基于智能信息处理的煤与瓦斯突出的预警预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,煤与瓦斯突出事故频发,尤其是在一些自动化程度相当高的矿井甚至是低瓦斯矿井也开始出现突出事故,突出事故已然成为煤炭行业可持续发展的制约因素。如何更加精确地对煤与瓦斯突出进行预测预警成为亟需解决的重要问题。论文以国家自然科学基金为依托,以煤矿具体项目为实际研究背景,对煤与瓦斯突出的预测预警进行了深入研究。本文的研究工作主要包括以下四个方面:
     (1)综合了煤与瓦斯突出事故的预警预测理论模型。对比分析了国内外煤与瓦斯突出机理的各类假说和煤与瓦斯突出预测技术的研究现状,基于智能信息处理对煤与瓦斯突出预测预警进行了深入研究。
     (2)建立了粒子群优化神经网络的煤与瓦斯突出危险性区域预测模型。针对基于BP神经网络的煤与瓦斯突出危险性区域预测模型存在收敛速度慢、极易陷入局部极值等问题,结合了粒子群优化算法极强的全局搜索能力和BP算法快速的局部搜索能力,提出了结合粒子群优化算法与BP神经网络算法的煤与瓦斯突出危险性区域预测模型。实验表明,该预测模型与基于BP神经网络的预测相比,在收敛速度和泛化能力上均有很大提高。
     (3)建立了基于粒子群优化的PSO-SVM的瓦斯时间序列突出预测模型,对瓦斯浓度时间序列进行了e -SVR回归预测研究,基于PSO对SVM瓦斯浓度模型进行了优化,利用软阈值小波去噪法对煤矿监测监控系统中的工作面瓦斯浓度时间序列进行了去噪分析。通过调整支持向量机不敏感损失参数e对瓦斯浓度时间序列进行预测建模,分析比较了SVM参数变化对预测精度的影响,最后对预测误差进行了分析。
     (4)建立了瓦斯浓度突出的DFNN预警模型,通过模糊RBF神经网络对模糊控制器的隶属度函数值进行训练,DFNN模型即可表达定性知识,又能表达定量知识,具有强大的自学习能力,实现了对瓦斯突出的提前预警目的,灵活性好,综合性强,准确性高,具有较好的应用前景。最后通过Matlab仿真实验验证了模型的可行性。
This paper analyzes the warning and prediction theory model based on comprehensive causation. Various hypotheses based on gas geological theory thought that coal and gas outburst is the result of joint action of crustal stress, gas pressure and coal body structure. It only gave explanation to the phenomenon, but could not work out unified and complete outburst theory. This paper establishes warning and prediction theory of serious coal and gas accident through the revelation of its causation chain and complicated mechanism.
     This paper makes in-depth comparison of PSO and GA (Genetic Algorithm) and integrates PSO and NN. For the insuperable problems of BP algorithm based on gradient descent like falling into local extremum and low convergence speed, it brings the PSO into the optimization of connection weight of NN and applies it to the prediction of serious coal and gas accidents. The simulation result proves that the algorithm is easy to be realized and with fast convergence speed.
     Making use of wavelet soft-threshold de-noising method, we de-nose according to the gas concentration time series of the working place obtained from KJ98 observation system of Luling Coal Mine. Through the adjustment of insensitive parameter e of support vector machine, we establish prediction model for gas concentration time series and analyze the influence of different parameters to prediction precision. Based on PSO, we optimize gas concentration model of support vector machine and obtain optimal pair parameters through the calculation of simulation result. Combined with prediction model of optimal parameter to gas concentration time series, we also analyze e - SVR parameter and prediction error, and makes detail comparison of the influence of training sample size to prediction precision.
     This paper also makes detail study of fuzzy logical system and NN, and establishes D-FNN warning model of gas outburst. The model can show qualitative knowledge and has capacity in self-learning and processing of quantitative data. It passes the verification of simulation experiment and realizes the prediction of gas outburst.
引文
[1]陈红,祁慧,汪鸥,龙如银.中国煤矿重大事故故意违章行为影响因素结构方程模型研究[J].系统工程理论与实践, 2007, (8): 127-128.
    [2]国家煤矿安全监察局. http://www.chinasafety.gov.cn
    [3]蔡金清.基于以太网的工业网络控制系统研究[D].天津:天津工业大学, 2005.
    [4]陈积明,王智,孙优贤.工业以太网的研究现状及展望[J].化工自动化及仪表, 2001, (6): 1-4.
    [5]胡穗延.全矿井综合自动化控制系统[J].煤矿自动化, 1998, (3): 1-3.
    [6]华钢.煤矿安全生产综合调度系统关键技术研究[D].徐州:中国矿业大学, 2002.
    [7]钱建生.矿井多媒体综合业务数字网关键技术的研究[D].徐州:中国矿业大学, 2003.
    [8]钱建生,曹国清,陈治国.矿井多媒体综合业务数字网络模型的研究[J].煤炭科学技术, 2003, (5): 34-38.
    [9]钱建生,曹国清,陈治国.矿井多媒体综合业务数字网关键技术的研究[J].工矿自动化, 2005, (2): 1-4.
    [10]钱建生,陈治国,张剑英.煤与瓦斯突出电磁辐射在线监测系统的设计[J].工矿自动化, 2002, (4): 1-3.
    [11]钱建生,黄朝晖,曹国清.基于VPN的分布式安全监控系统的设计[J].煤炭科学技术, 2004, (2): 24-26.
    [12]钱建生,李世银,顾军.煤矿分布式安全生产调度指挥系统的研究[J].华北科技学院学报, 2005, 2(6): 5-11.
    [13]钱建生,赵培培,李鹏.工业以太网交换技术在煤矿中的应用[J].煤炭科学技术, 2005, (7): 12-14.
    [14]王之仓.基于智能信息处理的计算机发展研究[J].青海师范大学学报(自然科学版), 2007, (4).
    [15]叶鹰.智能信息处理的基础理论探讨[J].情报科学, 2008, 26(9).
    [16]阎平凡.智能信息处理与神经网络研究[J].数据采集与处理, 2008, 16(1).
    [17]何明一.智能化信号信息处理技术的发展与展望[J].世界电信, 1995, (4).
    [18]李垠.基于智能信息处理的车牌识别的算法研究[D].吉林:吉林大学, 2008.
    [19]林士敏.机器学习概况[J].广西师范大学学报(自然科学版), 1989, 7(2): 42-48.
    [20]苏淑玲.机器学习的发展现状及其相关研究[J].肇庆学院学报, 2007, 28(2): 41-44.
    [21]张云涛,龚玲.数据挖掘远离与技术[M].北京:电子工业出版社, 2004.
    [22]田云丽,周立华.基于BP神经网络的煤与瓦斯突出预测方法的研究[J].系统工程理论与实践, 2005, 25(12): 102-106.
    [23]张立志,程磊.基于人工神经网络的煤与瓦斯突出预测[J].矿业安全与环保, 2004, 35(9): 1-4.
    [24]张瑞林.现代信息技术在煤与瓦斯突出区域预测中的应用[D].重庆:重庆大学, 2004.
    [25] Bazi Y, Melgani F. Toward an optimal SVM classification system for hyperspectralremotesensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3374-3385.
    [26] Haasdonk B. Feature space interpretation of SVMs with indefinite kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(4): 482-492.
    [27] Zhou S, Wang K. Localization site prediction for membrane proteins by integrating rule and SVM classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(12): 1694-1705.
    [28] Cortes C, Vapnik VN. Support Vector Networks[J]. 1995, 20: 273-297.
    [29]裴小菲.基于灰色理论的瓦斯浓度关联分布研究[D].徐州:中国矿业大学, 2008.
    [30]邵良杉,付贵祥.基于数据挖掘的瓦斯信息识别与决策[J].辽宁工程技术大学学报(自然科学版), 2008, 27(2): 288-291.
    [31]王恩元,何学秋.煤岩变形破裂电磁辐射的实验研究[J].地球物理学报, 2000, 43(1): 131-137.
    [32]徐慧.数据挖掘技术在煤与瓦斯突出预测中的应用研究[J].煤矿设计, 2000, (3): 17-19.
    [33]赵苏启.煤矿事故多发的主要原因[J].矿山安全, 2003, (6): 84-86.
    [34]于不凡.减少我国瓦斯突出事故的对策[J].煤炭工程师, 1992, (4): 38.
    [35]中华人民共和国煤炭工业部.防治煤与瓦斯突出细则[M].北京:煤炭工业出版社, 1995.
    [36]蔡栓荣.利用声发射技术预测预报煤与瓦斯突出[J].煤炭地质与勘探, 1998, 6(26): 60-65.
    [37]樊栓保.国内外煤与瓦斯突出预测的新方法[J].矿业安全与环保, 2000, (5): 17-19.
    [38]付华,王雨虹.基于数据挖掘的瓦斯灾害信息融合模型的研究[J].传感器与微系统, 2008, 27(1): 52-54.
    [39]国汉君.关于煤矿事故致因理论的探讨[J].煤矿安全, 2005, (11): 75-76.
    [40]黄为勇,童敏明,任子晖.基于SVM的瓦斯涌出量非线性组合预测方法[J].中国矿业大学学报, 2009, 38(2): 234-239.
    [41]李俊亮.声发射预测煤与瓦斯突出危险性技术研究[D].西安:西安电子科大, 2009.
    [42]李忠辉,王恩元,何学秋,刘贞堂,宋霞女.电磁辐射实时监测煤与瓦斯突出在煤矿的应用[J].煤炭科学技术, 2005, 33(9): 31-33.
    [43]刘程,赵旭生,谈国文,周政林,罗培荣,雷洪波.煤与瓦斯突出综合预警技术实现原理及应用[J].煤矿安全, 2010, (5): 15-17.
    [44]刘富强.多媒体及其关键技术在煤矿监测监控系统中的应用研究[D].徐州:中国矿业大学, 1998.
    [45]吕绍林,何继善.瓦斯突出煤体的粒度分形研究[J].煤炭科学技术, 1999, 27(2): 46-48.
    [46]孟伟东,王延斌,倪小明.基于GIS的煤与瓦斯突出综合模糊预测系统[J].采矿技术, 2008, (5): 79-81.
    [47]缪燕子.多传感信息融合理论及在矿井瓦斯突出预警系统中的应用研究[D].徐州:中国矿业大学, 2009.
    [48]南存全,冯夏庭.基于模式识别的煤与瓦斯突出区域预测[J].东北大学学报(自然科学版), 2004, 25(9): 903-905.
    [49]聂百胜,何学秋,王恩元.煤与瓦斯突出预测技术研究现状和发展趋势[J].中国安全科学学报, 2003, 13(6): 40-43.
    [50]牛立东.基于瓦斯地质理论的煤与瓦斯突出机理分析[J].山西煤炭管理干部学院学报, 2008, (1): 100-102.
    [51]漆旺生,凌标灿,蔡嗣经.煤与瓦斯突出预测研究动态及展望[J].中国安全科学学报, 2003, 13(12): 1-4.
    [52]宋卫华.煤与瓦斯突出区域预测研究[D].辽宁:辽宁工程技术大学, 2004.
    [53]孙重绪.矿井煤与瓦斯突出危险的连续预测技术及系统[J].煤矿设计, 1996, (10): 26-30.
    [54]汤友谊,陈江峰.瓦斯突出煤体探测的物性前提及应用[J].焦作工学院学报, 2000, 19(6): 407-410.
    [55]屠锡根.我国煤矿瓦斯防治工作现状与展望[J].煤矿安全, 1995, (2): 3-7.
    [56]王宏图,鲜学福.用温度指标预测掘进工作面突出危险性的探讨[J].重庆大学学报(自然科学版), 1999, 22(3): 34-38.
    [57]王凯,俞启香.煤与瓦斯突出的非线性特征及预测模型[M].徐州:中国矿业大学出版, 2005.
    [58]鲜学福,许江,王宏图.煤与瓦斯突出潜在危险区(带)预测[J].中国工程科学, 2001, 2(3): 39-45.
    [59]辛海会,徐超,杜欣.煤与瓦斯突出工作面预测技术发展现状分析[J].山东煤炭科技, 2010, (1): 200-202.
    [60]颜家渊,陈本平.国内外瓦斯突出预测预报仪器现状及发展方向[J].煤炭工程师, 1998, (3).
    [61]于不凡.防止煤矿瓦斯爆炸技术分析[J].煤矿安全, 1990, (12): 16-28.
    [62]张宏伟,陈学华,王魁军.地层结构的应力分区与煤瓦斯突出预测分析[J]. 2000, 19(4): 462-465.
    [63]张剑英,马珊珊,陈治国.煤与瓦斯突出电磁辐射的监测及应用[J].数据采集与处理, 2004, 3(19): 91-94.
    [64]张豫生.基于地质构造的煤与瓦斯突出预测研究[D]:辽宁工程技术大学, 2006.
    [65]章壮新,吴桂义.煤与瓦斯突出预测模糊专家系统[J].贵州工业大学学报(自然科学版), 2001, (6): 21-24.
    [66]赵冬玲,杨小影,杨艳.基于WEBGIS的瓦斯突出预测系统设计[J].煤炭工程, 2008, (5): 106-108.
    [67]赵帅,季淮君,盛真可.煤与瓦斯突出预测技术发展现状分析[J].山西焦煤科技, 2009, (10): 24-27.
    [68]赵旭生,邹云龙.近两年我国煤与瓦斯突出事故原因分析及对策[J].矿业安全与环保, 2010, (1): 84-87.
    [69]周为军.芦岭煤矿煤与瓦斯突出的地质因素分析及防治对策[J].湘潭师范学院学报(自然科学版), 2009, 31(1): 108-110.
    [70]郝吉生. BP算法及其在煤与瓦斯突出预测中的应用[J].辽宁工程技术大学学报(自然科学版), 2004, 23(1): 9-11.
    [71]高莉.信息融合在煤矿监测监控系统中的应用研究[D].徐州:中国矿业大学, 2006.
    [72]程健.核机器学习及其应用研究[D].徐州:中国矿业大学, 2008.
    [73]白静宜.基于混沌时间序列的瓦斯浓度预测研究[D].徐州:中国矿业大学, 2008.
    [74]程健,白静宜,钱建生,李世银.基于混沌时间序列的煤矿瓦斯浓度短期预测[J].中国矿业大学学报, 2008, (02).
    [75]尹洪胜.煤矿瓦斯时间序列分析方法与预警研究[D].徐州:中国矿业大学, 2010.
    [76]于不凡.谈煤与瓦斯突出机理[J].煤炭科学技术, 1979, (8): 35-42.
    [77]于不凡.煤与瓦斯突出机理概述[J].矿业安全与环保, 1979: 56-65.
    [78]李中成.煤巷掘进工作面煤与瓦斯突出机理探讨[J].煤炭学报, 1987, 3(1): 17-26.
    [79]俞善炳.恒稳推进的煤与瓦斯突出[J].力学学报, 1988, (2): 97-106.
    [80]丁晓良,俞善炳,丁雁生,寇绍全,谈庆明,郑哲敏.煤在瓦斯渗流作用下持续破坏的机制[J].中国科学, 1989, (6): 12-16.
    [81]丁晓良,丁雁生,愈善炳.煤在瓦斯一维渗流作用下的初次破坏[J].力学学报, 1990, (2): 154-162.
    [82]李萍丰.浅谈煤与瓦斯突出机理的假说-二相流体假说[J].煤炭安全, 1981, (11): 29-36.
    [83]余楚新,鲜学福.划分煤与瓦斯突出潜在危险区能量指标的初步研究[J].矿业安全与环保, 1989, (6): 12-16.
    [84]余楚新,鲜学福.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报, 1989, 9(12): 1-10.
    [85]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报, 1990, 19(2): 1-7.
    [86]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全, 1995, (2): 17-25.
    [87]薛强,梁冰,刘晓丽.填埋场中气体运移的非稳定耦合渗流数学模型[J].岩土力学, 2002, 23(2): 191-195.
    [88]乔继延,丁桦,郑哲敏.爆炸排淤填石法机理研究[J].岩土工程学报, 2004, (3): 349-352.
    [89]陈红,祁慧,谭慧.中国煤矿重大瓦斯爆炸事故中的人因及度量[J].科技导报, 2005, (10): 41-44.
    [90] Baskar S, Alphones A, Suganthan PN. Concurrent PSO and FDR-PSO based reconfigurable phase-differentiated antenna array design[C]. CEC2004, IEEE Conferences, 2004, 2173-2179.
    [91] Guanghui Z, Yuewen J. A Modified PSO Algorithm with Line Search[C]. Computational Intelligence and Software Engineering, International Conference, 2010, 1-4.
    [92] Jianfang W, Weihua L. Based on Extended T-S Fuzzy Model of Self-Adaptive Disturbed PSO Algorithm [C]. Information and Computing Science, IEEE Conferences, 2009, 150-153.
    [93] Junying C, Zheng Q, Ji J. A PSO-based subtractive clustering technique for designing RBF neural networks[C]. IEEE World Congress on Computational Intelligence, 2008, 2047-2052.
    [94] LanLan Z, Ling W, Xiuting W, Ziyuan H. A Novel PSO-Inspired Probability-based Binary Optimization Algorithm[C]. Information Science and Engineering, IEEE Conferences, 2008, 248-251.
    [95] Soudan B, Saad M. An Evolutionary Dynamic Population Size PSO Implementation[C]. Information and Communication Technologies: From Theory to Applications, Proceedings of IEEE Conferences, 2008, 1-5.
    [96] Wei J, Hai Z, Chunhe S, Dan L. A optimized particle filter based on PSO algorithm[C]. International Conference on Future Digital Object Identifier, 2009, 122-125.
    [97] Xiang L, Ximing L, Gang Y, Zuqiang L, Qinghua L. Using co-line search technique to improve performance of PSO[C]. 27th Chinese Control Conference, 2008, 49-52.
    [98] Bergh FVD. An analysis of particle swarm optimizers[D]. Pretoria, South Africa: University of Pretoria, 2002.
    [99] Blackwell TM. Particle swarm and population diversity[J]. Soft computing, 2005, 9(1): 793-802.
    [100] Cai X, Cui Z, Zheng J. Individual Parameter Selection Strategy for Particle Swarm Optimization[J]. Particle Swarm Optimization, 2009: 89-112.
    [101] He Q, Wang L. A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization[J]. Applied Mathematics and Computation, 2007, 186(2): 1407-1422.
    [102] He S, Wu QH, Wen JY. A particle swarm optimizer with passive congregation[J]. BioSystem, 2004, 78(1-3): 135-147.
    [103] Jiao B, Lian Z, Gu X. A dymatic inertia weight particle swarm optimization algorithm[J]. Chaos, Solitions and Fractals, 2008, 37(3): 689-705.
    [104] Jordan J, Helwig S, Wanka R. Social interaction in particle swarm optimization, the ranked FIPS, and adaptive multi-swarm[C]. Proceeding of the Genetic and Evolutionary Computation Conference, 2008, 49-56.
    [105] Kadirkamanathan V, Selvarajah K, Fleming PJ. Stability analysis of the particle dynamics in particle swarm optimizer[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 245-255.
    [106] Kennedy J. Bare bones particle swarms[C]. Proceedings of the IEEE Swarm Intelligence Symposium, 2003, 80-87.
    [107] Lee S, Soak S, Oh S. Modified binary particle swarm optimization[J]. Progress in Natural Science, 2008, 18: 1161-1166.
    [108] Liang JJ, Suganthan PN. Dynamic multi-swarm particle swarm optimizer[C]. IEEE International Swarm Intelligent Symposium, 2005, 124-129.
    [109] Liu B, Wang L, Jin Y, Tang F, Huang D. Improved particle swarm optimization combined with chaos[J]. Chaos, Solitions and Fractals, 2005, 25(5): 1261-1271.
    [110]王伟.人工神经网络原理[M].北京:北京航空航天大学出版社, 1995.
    [111]陈兆国.时间序列及其谱分析[M].北京:科学出版社, 1988.
    [112]王婷婷,钱晓东.时间序列的非线性趋势预测及应用综述[J].计算机工程与设计, 2010, 31(7): 1545-1549.
    [113]王晓晔.时间序列数据挖掘中相似性和趋势预测的研究[D].天津:天津大学, 2003.
    [114]曾海泉.时间序列挖掘与相似性查找技术研究[D].上海:复旦大学, 2003.
    [115] Ai-Jun L, Yun-Hui L, Ying-Jian Q, Si-Wei L. An approach for fast subsequence matchingthrough KMP algorithm in time series databases[C]. Machine Learning and Cybernetics, Proceedings, 2002, 1292-1295.
    [116] Cao LJ, Tay FEH. Support vector machine with adaptive parameters in financial time seriesforecasting[J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1506-1508.
    [117] Last M, Klein Y, Kandel A. Knowledge discovery in time series databases [J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 2001, 31(1): 160-169.
    [118] Perng CS, Wang H, Zhang SR, Parker DS. Landmarks: a new model for similarity-based pattern querying in time series databases[C]. Proceedings of the 16th International Conference, 2000, 33-42.
    [119]常学将.时间序列分析[M].北京:高等教育出版社, 1993.
    [120]王耀动,张德远,张海雄.经济时间序列分析[M].上海:上海财经大学出版社, 1996.
    [121]吴怀宇.时间序列分析与综合[M].武汉:武汉大学出版社, 2004.
    [122]杨叔子,吴雅.时间序列分析的工程应用(上、下)[M].武汉:华中理工大学出版社, 1991.
    [123]张树京,齐立心.时间序列分析简明教程[M].北京:清华大学出版社, 2003.
    [124]田雨波.混合神经网络技术[M], 2009.
    [125]吴财芳,曾勇,秦勇.神经网络分析方法在瓦斯预测中的应用[J].地球科学进展, 2004, 19(5): 860-866.
    [126]吴强.基于神经网络的煤与瓦斯突出预测模型[J].中国安全科学学报, 2001, (8): 69-72.
    [127]熊永强,刘新喜,廖巍,赵云胜.基于人工神经网络的工作面煤与瓦斯突出预测方法[J].安全与环境工程, 2002, 12(9): 27-29.
    [128]杨智懿,熊亚选,张乾林.工作面瓦斯涌出量的神经网络模型预测研究[J].煤炭工程, 2004, (10): 73-75.
    [129]张春,题正义,周云鹏.神经网络计算方法在煤与瓦斯突出预测中的应用[J].煤炭工程, 2004, (7): 49-52.
    [130]张延波,王金国.运用神经网络预测矿井瓦斯涌出量方法的探讨[J].江西煤炭科技, 2004, (3): 9-11.
    [131]郝吉生,袁崇孚.模糊神经网络技术在煤与瓦斯突出预测中的应用[J].煤炭学报, 1999, 24(6): 624-627.
    [132]伍世虞,徐军.动态模糊神经网络设计与应用[M].北京:清华大学出版社, 2008.
    [133]崔锦泰.小波分析导论[M].西安:西安交通大学出版社, 1995.
    [134]段虞荣,郑继明,郑绍光.小波分析在油气田地球物理勘探中的应用[J].重庆大学学报(自然科学版), 1996, 19(6): 44-53.
    [135]刘贵忠,邸双亮.小波分析及应用[M].西安:西安电子科技大学出版社, 1995.
    [136] Vapnik VN, Zhikai Z, Jane S. Estimation of dependencies based on empirical data[M]. New York: Springer Verlag, 1982.
    [137] Vapnik VN, Chervonenkis AY. On the uniform convergence of relative frequencies of events to their probabilities[J]. Journal Theory of Probability and Applications, 1971, 16(2): 264-280.
    [138] Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers[C]. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, 1992, Pittsburgh: ACM Press, 144-152.
    [139] Vapnik VN, Chervonenkis AY. The necessary and sufficient conditions for consistency in theempirical risk minimization method[J]. Pattern Recognition and Image Analysis, 1991, 1(3): 283-305.
    [140] Vapnik VN. The nature of statistical learning theory[M]. New York: Spring-Verlag, 1995.
    [141] Axelberg PGV, Irene YHG, Bollen MHJ. Support vector machine for classification of voltage disturbances[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1297-1303.
    [142] He J, Hu HJ, Harrison R, Tai PC, Pan Y. Rule generation for protein secondary structure prediction with support vector machines[J]. IEEE Transactions on NanoBioscience, 2006, 5(1): 46-53.
    [143] Sch?lkopf B, Smola AJ, Müller KR. Nonlinear component analysis as a kernel eigenvalue problems[J]. Neural Computation, 1998, 10(5): 1299-1319.
    [144] Müller KR, Mika S, R?tsch G. An introduction to kernel-based learning algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2): 42-48.
    [145]薄列峰.大规模核机器学习研究[D].西安:西安电子科技大学, 2007.
    [146] Abhijit VK, Jayaraman BD, Kulkarni. Control of chaotic dynamical systems using support vector machines[J]. Physical Letters A, 2003, 317: 429-435.
    [147] Bao L, Sun Z. Identifying genes related to drug anticancer mechanism using support vector machine[J]. FFBS letters, 2002, 521(1): 109-114.
    [148] Burges C. A Tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
    [149] Cai YD, Liu XJ, Xu XB. Prediction of protein structural classes by support vector machines[J]. Computers and Chemistry, 2002, 26(3): 293-296.
    [150] Chapelle O. Support vector machine: Introduction principles, adaptive tuning and prior knowledge[D]: University Paris, 2002.
    [151] Chapelle O, Vapnik V. Choosing Parameters for Support Vector Machines[J]. MachineLearning, 2002, 46(1): 131-160.
    [152] Cristianini N, Schiawe-Taylor J. An Introduction to Support Vector Machines[M]. Cambridge: Cambridge University Press, 2000.
    [153] Dong JX, Adam K, Ching YS. An improved handwritten Chinese character recognition system using support vector machine[J]. Pattern Recognition Letters, 2005, 26: 1849-1856.
    [154]周伟达.核机器学习方法研究[D].西安:西安电子科技大学, 2003.
    [155] Li J, Allinson N, Tao D, Li X. Multitraining Suppport Vector Machine for Image Retrieval[J]. IEEE Transactions on Image Processing, 2006, 15(11): 3597-3601.
    [156] Liu YH, Chen YT. Face Recognition Using Total Margin-Based Adaptive Fuzzy Support Vector Machines[J]. IEEE Transactions on Neural Networks, 2007, 18(1): 178-192.
    [157] Mitra V, Wang C-J, Banerjee S. Text Classification: A least square support vector machine approach[J]. Applied Soft Computing, 2007, 7(3): 908-914.
    [158] Mohandes MA, Halawani TO, Rehman S. Support vector machines for wind speed prediction[J]. Renewable Energy, 2004, 29: 939-947.
    [159] Scholkopf B, Smola AJ. Learning with Kernel-Support Vector Machines, Regularization, Optimization and Beyond[M]. Cambridge: MIT Press, 2002.
    [160] Shawe-Taylor J, Cristianini N. Kernel Method for Pattern Analysis[M]. New York: Cambridge University Press, 2004.
    [161] Shutao L, James T, Yao NW. Texture classifacation using the support vector machines[J]. Pattern Recognition, 2003, 36: 2883-2893.
    [162] Tony VG, Johan AK, Suykens DB. Financial time series prediction using least squres support vector machine within the evidence framework[J]. IEEE Transactions on Neural Networks, 2001, 12(4): 809-821.
    [163] Valentini, Giorgio. Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles[J]. Artificial Intelligence in Medicine, 2002, 26(3): 281-304.
    [164] Vapnik V, Mukherjee S. Support Vector Method for Multivariate Density Estimation[J]. Advances in Neural Information Processing Systems, 2000: 659-665.
    [165] Wang T, Chiang H. Fuzzy support vector machine for multiclass text categorization[J]. Information processing and Management, 2007, 43(4): 914-929.
    [166] Weston J, Gammerman A, Stitson MO. Support Vector Density Estimation[M]. Cambridge: MIT Press, 1999.
    [167] Yongmin L, Shao GG, Jamie S. Support vector machine based multi-view face detectionand recognition[J]. Image and Vision Computing, 2004, 22: 413-427.
    [168]邓乃扬,田英杰.数据挖掘中的新方法—支持向量机[M].北京:科学出版社, 2004.
    [169] Chan FK-P, Fu AW-C, Yu C. Haar wavelets for efficient similarity search of time-series: with and without time warping[J]. Knowledge and Data Engineering, 2003, 15(3): 686-705.
    [170] Daubechies I. Orthonormal bases of compactly supported wavelets[J]. Communications on Pure and Applied mathematics, 1988.
    [171] Grossmmann A, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape[J]. J Math Anal, 1984, 15: 723-736.
    [172] Mallat SG. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
    [173] Popivanov I, Miller RJ. Similarity search over time-series data using wavelets[C]. Proceedingsof the 18th International Conference, 2002, 212-221.
    [174] Wensheng W, Jing D. Wavelet network model and its application to the prediction of hydrology[J]. Nature and Science, 2003, 1(1).
    [175]王航.用小波变换提取局部放电信号[J].清华大学学报(自然科学版), 1998, 38(6): 119-122.
    [176]杨福生.小波变换的工程分析与应用[M].北京:科学出版社, 2003.
    [177]张河,张庆.调频高斯小波变换及其程序[J].信号处理, 1997, 9(13): 221-226.
    [178] Monson CK, Seppi KD. The Kalman swarm-A new approach to particle motion in swarm optimization[J]. Lecture notes in computer science, 2004, 3102: 140-150.
    [179] Ozcan E, Mohan CK. Analysis of a simple particle swarm optimization system[J]. Intelligent Engineering Systems Through Artificial Neural Networks, 1998, 8: 253-258.
    [180] Shi Y, Eberhart RC. Fuzzy adaptive particle swarm optimization[C]. Proceedings of Congr Evolutionary Computation, 2001 101-106.
    [181] Trelea IC. The particle swarm optimization algorithm: Convergence analysis and parameter selection[J]. Information Processing Letters, 2003, 85(6): 317-325.
    [182] Xi M, Sun J, Xu W. A improved quantum-behaved particle swarm optimization algorithm with weighted mean best position[J]. Applied Mathematics and Computation, 2008, 205(2): 751-759.
    [183] Zhang LP, Yu HJ, Hu SX. A new approach to improve particle swarm optimization[J]. Lecture notes in computer science, 2003, 2723: 134-139.
    [184]陈功贵,杨俊杰,孙永发,钟建伟.随机局部搜索扰动的粒子群优化算法[J].计算机应用, 2008, 28(01): 94-96.
    [185]寇蔚,孙丰瑞,杨立.多粒子群优化算法和RBF神经网络在缺陷故障参数红外智能识别中的应用[J].数据采集与处理, 2008, (B09): 66-72.
    [186]林川,冯全源.基于粒子群优化算法思想的组合自适应滤波算法[J].电子与信息学报, 2009, 31(5): 1245-1248.
    [187]刘栋,郝婷,刘希玉.基于动态概率变异的Cauchy粒子群优化[J].计算机工程与应用, 2007, 43(16): 77-79.
    [188]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报, 2004, 32(3): 416-420.
    [189]杨俊杰,周建中,方仍存,李英海,刘力.基于自适应网格的多目标粒子群优化算法[J].系统仿真学报, 2008, 20(21): 5843-5847.
    [190]许徽.基于离子群优化的支持向量机研究及其在瓦斯浓度预测中的应用[D].徐州:中国矿业大学, 2010.
    [191]张剑英,许徽,陈娟,曹新德.基于粒子群优化的支持向量机在瓦斯浓度预测中的应用研究[J].工矿自动化, 2010, (10): 32-35.
    [192] Chi-Hsu W, Jung-Sheng W. On the equivalence of a table lookup (TL) technique and fuzzy neural network (FNN) with block pulse membership functions (BPMFs) and its application to water injection control of an automobile[J]. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 2008, 38(4): 574-580.
    [193] Chin-Teng L, Wen-Chang C, Sheng-Fu L. An on-line ICA-mixture-model-based self-constructing fuzzy neural network[J]. Circuits and Systems, 2005, 52(1): 207-221.
    [194] Ali MS, Balasubramaniam P. Exponential stability of uncertain stochastic fuzzy BAM neural networks with time-varying delays[J]. Neurocomputing, 2009, 72(4-6): 1347-1354.
    [195] Brouwer RK. A fuzzy recurrent artificial neural network (FRANN) for pattern classification[J]. Internaltional Journal of Uncertain, Fuzziness and Knowledge-Based Systems, 2000, 8(5): 525-538.
    [196] Deng XS, Wang XZ. Incremental learning of dynamic fuzzy neural networks for accurate system modeling[J]. Fuzzy Sets and Systems, 2009, 160(7): 972-987.
    [197] Gobi AF, Pedrycz W. The potential of fuzzy neural networks in the realiztion of approximate reasoning engines[J]. Fuzzy Sets and Systems, 2006, 157(22): 2954-2973.
    [198] Juang CF, Chen LT. Moving object recongnition by a shape-based neural fuzzy network[J]. Neurocomputing, 2008, 71(13-15): 2937-2949.
    [199] Juang CF, Chen TM. Birdsong recongnition using prediction-based recurrent neural fuzzy networks[J]. Neurocomputing, 2007, 71(1-3): 121-130.
    [200] Juang CF, Chung IF. Recurrent fuzzy network design using hybrid evolutionary learningalgorithms[J]. Neurocomputing, 2007, 70(16-18): 3001-3010.
    [201] Konar A, Chakraborty UK, Wang PP. Supervised learning on a fuzzy Petri net[J]. Information Sciences, 2005, 172(3-4): 397-416.
    [202] Leng G, Prasad G, McGinnity TM. An on-line algorithm for creating self-organizing fuzzy nearal networks[J]. Neural Networks, 2004, 17(14): 1477-1493.
    [203] Lou XY, Cui BT. Robust asymptotic stability of uncertain fuzzy BAM nearal networks with time-varying delays[J]. Fuzzy Sets and Systems, 2007, 158(24): 2746-2756.
    [204] Mastorocostas PA, Theocharis JB. An orthogonal least-squares method for recurrent fuzzy-neural modeling[J]. Fuzzy Sets and Systems, 2003, 140(2): 285-300.
    [205] Niu SY, Jiang HJ, Teng ZD. Exponential stability and periodic solutions of FCNNs with variable coefficients and time-varying delays[J]. Neurocomputing, 2008, 71(13-15): 2929-2936.
    [206] Pedrycz W. Genetic tolerance fuzzy neural networks: From data to fuzzy huperboxes[J]. Neurocomputing, 2007, 70(7-9): 1403-1413.
    [207] Simpson PK. Fuzzy Min-Max neural networks-part2:clustering[J]. IEEE Transactions on Fuzzy Systems, 1993, 1: 32-45.
    [208] Singh M, Srivastava S, Hanmandlu M. Type-2 fuzzy wavelet networks (T2FWN) for system identification using fuzzy differential and Lyapunov stability algorithm[J]. Applied Soft Computing, 2009, 9(3): 977-989.
    [209] Wang XS, Cheng YH, Yi JQ. A fuzzy Actor-Critic reiforcement learning network[J]. Information Science, 2007, 177(18): 3764-3781.
    [210] Yuan K, Cao JD, Deng JM. Exponential stability and periodic solutions of fuzzy cellular networks with time-varying delays[J]. Neurocomputing, 2006, 69(13-15): 1619-1627.
    [211] Zdeh LA. Fuzzy Set[J]. Information and Control, 1965, 8(3): 338-358.
    [212] Zou E, Li X, Zhang T. Chaos optimization algorithm design for fuzzy neural network[J]. Control Theory & Applications, 2005, 22(4): 578-582.
    [213]王永骥,涂健.神经元网络控制[M].北京:机械工业出版社, 1998.
    [214] Singh A, Quek C, Cho S-Y. A novel yager-based fuzzy neural network with the discrete clustering technique [J]. Neural Networks, IEEE Transactions on 2008, 19(4): 625-644.
    [215] Zhaoxia W, Tingzhu H, Zengqiang C, Zhuzhi Y. Predicting nonlinear network traffic using fuzzy neural network[C]. Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia, 2003, 1697-1701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700