered in new tea shoots color (resistant cultivars showed darker than susceptiblecultivars), length of new tea shoots with one bud and three leaves (resistant cultivars<susceptible cultivars), leaves size (resistant cultivars<susceptible cultivars), leaveshardness (resistant cultivars>susceptible cultivars) and extension of leaf body. As forphysical structure, the trichome length and density of leaves of resistant cultivars weresignificantly higher than of susceptible ones; all resistant cultivals had significantly higherwax content than susceptible cultivars except EB. Additionally, lower epidermal thickness ofresistant cultivars were higher than that of susceptible ones. For the biochemical compositions,the content of tea polyphenols and chlorogenic acid in resistant cultivars were significantlylower than susceptible cultivars. On the contrary, the content of γ-aminobutyric acid inresistant cultivars was obviously higher than that of susceptible cultivars; theanine content inDQ, JY and CX was significantly lower than all susceptible cultivars; moreover, the contentof aspartic acid of resistant cultivars was lower than all susceptible cultivars, although thevalues of resistant cultivars and two susceptible cultivars ZS and BZY reached significantlevel.
     6. Correlations of physical and chemical data of tea cultivars with life cycle duration andnymph number of each female of E. vitis were analyzed. The result showed that trichomelength and density, wax content and γ-aminobutyric acid content were negatively correlatedwith the nymph number from per female, this correlation reached highly significant level; leaflower epidermal thickness showed significantly negative correlation with the nymph numberfrom per female, but content of tea polyphenols was positively correlated to it. On the otherhand, trichome length and density and leaf lower epidermal thickness showed significantlypositive correlation with life cycle duration of E. vitis. Contrarily, the significantly negativecorrelation was discovered between the content of tea polyphenols and life cycle duration of E. vitis.
     7. Artificial diets were made for the biaassay analysis of γ-aminobutyric acid. Theinhibition role was discovered in high concentration of tea polyphenols on growth andsurvival rate of E. vitis, which was inconsistent with the previous result of correlation analysis.High concentration of γ-aminobutyric acid had a negative impact on the growth and thesurvival rate of E. vitis. Although chlorogenic acid has not been found any certain correlationwith the survival rate of E. vitis, the duration of1stand2ndinstar of E. vitis were graduallyincreased with the increase of the content of chlorogenic acid in diet. Additionally, althoughaspartic acid was not related to tea resistance, the duration of1stand2ndinstar of E. vitis wasshortened with the concentration increasing; the survive and development of E. vitis have notbeen influenced by the changes of concentration of theanine.
     8. Different tea cultivars have different resistance mechanisms to E.vitis. The surfaceresistance was determined by wax content, trichome length and density. Thickness of thelower epidermis was the important reason for epidermis-mesophyll layer resistance.Biochemical components may be the main determinant of the mesophyll resistance. Moreover,the chemical resistance was the key role for determining the resistance level of tea cultivars toE. vitis, γ-aminobutyric acid may be one of the key factors of the chemical resistance.
引文
彩万志,庞雄飞,花保祯.2001.普通昆虫学.北京:中国农业大学出版社:127
    蔡晓明.2006.中黑盲蝽在九个棉花品种上生长发育和生命表参数的分析及其取食行为的刺探电位EPG研究[硕士学位论文].郑州:河南农业大学
    蔡晓明.2009.三种害虫诱导茶树挥发物的释放规律[博士学位论文].北京:中国农业科学院
    常金华,张丽,夏雪岩,李荣改,罗耀武,刘国庆.2004.不同基因型高梁植株的物理性状与抗蚜性的关系.河北农业大学学报,27(2):5
    陈常颂,王庆森,黄建,张应根,王秀萍,陈荣冰,吴光远,曾明森.2007.茶树品种新梢主要生化成分与黑刺粉虱选择性的关系.福建农林大学学报(自然科学版),36(6):576~580
    陈华才,许宁,陈雪芬,陈宗懋,虞富莲.1996.茶树对茶橙瘿螨抗性机制的研究.植物保护学报,23(2):137~142
    陈华才,许宁.2000.游离氨基酸含量与茶树抗螨性的关系.植物保护学报,27(4):338~342
    陈华才.1994.茶树叶表理化特征对茶橙瘿螨为害的影响.中国茶叶,5:12~13
    陈巨莲,丁红建.1997.麦蚜人工饲料的研究动态及应用.世界农业,219(7):43~44
    陈巨莲,倪汉祥,丁红建,孙京瑞.2000.麦长管蚜全纯人工饲料的研究.中国农业科学,33(3):54~59
    陈巨莲,倪汉祥,孙京瑞.2002.主要次生物质对麦蚜的抗性阈值及交互作用.植物保护学报,29(1):7~12
    陈亮,杨亚军,虞富莲.2005.茶树种质资源描述规范和数据标准.北京:中国农业科学出版社:1~50
    陈清泉.1979.水稻体内几种游离氨基酸与抗病虫关系的探讨.湖南农业科技,2:9~16
    陈雪芬.1985.茶树对病虫害的抗性.茶叶,3:46~49
    陈宗懋.1989.国外科技进展.茶叶文摘,2:125
    戴小枫,郭予元.1997.我国棉花品种(系)抗虫性的鉴定、选育与应用.植物保护学报,24(2):179~186
    丁克军,黄寿山,曾玲,庞雄飞.1993.水稻品种抗虫性对白背飞虱种群的控制作用.华南农业大学学报,14(3):37~41
    董顺文,王朝生.1999.棉花抗螨机理的研究进展.中国棉花,26(l2):2~5
    高景林,赵冬香,陈宗懋,李江颂.2002.假眼小绿叶蝉触角化感器的扫描电镜观察.华东昆虫学报,11(1):36~38
    高文兴,王孟卿,陈红印.2012.蚜虫人工饲料的研究及应用进展.中国生物防治学报,28(1):121~127
    关瑞峰.2006.茶假眼小绿叶蝉发生为害特点调查研究.中国植保导刊,26(6):38~40
    郭慧芳.2011.茶树重大害虫—假眼小绿叶蝉研究进展.江苏农业科学,1:132~134
    韩宝瑜,陈宗懋.2001.茶蚜在茶树不同部位上刺探行为的差异.植物保护学报,28(1):7~11
    杭州茶叶加工研究所.1989.茶叶品质理化分析.上海:上海科技出版社:12~23.
    何富刚,刘俊,张广学,曲国民,颜范悦.1991.高粱抗高粱蚜的生化基础.昆虫学报,34(l):38~41
    何团结.1996.棉花抗虫性机制及其利用.安徽农业科学,增刊:93~94
    何月平,沈晋良.2008.害虫抗药性进化的遗传起源与分子机制.昆虫知识,45(2):175~181
    洪北边,楼云芬,吕文明.1996.茶资源对斯氏尖叶瘿螨的抗性鉴定.中国茶叶,2:32~33
    洪北边,楼云芬.1995.茶树种质资源对假眼小绿叶蝉的抗性鉴定.中国茶叶,5:14~15
    胡想顺,赵惠燕,胡祖庆,李东鸿,张宇红.2007.禾谷缢管蚜在三个小麦品种上取食行为的EPG比较.昆虫学报,50:1105~1110
    胡想顺,赵惠燕,胡祖庆,李东鸿,张宇红.2008.麦长管蚜在3个小麦品种上取食行为的EPG比较.中国农业科学,41(7):1989~1994
    胡想顺.2004.不同小麦品种(材料)的抗蚜性及抗性部位的EPG定位[博士学位论文].陕西杨凌:西北农林科技大学
    扈克明,张艳梅,王佳芳,谢太华.2003.不同茶树品种间叶蝉类群数量动态与抗虫性比较.茶叶科学,23(1):57~60
    扈克明,张艳梅,王佳芳,谢太华.2003.不同茶树品种间叶蝉类群数量动态与抗虫性比较.茶叶科学,23(1):57~60
    黄金水,丁泌,黄衍庆,黄海清,高美玲.1999.木麻黄化学和形态因素与星天牛危害的关系.林业科学,35(2):57~64
    黄寿波.1981.全世界茶树的分布及其气候特点.茶叶,4:8~13
    黄亚辉,张觉晚,张贻礼,杨阳,王沅江.1998.茶树抗假眼小绿叶蝉的叶片解剖特征.茶叶科学,18(1):35~38.
    黄亚辉,张觉晚,张贻礼.1994.茶树抗虫种资源调查~抗性机制研究.茶叶通讯,3:5~8
    黄志,董尚胜.2001.茶树抗虫性研究进展.蚕桑茶叶通讯,1(103):2~17
    姜人春.1998.水稻品种抗虫性遗传研究进展.中国水稻科学,12(4):233~237
    姜永幸.1994.棉蚜的取食行为及棉花抗蚜的生理生化机制.北京:中国农业科学院
    金珊,孙晓玲,陈宗懋,肖斌.2012.不同茶树品种对假眼小绿叶蝉抗性的研究.中国农业科学,45(2):255~265
    金予武.1980.茶叶中游离氨基酸、糖、儿茶素对茶树神泽叶螨活动和产卵的关系.茶业技术研究,59:15~22
    孔晓华.2010.化学农药与土壤污染.现代农业,3:34~35
    雷宏,徐汝梅.1996. EPG—一种研究植食性刺吸式昆虫刺探行为的有效方法.昆虫知识,33(2):116~120
    李付广,崔金杰,刘传亮,武芳芝,李凤莲,周勇,李秀兰.2000.双价基因抗虫棉及其抗虫性研究.中国农业科学,33(1):46~52
    李娟,活泼,杨海燕.2005.茶叶功效成分研究进展.浙江科技学院学报,17(4):285~289
    李素娟,王兴运,王经伦,王志民.1995.不同小麦品种对禾谷缢管蚜种群消长的研究.昆虫知识,32(2):78~80
    李伟,郭慧芳,王荣富,刘宝生,钟万芳,方继朝.2009.不同寄主植物上灰飞虱种群生命表的比较.昆虫学报,52(5):531~536
    李小珍,刘映红,田艳.2004.六种寄主植物对二点叶蝉生长发育和繁殖的影响.应用生态学报,15(8):1431~1434
    刘光杰,付志红,沈君辉,张亚辉.2002.水稻品种对稻飞虱抗性鉴定方法的比较研究[J].中国水稻科学,16(1):32~35
    刘丽芳,徐德良,穆丹,韩宝瑜.2011. EPG技术分析不同品种茶树抗假眼小绿叶蝉取食行为的差异.安徽农业大学学报,38(2):281~286
    刘绍友,候有明,李定旭,高崇省.1993.小麦品种对麦长管蚜抗性机制的研究.西北农业学报,2(3):76~80
    刘寿南.1988.湖南省茶科所承包娄底市茶园黑刺粉虱防治技术服务效果显著.茶叶通讯,2:32
    刘树生.2000.害虫综合治理面临的机遇、挑战和对策.植物保护,26(4):35~38
    刘涛,张君亭,刘永超,门兴元,常志斌,李照会.2011.不同桃树品种游离氨基酸含量与抗桃一点斑叶蝉的关系.山东农业科学,12:64~66
    刘亦清,徐泽,局正科,谢冬祥,杨秀和.2000.茶树品种抗侧多食跗线螨的形态和生化特征.中国茶叶,1:1~15
    刘奕清,凌泽芳,谢冬祥.1994.茶树品种抗侧多食跗线螨的形态和生化特征.中国农业科学,27(6):86~87
    刘奕清,谢冬祥,徐泽.1996.茶树品种对侧多食跗线螨种群的影响.植物保护学报,23(2):143~146
    刘勇,陈巨莲,程登发.2007.不同小麦品种(系)叶片表面蜡质对两种麦蚜取食的影响.应用生态学报,18(8):1785~1788
    卢嘉丽,王冬梅,苗爱清,杨得坡,陈建萍.2009.英红1号、英红9号和祁门茶树芽叶中嘌呤生物碱和茶多酚的HPLC~DAD~MS/MS分析.中山大学学报(自然科学版),48(1):72~75
    吕文明,楼云芬.1991.不同茶树种质材料对茶橙瘿螨的抗性.中国茶叶,5:8~9
    马世驶.1976.谈农业害虫的综台防治.昆虫学报,19(2): l29~140
    苗进,韩宝瑜.2007.假眼小绿叶蝉(Empoasca vitis Gothe)在不同品种茶树上的取食行为.生态学报,27(10):3973~3982
    苗进,韩宝瑜.2008. MeSA诱导茶树抗假眼小绿叶蝉取食效应的DC~EPG分析.植物保护学报,35(2):143~147
    苗进,武予清,郁振兴,段云,蒋月丽,李国平.2011.基于EPG的麦长管蚜、麦二叉蚜和禾谷缢管蚜食行为比较.生态学报,31:175~182
    潘叶,冯永庆,马焕普.2008.一种适用于植物组织的快速石蜡制片法.中国农学通报,24(3):112~115
    彭萍.1990.茶树品种抗跗线螨初步鉴定.植物保护,6:12
    彭忠魁.1979.杂交水稻对褐飞虱的研究.中国农业科学,2:71~77
    彭忠魁,唐明远.1980.水稻品种“740098”抗褐飞虱的机制.昆虫学报,23(3):334~337
    钦俊德.1987.昆虫与植物的关系.北京:科学出版社:24~25
    钦俊德.1995.昆虫与植物关系的研究进展和前景.动物学报,41(1):454~455
    邱海蓉,冯中朝.2010.我国茶叶出口贸易的发展特征及趋势分析.统计与决策,5:113~115
    邱式邦.1976.植物保护必须坚持“预防为主、综合防治”的方针.中国农业科学,1:41~47
    邱忠莲,袁洪刚,薛花余.2008.日照茶区茶小绿叶蝉的发生与防治.茶叶通讯,35(2):40~41
    孙红炜,尚佑芬,赵玖华,路兴波,王升吉,杨崇良.2007.不同药剂对麦蚜防治作用及对麦田天敌昆虫的影响.麦类作物学报,27(3):543~547
    孙雪洁,孙建华.2011.我国出口茶叶现状及原因分析.商场现代化,11:25~26
    谭济才,邓欣.1994.植物抗病虫性机制与茶树良种选育.茶叶通讯,3:13~16
    汤德良,王武刚.1993.棉花对棉虫抗生性的物质基础.世界农业,10:31
    唐明远,罗泽民,彭忠魁.1979.关于杂交水稻中γ~氨基丁酸等氨基酸含量与抗褐飞虱的相关性.湖南农学院学报,1:27~30
    唐志勇,唐学军.2010.气温对茶小绿叶蝉发生的影响及预测.安徽农业科学,38(7):3523~3524
    王琛柱,张青文,杨奇华,周明牂.1993.植物抗虫性的化学基础.植物保护,19(6):39~41
    王琛柱,张青文.1993.植物抗虫性的化学基础.植物保护,19(6):39~41
    王国昌.2010.三种害虫诱导茶树挥发物的生态功能[博士学位论文].北京:中国农业科学院
    王国庆.2010.化学农药对生物体的影响.现代农业,6:24~25
    王连翠,樊守金.2006.沂蒙山区茶树主要害虫及其无公害防治措施.安徽农业科学,34(21):5584~5585
    王庆森,黄建,陈常颂,吴光远,曾明森,黄春梅,陈荣冰.2009.茶树种质叶片组织结构与其对黑刺粉虱抗虫性的关系。茶叶科学,29(1):60~66
    王庆森.2005.黑刺粉虱对不同茶树品种的寄主选择性及其机理研究[博士学位论文].福州:福建农林大学
    王荣富,张成林,邹运鼎,吕亮,程遐年.2000.水稻品种抗性对褐飞虱和白背飞虱种群动态的影响.应用生态学报,11(6):861~865
    王彦华,吴长兴,赵学平,苍涛,陈丽萍,俞瑞鲜,吴声敢,王强.2010.灰飞虱对杀虫剂抗药性的研究进展.植物保护,36(4):29~35
    王荫长.2001.昆虫生物化学.北京:中国农业出版社:92~96
    王振营.1994.玉米抗虫的生化基础.世界农业,8:33~34
    吴明才,肖昌珍.1998.国外大豆抗虫性研究.大豆通报,3:28~29
    伍崇岳.2008.浅议茶祖神农文化与中国茶产业.《中华茶祖神农文化论坛》论文集:276~279
    夏敬源.1996.棉花抗虫性研究与利用.棉花学报,8(2):57~64
    夏云龙,杨奇华,萧红.1991.冬小麦形态特征与抗麦长管蚜的关系研究.植物保护学报,18(l):5~10
    肖强.2008.茶树害虫假眼小绿叶蝉无公害防治技术.中国茶叶,30(8):25
    谢道昕,范云六,倪万潮,黄骏麒.1991.苏云金杆菌杀虫晶体蛋白基因导人棉花获得转基因植株.中国科学(B辑),4:367~373
    谢先芝.1999.抗虫转基因植物的研究进展及前景.生物工程进展,19(6):47~51
    徐金汉,关瑞峰,李春光,黄鹏,关雄.2005.不同茶园昆虫群落结构及动态.华东昆虫学报,14(4):315~319
    徐金汉,王念武,张灵玲,关雄.2005.假眼小绿叶蝉防治指标的研究.茶叶科学,25(2):131~135
    许宁,陈雪芬,陈华才,陈宗懋.1996.茶树品种抗茶橙瘿螨的形态与生化特征.茶叶科学,16(2):125~130
    轩静渊,王辅.1991.植物抗虫性概论.成都:四川科学技术出版社
    杨丽丽,郑高云,梁丽云,杨云秋,高旭晖.2008.茶树抗病虫机制的研究进展.福建茶叶,2:8~11
    杨青,余德亿.2008.茶园假眼小绿叶蝉种群的生态调控.福建茶叶,2:32~35
    杨天资,陈庆道.2006.北方茶园的主要病虫害及其防治.中国茶叶,28(6):21~22
    杨雪彦,燕新华,周晓彬.1992.不同杨树营养物对黄斑星天牛抗性的研究.西北林学院学报,7(3):26~33
    杨永义,王竹红,黄建,彭建立,江飞燕,刘静瑜.2006.4种寄主植物对烟粉虱发育、存活及繁殖的影响.华东昆虫学报,15(4):276~280
    余月书,沈国清,陆贻通,程国华.2009.农药对害虫天敌的Horlnesis效应研究进展.植物保护,5:10~13
    曾莉,王盛平,许玫.2001.茶树对假眼小绿叶蝉的抗性研究.茶叶科学,21(2):90~93
    曾玲,吴荣宗,冯成,李洁群.1992.水稻品种游离氨基酸含量与抗褐稻虱的关系.华南农业大学学报,13(4):69~76.
    张观怀.2008.茶祖神农与五千年茶文化.《中华茶祖神农文化论坛》论文集:171~173
    张汉鹄,韩宝瑜.1999.中国茶树昆虫区系及其区域性发生.茶叶科学,19(2):81~86
    张华普,相建业,吴云锋,胡亮,董旭燕.2008.3种寄主植物对条沙叶蝉生长发育和繁殖的影响.西北农林科技大学学报(自然科学版),36(10):163~167
    张觉晚,王沅江,黄亚辉.1994.茶树抗虫品种资源调查及抗性机制研究Ⅲ.茶树不同品种对丽纹象甲的抗性筛选鉴定.茶叶通讯,3:5~7
    张觉晚,王沅江,黄亚辉.1994.茶树抗虫品种资源调查及抗性机制研究Ⅰ.茶树品种对假眼小绿叶蝉抗性的筛选鉴定.茶叶通讯,1:2~5
    张文辉,刘光杰.2003.植物抗虫性次生物质的研究概况.植物学通报,20(5):522~530
    张衍,陈佳保.2006.安溪县不同海拔茶假眼小绿叶蝉的发生与综防措施.茶叶科学技术,2:43
    张贻礼,张觉晚,杨阳,黄亚辉,王沅江.1994.茶树抗虫品种资源调查及抗性机制研究Ⅱ―不同品种茶树特征特性对假眼小绿叶蝉抗性的相关分析.茶叶通讯,2:4~6
    张增全,顾金炎.1985,稻褐飞虱饲料稻株中数种氨基酸的营养效应.昆虫学报,28(1):15~21
    张宗炳,曹骥.1990.害虫防治:策略和方法.北京:科学出版社:32~37
    赵冬香,高景林,陈宗懋,程家安,徐汉虹.2002.假眼小绿叶蝉对茶树挥发物的定向行为反应.华南农业大学学报:自然科学版,23(4):27~29
    赵和涛.1993.我国茶叶生产技术向外传播及与世界茶业发展.农业考古,2:182~186
    赵俊,木万福,张志星.2009.植物石蜡切片技术改进.安徽农学通报,15(5):69,90
    郑云高.2008.不同茶树品种对茶尺蠖抗性机制的研究[硕士学位论文].安徽合肥:安徽农业大学
    中国茶叶流通协会.2011.2011中国茶叶行业发展报告.中国茶叶加工,3:21
    中国科学技术协会.2011.我国专家破解水稻抗虫世界难题.中国科技信息,17:5
    中国科学技术协会科普部.我国抗虫转基因小麦育种取得突破.科技致富向导,2008,3:10
    中国农业科学院植物保护研究所.1996.中国农作物病虫害.第二版:下册.北京:中国农业出版社:404~407
    周明强,刘凡值,谢惠钰.2002.甘薯选50叶片下表皮结构与抗绵蚜的关系.贵州农业科学,30(4):16~17
    朱俊庆.1992.不同茶树品种对假眼小绿叶蝉抗性的初步研究.植物保护学报,19(1):29~32
    朱麟,古德祥,吴海昌.1998.昆虫对植物次生性物质的生态适应机制.福建林业科技,25(2):59~62
    朱祯.2010.转基因水稻研发进展.中国农业科技导报,12(2):9~16
    邹武,林乃铨,王庆森.2006.福建主要茶树品种理化特性与假眼小绿叶蝉种群数量的相关性分析.华东昆虫学报,15(2):129~134
    邹运鼎,李甲林,陈高潮,胡丽娟,黄世祥,王公明,周夏芝,王子迎,孟庆雷,耿继光.1997.棉株内含物和外源JH对棉蚜成蚜有翅率及种群消长的影响.应用生态学报,8(6):617~622
    邹运鼎,孟庆雷,马飞,黄世祥,胡丽娟.1994.应用生态学报,5(3):276~280
    小泊重洋,堀川知廣.1984.目で見る茶の病害虫.日本:社静岡県茶業寺会議
    Affeldt H A, Thimijan R W, Smith F F.1983. Response of the green-house whitefly (Homoptera:Aleyrodidae) and the vegetable (Diptera: Afromyzidae) to photospectra. Journal of EconomicEntomology,76(6):1405~1409
    Jutisum A R, Heaney S P, Perrin B M, Wege P J.1998. Pesticide resistance: assessment of risk and thedevelopment and implementation of effective management strategies. Pesticide Science,54(4):435~446
    Schaafsma A W, Caroda C, Kornegay J L, Wylde A M, Michaels T E.1998. Resistance of common beanlines to the potato leafhopper (Homoptera: Cicadellidae). Journal of economic entomology,91:981~986
    Auclair J L, Cartier J J.1963. Pea aphid: rearing on a chemically defined diet. Science,142:1068~1069
    Backus, E A, Serrano M S, Ranger C M.2005. Mechanisms of hopperburn: an overview of insecttaxonomy, behavior and physiology. Annu. Rev. Entomol.,50,125~151
    Bernard R. L, Singh B B.1969. Inheritance of pubescence type in soybeans: glabrous, curly, dense, sparse,and puberulent. Crop Sci.,9:192~197
    Blum M R.1985. Foundamental Insect Physiology. New York: John wiley﹠Sons publisher:113~120
    Broersma D B, Bernard R L, Luckmann W H.1972. Some effects of soybean pubescence on populations ofthe potato leafhopper. J. Econ. Entomol.,65:78~82
    Choudhury D A M, Copland M J W.2003. Influence of plant structural complexity on the searchingbehaviour of the egg parasitoid Anagrus atomus (Linnaeus)(Hymenoptera:Mymaridae). Pakistan Journalof Biological Sciences,6:455~460
    Ciepiela A P, Sempruch C, Kaszynski W, Lyszcz J.1996. Effect of o-dihydroxyphenols on antioxidativemechanisms of cereal aphids associated with glutathione. Plant Breeding and Seed Science,1:93~99
    Ciepiela A P, Sempruch C, Chrzanowski G.1999. Evaluation of natural resistance of winter triticalecultivars to grain aphid using food coefficients. J. Appl. Entomol.,123:491~494
    Civolani S, Leis M, Grandi G, Garzo E, Pasqualini E, Musacchi S, Chicca M, Castaldelli G, Rossi R,Tjallingii WF.2011. Stylet penetration of Cacopsylla pyri; an electrical penetration graph (EPG) study.Journal of Insect Physiology,57:1407~1419
    Cline A R, Backus E A.2002. Correlations among AC electronic monitoring waveforms, body postures,and stylets penetratin behaviors of Lygus hesperus (Hemiptera: Miridae). Environ. Entomol.,31:538~549
    Corcuera L J.1984. Effects of indole alkaloids from gramineae on aphids. Phytochemistry,(23):539~541
    Douglas A L, Stephen D W, Geoff M G.2000. Habitat management to conserve natural enemies ofarthropod pests in agriculture. Annu. Rev. Entomol.,45:175~201
    Eigenbrode S D, Espelie K E.1995. Effects of plant epicuticular lipids on insect herbivores. AnnualReview of Entomology,40:171~194
    Eigenbrode S D.1996. Plant surface waxes and insect behavior, in plant cuticles–an intergratedfunctional approach (ed. G. Kerstiens). Oxford: BIOS Scientific Publishers Ltd.:201~222
    Ellis P R, Farrell J A.2010. Resistance to cabbage aphid (Brevicoryne brassicae) in six brassica accessionsin New Zealand. New Zealand Journal of Crop and Horticultural Science,23:1,25~29
    Fisk J.1980. Effects of HCN, phenolic acids and related compounds in Sorghum bicolor on the feedingbehaviour of the planthopper Peregrinus maidis. Entomol. Exp. Appl.,27:211~222
    Foissac X, ThiLoc N, Christou P, Gatehouse A M, Gatehouse J A.2000. Resistance to green leafhopper(Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressingsnowdrop lectin (Galanthus nivalis agglutinin; GNA). Journal of Insect Physiology,46:573~583
    Gabrys B, Tjallingii W F, Van Beek T A.1997. Analysis of EPG recorded probing by cabbage aphid onhost plant parts with different glucosinolate contents. Journal of Chemical Ecology,23:1661~1673
    Gerhardson B.2002. Biological substitutes for pesticides. Trends in Biotechnology,20:338~343
    Granett J, Bisabri E B, Carey J R.1983. Life tables of phylloxera on resistant and susceptible graperootstocks. Entomol. Exp. Appl.,34:13~19
    Hanley M E, Lamont B B, Fairbanks M M, Rafferty C M.2007. Plant structural traits and their role inanti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematic,8:157~178
    Harman J A, Chang X M, Moorse J G.2007. Selection of clour of sticky trap for monitoring adult beanthrips, Caliothrips fasciatus (Thysanoptera: Thripidae). Pest Management Science,63:210~216
    Harvey G T. Nutritional studies of eastern spruce budworm Ⅰ. Soluble sugars. Can Entomol.,93:594~602
    Havlickova H.1995. Verification of antibiosis to cereal aphids in winter wheat cultivars. Ochrana Rostlin,31:287~295
    Havlickova H.1996. Differents in winters wheat cultars in aphid infestation in relationship to biochemicalcharacteristics. Rostlinnb Yroba.42:41~45
    Helaly E I, Rawash I A, Ibrahim E G.1981. Phototaxis of the adult whitefly, Bemisia tabaci Gennadius tovisible light. I. Effect of the exposure period on the insects response to different wavelengths of thevisible light spectrum using a devised simple technipue. Acta Phytopathologica Academiae ScientiarumHungaricae,16:181~188
    Huang J, McAuslane H J, Nuessly G S.2003. Effect of leaf surface extraction on palatability of romainelettuce to Diabrotica balteata. Entomologia Experimentalis et Applicata,106:227~231
    Hunter W B, Backus E A.1989. Mesophyll~feeding by the potato leafhopper, Empoasca fabae (Homoptera:Cicadellidae): results from electronic monitoring and thin~layer chromatography. EnvironmentEntomology.18:465~472
    Jackai L and Singh S R.1983. Varietal resistance in the integrated pest management of cowpea pests.Insect Science and Its Application,4:199~204
    Jenks M A, Ashworth E N.1999. Plant epicuticular waxes: Function, production and genetics. HorticulturalReviews,23:1~67
    Kawabe S, McLean D L.1980. Electronic measurement of probing activities of green leafhopper of rice.Entomologia Experimentalis et Applicata,27:77~82
    Kindt F, Joosten N N, Peters D, Tjallingii W F.2003. Characterisation of the feeding behaviour of westernflower thrips in terms of electrical penetration graph (EPG) waveforms. Journal of Insect Physiology,49:183~191
    Kogan M, Ortman E E.1978. Antixenosis–a new term proposed to replace Painter’s“non~preference” modality of resistance. Bulletin of European Space Agency,24:175~176
    Kogan M. l998. Integrated pest management: historical perspectives and contemporary developments.Annual Review of Entomology,43:243~270
    Kovach J, Petzoldt C, Degni J, Tette J.1992. A method to measure the nvironmental impact of pesticides.New York: New York State Agricultural Experiment Station:4-15
    Lakshmi K H, Mantu B and Budhindra N H.2009. Insect pests of tea and their management. Annu. Rev.Entomol.54:267~84
    Lei H, Tjallingii W F, van Lenteren J C.1998. Probing and feeding characteristics of the greenhousewhitefly in association with host-plant acceptance and whitefly strains. Entomologia Experimentalis etApplicata88:73~80
    Lett, J M, Granier M, Grondin P, Turpin F, Chiroleu, M, Peterschmitt, R B.2001. Electrical penetrationgraphs from Cicadulina mbila on maize, the fine structure of its stylet pathways and consequences forvirus transmission efficiency. Entomologia Experimentalis et Applicata101:93~109
    Lu Y B, Liu S S, Liu Y Q, Furlong M J, Zalucki M P.2004. Contrary effects of jasmonate treatment of twoclosely related plant species on atrattraction of and oviposition by a specialist herbivore. Ecology Letters,7:337~345
    Magyarosy A C.1980. Beet curly top virus transmission by artificially fed and injected beet leafhopper(Circulfer tenellus). Annals of Applied Biology,96:301~305
    Miles P W.1972. The saliva of Hemiptera. Advances in Insect Physiology,9:183~255
    Miranda M P, Fereres A, Appezzato-da-Gloria B, Lopes J R S.2009. Characterization of electricalpenetration graphs of Bucephalogonia xanthophis, a vector of Xylella fastidiosa in citrus. EntomologiaExperimentalis et Applicata,130:35~46
    Mittler T E. Dadd R H.1962. Artificial feeding and rearing of the aphid,Myzus persicae (Sulzer),on acompletely defined synthetic diet. Nature,195(4839):404
    Müller C, RiedererM.2005. Plant surface properties in chemical ecology. Journal of Chemical Ecology,31(11):2621~2651
    Painter R H.1958. Resistance of plants to insects. Annual Review of Entomology,3:267~290
    Panda N.1969. Pubescence as a major factor in the resistance of soybean genotypes to oviposition anddamage by the corn earworm Hehothis zea (Boddie)(Thesis). Columbia: University of Missouri:153
    Parnell F R., King H E, Ruston D F.1949. Jassid resistance and hairiness of the cotton plant. Bull. Entomol.Res.39:539~575
    Pelletier Y.1990. The role of the color of the substratum on the initiation of the probing behavior in
    Myzuspersicae and Macrosiphum euphorbiae. Canadian Journal of Zoology,68:694~698
    Pompon J, Li X Q, Pelletier Y.2011. Resistance level to an aphid potato pest varies between genotypesfrom the same Solanum accession. Journal of Economic Entomology,104(3):1075~1079
    Powell G, Maniar S P, Pickett J A, Hardie J.1999. Aphid responses to non~host epicuticular lipids.Entomologia Experimentalis et Applicata,91:115~23
    Pushpam R, Raveendran T S.2005. Artificial screening and inheritance studies on resistance to jassid(Amrasca devastans) in Gossypium hirsutum L. The Indian Journal of Genetics and Plant Breeding,65(3):154~160
    Robert L M, William H L.1994. Introduction to insect pest management. The third edition. Canada: JohnWiley﹠Sons Inc. published:20~23
    Roger F H and Lian C L.1979. Artificial rearing of the rice green leafhopper, Nephotettix cincticeps, on aholidic diet. Entomologia Experimentalis et Applicata25:158~164
    Saguez J, Vincent C.2011. A method for continuous rearing of grapevine leafhoppers, Erythroneura spp.(Hemiptera: Cicadellidae). The Canadian Entomologist,143(1):102~104
    Saxton J E.1965. The Alkaloids-Chemistry and Physiology. New York: Academic Press:861
    Sharma A, Singh R.2002. Oviposition preference of cotton leafhopper in relation to leaf-vein morphology.Journal of Applied Entomology,126:538~544
    Sharma H C.1993. Host-plant resistance to insects in sorghum and its role in integrated pest management.Crop Protection,12:11~34
    Singh R, Taneja A D.1989. Influence of phytochemicals and leaf pubescence of some malvaceous plantson development, survival and oviposition of cotton leafhopper. Z. Angew. Zool.76:357~368
    Smith, C M.1989. Plant resistance to insects-a fundamental approach. New York: Wiley﹠Sons:286
    Smith C M.2005. Plant resistance to arthropods: molecular and conventional approaches. Netherlands:Springer publisher:1~19
    Sogawa K.1973. Feeding behavior of the brown planthopper and brown planthopper resistance of indicarice Mudgo (Bulletin No.4). Nagoya, Japan: Nagoya University.
    Sogawa K.1978. Variation in guslatory response to amino acid-sucrose solution among biotypes of thebrown planthopper. International Rice Research Notes,3:9
    Sun X L, Wang G C, Cai X M, Jin S, Gao Y, Chen Z M.2010. The Tea Weevil, Myllocerinus aurolineatus,is attracted to volatiles induced by conspecifics. Journal of Chemical Ecology,36:388~395
    Szalma S J, Buckler E S, Snook M E, Mcmullen M D.2005. Association analysis of candidate genes formaysin and chlorogenic acid accumulation in maize silks. Theor. Appl. Genet.110:1324~1333
    Tan G X, Weng Q M, Ren X, Huang Z, Zhu L L, He G C.2004. Two whitebacked planthopper resistancegenes in rice share the same loci with those for brown planthopper resistance. Heredity,92:212~217
    Theilling K M, Croft B A.1988. Pesticide side-effects on arthropod natural enemies: A database summary.Agriculture, Ecosystem﹠Environment,21:191~218
    Tjallingii W F.1988. Electrical recording of stylet penetration activities. Aphids, Their Biology, NaturalEnemies and Control (ed. by Minks A K and Harrewijn P), The Netherlands: Elsevier, Amsterdampublisher:95~108
    Tjallingii, W F, Hongesch T H.1993. Fine structure of aphid stylet routes in plant tissues in correlationwith EPG signals. Physiological Entomology,18:317~328
    Trebicki P, Harding R M, Powell K S.2009. Anti-metabolic effects of Galanthus nivalis agglutinin andwheat germ agglutinin on nymphal stages of the common brown leafhopper using a novel artificial dietsystem. Entomologia Experimentalis et Applicata131:99~105
    Woodhead S, Chapman R F.1986. Insect behaviour and the chemistry of plant surface waxes. London:Edward Arnold Ltd. publisher:123~136
    Xia J Y.1996. The research and application of cotton variety resistance to pest. Cotton Science,8(2):57~64
    Xue K, Wang X Y, Huang C H, Wang R J, Yan F M, Xu C R.2009. Stylet penetration behaviors of thecotton aphid Aphis gossypii on transgenic Bt cotton. Insect Science,16:137~146
    Yukio Kosugi.2010. A laboratory method for rearing tea green leafhopper, Empoasca onukii Matsuda byusing tea seedlings as oviposition sites and as food. Tea Research Report,109:57~61
    Yin H D, Wang X Y, Xue K, Huang C H, Wang R J, Yan F M, Xu C R.2010. Impacts of transgenic Btcotton on the stylet penetration behaviors of Bemisia tabaci biotype B: Evidence from laboratoryexperiments. Insect Science,17:344~352
    Zhang F, Zhu L, He G.2004. Differential gene exp ression in response to brown planthopper feeding inrice. J Plant Physiol.,161:53~62
    Zúniga G E, Corcuera L J.1986. Effect of gramine in the resistance of barley seedlings to the aphidRhopalosiphum padi. Entomol. Exp. Appl.,40:259~262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700