钢箱梁桥面铺装力学行为与结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大跨径桥梁的不断建设,基于正交异性板的钢箱梁的应用越来越普遍,钢箱梁桥面铺装修筑已成为大跨度桥梁建设的关键技术之一。国内外针对钢桥面铺装开展了不少研究,取得了一定的成果。但是由于我国车辆的重载超载严重,即使使用性能优异、价格昂贵的桥面铺装材料,常常还不能达到设计使用寿命,这说明仅仅依靠铺装材料的改进难以取得大的突破;另一方面,钢箱梁设计一般从箱梁结构安全考虑居多,未综合考虑铺装层受力要求进行钢箱梁和铺装层的一体化设计或结构优化工作。工程实践表明要提高钢箱梁桥面铺装的使用寿命需要有新的设计思路。
     本文针对我国钢箱梁桥面铺装设计的现状,试图从钢箱梁结构改进出发改善桥面铺装的受力状况,提出新的铺装设计思路。首先,通过较全面系统考察传统钢箱梁结构形式下各种要素对铺装力学行为的影响和经济性分析,提出了基于钢箱梁结构改进以减小铺装受力的新方法,并据此进行了新的铺装结构一体化设计研究和实桥试验研究。具体工作如下:
     (1)建立了基于传统钢箱梁正交异性钢桥面板铺装结构的“壳-实体”三维有限元模型,通过分析找出最有可能引起铺装层发生破坏的最不利荷载位置。研究了铺装层和钢箱梁的参数、荷载形式、温度等要素对铺装层受力指标的影响,并针对控制铺装层破坏的主要指标——最大横向拉应变,提出了一个简便的经验公式以指导铺装设计。进而对基于传统钢箱梁结构参数的改进来改善铺装受力的方法进行了经济效益分析,结果表明这些方法的代价是昂贵的。
     (2)从钢箱梁与铺装结构一体化的角度,提出了通过合理设计钢箱梁结构以提高钢箱梁铺装体系的局部刚度,从而达到改善铺装的受力状况的新方法。对于新建桥梁或者整体结构较弱需要加强的已建桥梁,分别推荐了可实施的、经济的小肋加劲方案。以广州珠江黄埔大桥为例,进行了钢箱梁顶板加横向小肋的改进结构的理论分析和实桥试验,试验结果证明了该方法的可行性,并提出了一个简易的经验公式指导铺装设计。
     (3)建立了桥梁整体结构三维鱼骨梁形式的有限元模型,研究了其整体力学行为,并进而研究了考虑全桥内力影响的铺装层力学行为。建立了以全桥内力为边界条件的箱梁铺装层一体化局部分析模型,分析钢箱梁桥面铺装在各种荷载组合下的力学响应。将考虑全桥内力影响的铺装箱梁一体化局部模型分析模型结果与正交异性板模型结果进行对比,表明正交异性板模型总体可以近似地反映铺装层和钢箱梁的受力状况,但纵横剪应力和纵向拉应力误差较大。进行了斜拉桥和悬索桥的铺装箱梁一体化局部模型分析,结果表明二者的铺装层应力有显著的不同,两者不宜简单地都采用相同的正交异性板模型分析。
     (4)首次将MMLS3加速加载设备应用于钢桥面铺装层的足尺试验研究,提出了基于该加速加载系统的铺装疲劳实验设计方法。通过铺装材料加速加载缩比试验,较好地模拟铺装层的实际受力环境,有效地进行了铺装材料的筛选。
With the rapid development of the long-span bridges construction, steel box girders based on the orthotropic slab become more and more popular, which made the pavement on the steel box girder become one of the key point for the bridge construction. Many researches, which have got some achievements, are based on the mechanical analysis of the pavement in and out of China. However our country's traffic conditions are very complicated, for overloaded and oversize vehicles are very common for the transportation, which results in the effect that even expensive epoxy asphalt can not make the steel bridge pavement reach its life span. It can be concluded that the pavement material improvement is not likely to be broken through. Moreover, structure designs of steel box girder are mostly considered for the structural safety, and designs for the optimizing of the pavement's loading are very scarce, which encouraged new model and design method for the pavement design of the steel box girders.
     Aimed at the current pavement design situation for the steel box girder, this paper proposed a new pavement design method for the steel box girder based on reducing the dangerous loading condition by improving the box structure. Firstly, by fully and systematically investigation of the effects of key elements of the box structure on the stresses in pavement and the analysis of the economy, we recommend a new method to improve the loading condition of the pavement by the modification of the box structure, and furtherly we study the new integrative design of the pavement and the box girder, besides, some experiemtns and actual engineering tests were carried out. The details of research works are as following,
     (1) A three-dimensional finite element model for the steel box girder pavement system has been established based on the shell-entity elements to find out the most dangerous loading positon which led to the destruction of the pavement. The mechanical response indexes are studied by parameters of pavement deck, steel box girder, loading conditions, temperatures, and a neat and feasible empirical formula is derived for the maximum transverse tension strain. From the economic analysis for the improvement of the pavement, a new design method is required.
     (2) Compared to the researches which focused on the mechanical behaviors of the pavement, this paper considered the box girder and the pavement structure as aintegrative system, and proposed a method to improve the loading conditions of the pavement, which focused on improving the roof's rigidity of the box girder by optimizing the box structures. Two methods are recommended respectively for the new bridge and the old bridge reinforcement. The method has been verified in the Pearl River Huangpu Bridge by adding small stiffening ribs at the roofs of the box girder. Moreover, a neat and feasible empirical formula is derived for the maximum transverse tension strain of this new structure.
     (3) Based on the three-dimensional finite element model with fishbone beam model, this paper used FEM software ANSYS to analyze the mechanical behavior of the wholes bridges, and analyzed the mechanical response of the pavement system by considering the internal forces in a bridge. We set up pavement-girder integrative local models by applying the internal forces as boundary conditions on the local models to study the mechanics responses under multiple combined loads. The analysis results are compared with these by orthotropic slab models, which shows that orthotropic slab models can reflect the mechanics behaviors approximately though the shear stresses and longitudinal tensile stresses have obvious differences. The analysis of pavement-girder integrative local models of the cable-stayed bridge and the suspension bridge also derive that the internal stresses in the pavements of the two bridges have significant different distributions, it means that it is not appropriate to analyze the two pavement stresses by the orthotropic slab models uniformly.
     (4) A new design method of accelerated loading test on reduced scale for the pavement material is proposed for the better meeting the engineering stress states, which helps to the choose the more duitable pavement material in the engineering.
引文
[1]项海帆.桥梁工程的宏伟发展前景(见桥梁漫笔)[M].中国铁道出版社.1997
    [2]黄卫.润扬长江大桥建设-钢桥面铺装[M].人民交通出版社.2006
    [3]严国敏.现代悬索桥[M].人民交通出版社.2002
    [4]钱冬生.大跨悬索桥的设计与施工(修订版)[M]西南交通大学出版社.1999
    [5]ASCE.Long span suspension bddge:history and performance. [J] Boston. Proc, ASCE. National convention.1979
    [6]Latimer M.Bridge to the future:a celebration of the Brooklyn Bridge. [J] New York Academy of Sciences.1984 Vol.24.247-263
    [7]AmmanOH,et al. Gcoge Washton bridge [J]. Trans,ASCE,1993,Vol.97,43-62.
    [8]Leonhardt F., Zellner W. Past, present and future of cable-stayed bridges[M].1991
    [9]Tang MC. The 40-year evolution of cable-stayed bridges[M].1994
    [10]何为.大跨径悬索桥施工监控中若干问题的研究[D].浙江大学,博士学位论文,2006
    [11]严国敏,现代斜拉桥[M].西南交通大学出版社,1996
    [12]项海帆中国大桥(斜拉桥部分)[M],北京:人民交通出版社,2003
    [13]王伯惠,斜拉桥结构发展和中国经验[M].2004
    [14]林元培.斜拉桥[M].北京:人民交通出版社,2004
    [15]Gimsing N.J. Cable supported bridge Concept and design[M]. New York: John Wiley and Sons,1983
    [16]Podolny W.J.,Scalzi J.B. Construetion and Design of Cable-stayed Bridges[M]. New York: John Wiley and sons,1986
    [17]黄卫,大跨径桥梁钢桥面铺装设计理论与方法[M],中国建筑出版社,2006
    [18]黄彭,任惠清,郭青筠.交通干道钢桥桥面沥青混凝土性能的研究[J].土木工程学报,1994,27(1):67-74
    [19]东南大学,润扬长江公路大桥建设指挥部.润扬长江公路大桥钢桥面铺装技术研究报告[R].2005
    [20]东南大学,南京长江第二大桥建设指挥部.南京长江第二大桥钢桥面环氧沥青混凝土铺装技术及应用[R],2000.
    [21]黄卫,张晓春.大跨径钢桥面铺装理论与设计的研究进展[J].东南大学学报(自然科学 版).2002.Vo1.32,No.3:480-486
    [22]罗立峰,钟鸣,黄成造.桥面铺装设计方法探讨[J].中南公路工程:Vo1.24,No.2,1999(6):20-22
    [23]华南理工大学道路工程研究所,湛江海湾大桥钢桥面铺装研究报告.分报告一,分报告二,分报告三[R].2004,10.
    [24]欧阳杨.大跨径钢箱梁桥面铺装环氧沥青混合料性能研究[D].长安大学硕士学位论文.2008
    [25]宗海.环氧沥青混凝土钢桥面铺装病害修复技术研究[D].南京:东南大学交通学院,2005年3月
    [26]袁登全,杨军,王建伟.江阴大桥钢桥面铺装预防性维修方案[J].淮海工学院学报(自然科学版),2005,14(3):65-67
    [27]刘云,钱振东,程刚.天津大沽桥钢桥面铺装的设计与施工[J].交通运输工程与信息学报,2005,3(4):94-97
    [28]吕伟民.国内外环氧沥青混凝土材料的研究与运用[J].石油沥青.1994(3)
    [29]朱铭义.国产环氧沥青混合料性能研究[D].南京:东南大学交通学院,2006
    [30]李瑞敏.钢桥面铺装用环氧沥青混凝土特性研究[D].南京:东南大学,2000.3
    [31]李雪莲.正交异性钢桥面复合铺装结构研究[D].长沙:长沙理工大学博士学位论文.2008
    [32]罗立峰,钟鸣,黄成造.混凝土桥面铺装概述[J].国外公路,Vo1.19,No 3,1999(6):23-26
    [33]罗立峰,钟鸣.钢桥面铺装概述[J].国外公路.200020(4):16-19
    [34]吕伟民,钢桥桥面沥青铺装的现状与发展[J],中外公路,2002,Vo1.22(1):7-9
    [35]黄卫,刘振清.大跨径钢桥面铺装设计理论与方法研究[J].土木工程学报,2001,38(1):51-59.
    [36]Douglas R A, Woodward W D H, Woodside A R. Road Contact Stresses and Forces under Tires with Low Inflation Pressure[J]. Canada Journal of Civil Engineering,2000, 27(6):1248-1258.
    [37]Estill, Associates. National Crane Review Project, Final Report & Recommendations[R]. Australia: National load Transport Commission,2000.
    [38]Kenji HIMENO, Tatsuo NISHIZAWA. Longitudinal Surface Cracking In asphalt Pavements On Steel Bridge Decks Related To Dissipated Energy[R]. Tokyo:Department of Civil Engineering,Chuo University,2002.
    [39]莫玉生,王华中.钢桥面沥青铺装结构病害原因分析[J].中南公路工程.2001,26(1):56-60.
    [40]邓学钧,顾兴宇,周世忠等.钢桥面沥青铺装层裂缝破坏趋势研究[J].公路交通科技,2002,19(4):4-7.
    [41]杨若冲,程刚.钢桥面铺装车辙破坏机理及成因分析[J].公路,2004,(3):52.55.
    [42]张业平,瞿尔仁,韩振峰等.钢桥面铺装的力学分析及病害预防措施[J].合肥工业大学学报(自然科学版),2004,27(1).
    [43]罗剑,钢混结构混合桥桥面铺装体系受力分析_桃夭门大桥钢桥面铺装力学分析[D]东南大学,硕士学位论文,2004
    [44]W.Pelikan, M. Esslinger. Die stahlfahrbahn Bereehnung and Konstruktion M. A. N. Forsh-Hft.No.7,1957
    [45]M. S. Troitsky, A.K. Azad. Analysi of orthotropic Steel Bridge Decks by a stiffness Method [J]. Proc. Instn Civ Engrs.1973,55,June:441-461
    [46]A.K. Azad, M. S. Troitsky.Experimental Investigation of an Orthotropic Steel Bridge Deck Proc [J]. Lnstn Civ. Engrs.1977,15,August:393-490
    [47]G H. Gunther,S. Bild, G Sedlacek. Durabilidy of Asphaltic Pavements On Orthotropic Decks of Steel Bridges[J]. J. Construct. Steel Research。1987.
    [48]S. Bild. Design Criteria for Bituminous Pavements on Orthotropic Steel Bridge Decks[J]. Can. J. Civ. Eng,1987.
    [49]张运良,傅衣铭.具脱层的正交各向异性梁-板的屈曲分析[J].湖南大学学报,Vo1.27,No.1 Feb.2000:17-23
    [50]J. B. Kennedy, F. Asce, M. H. Soliman. Temperature Distribution in Composite Bridges [J]. Journal of Structurc Engineering, V01.113,No.3, March 1987:475-482.
    [51]N. E. Shanmugam. Strength of Axially Loades Orthotropic Plates [J]. Journal of Structure Engineering, Vol,113, No.2, Feb.1987:322-333
    [52]江晓禹,张相周,陈百屏.复合材料层合板的三维非线性分析[J].应用数学和力学.V01.17,No.7.1996(7):589-800.
    [53]王毅娟.刚性桥面铺装层厚度的估算[J].北京建筑工程学院学报,V01.16,No.3, 2000(9):16-24
    [54]P J. Dowling. The Behaviour of Orthotropic Steel Deck Bridge.Developments in Bridge Design and Construction [J]. University College Cardiff,1971:557-576
    [55]P J Dowling. A. S. Bawa. Influence surfaces for Onhotropic Steel Bridge Decks [J] Proc. Instn Civ. Engrs.1975,59, Mar:149-168
    [56]方萍,何兆益,周虎鑫.正交异性钢桥面板与沥青混凝土铺装的计算分析[J].第十三届全国桥梁学术会议论文集,1998-11
    [57]方萍,伍波.钢桥面板及铺装的静载试验和有限元分析[J].华东公路,2000(4)35-39
    [58]帅长斌,张银龙,常大民.桥面铺装结构模糊可靠性分析与评价[J].西安公路交通大学学报,Vol 21,No 3,July 2001:49-51
    [59]胡光伟,钱振东,黄卫.正交异性钢箱粱桥面第二体系结构优化设计[J]东南大学学报,Vo1.31,No.3,2001(5);76-78
    [60]黄卫,胡光伟,张春晓.大跨径钢桥面沥青混合料特性研究[J].公路交通科,2002.19(2):45-50
    [61]胡光伟,黄卫,张晓春.润扬大桥钢桥面铺装层受力分析[J].公路交通科技,2002年第6期
    [62]胡光伟,大跨径钢桥面铺装体系力学分析与优化设计[D],东南大学,博士论文,2005
    [63]胡兆同,黄安录.钢板箱形粱的畸变与横隔板设置[J].西安公路交通大学学报,Vo1.18,NO.4,Oct.1998:82-85
    [64]黄晓明,王捷,陈任周.大跨径钢桥桥面铺装结构受力分析[J].土木工程学报,Vo1.32,No.1,1999(2):37-42
    [65]黄晓明,张晓兵.沥青路面车辙形成规律环道试验研究[J].东南大学学报,Vo1.30,No.5,2000:96-101
    [66]徐军,陈忠延.正交异性钢桥面板的结构分析[J].同济大学学报,1999.27(2):170-174
    [67]顾兴宇,邓学钧.钢桥面系统各项参数敏感性分析[J].公路交通科技.2002.V01.19,No.3:69-71.
    [68]顾兴宇,邓学钧,周世忠等.不同轮载对钢桥面沥青铺装层受力的影响[J].公路交通科技,2002.19(2):56-59
    [69]邓学钩等.荷载对铺装层应变的影响[J].公路交通科技.2002.V01.19,No.4.60-62.
    [70]邓学钧等.钢桥面沥青铺装层裂缝破坏趋势研究[J].公路交通科 技.2002.V01.19,No.4:4-7.
    [71]邓学钧等.中国江阴长江大桥桥面沥青铺装层高温稳定性[J].交通运输工程学报.2002.Vo1.2,No.2:1-7.
    [72]邓学钧等.加劲肋对铺装层应变的影响[J].公路交通科技.2002.V01.19,No.4:8-11.
    [73]邓娟红,宋一凡,陈至辰.钢箱梁开口加劲肋设计探讨[J].Steel Constructionl,2005(5),120(181):29-31
    [74]姚波,大跨径钢箱梁桥面铺装体系结构优化设计[D],东南大学,硕士学位论文,2005
    [75]茅荃,大跨径钢桥桥面铺装力学特性研究[D],东南大学,硕士学位论文,2000
    [76]吴冲,曾明根,冯凌云.苏通大桥正交异性板局部模型极限承载力试验[J].桥梁建设,2006,2:41-44
    [77]Ren WX, Peng X L. Baseline finite element modeling of a large span cable stayed bridge through field vibration tests [J]. Computers and Structures,2005,83 (8/9):536-550,
    [78]刘毅,李爱群,丁幼亮,赵大亮.润扬悬索桥扁平钢箱梁局部应力的测试与分析[J].东南大学学报,2007,37(12):275-279
    [79]徐勋倩,钢桥面铺装力学性能指标与优化设计方法研究[D],东南大学博士学位论文,2007
    [80]张陕锋,正交异性板扁平钢箱梁若干问题研究[D],东南大学,硕士学位论文,2006
    [81]邓文中,正交异性板钢桥面的一个新构思[J],桥梁,2007,4:10-17
    [82]J. B. Kennedy,E Asce, M. H. Soliman. Temperature Distribution in Composite Bridges [J]. Journal olStructurc Engineering,VOl. 113.No.3, March 1987:475-482.
    [83]Inspection of the surfacing of the steel deck of the RAMA IX bridge in BANGKOK, THAILAND [J].Charles Seim,Principal(eds),T.Y.Lin Internation,1998.
    [84]王勇,张杨.钢桥面环氧沥青混凝土铺装的应用[J].南昌大学学报.2007,31(Suppl), 133-136
    [85]季节,利用线性规划模型确定沥青类桥面铺装厚度[J],北京建筑工程学院学报,18(4):37-40
    [86]王辉,钢桥面铺装的拉应力分析[J],长沙交通学院学报,18(1):30-33
    [87]钱振东,黄卫,茅荃,胡光伟.南京长江第二大桥钢桥面铺装层受力分析研究[J].公路交通科技,2001,18(6):43-46.
    [88]钱振东,黄卫,骆骏伟等,正交异性钢桥面铺装层的力学特性分析[J].交通运输工程学 报,2002,2(3):47-51.
    [89]钱振东,罗剑.正交异性钢桥面板铺装层受力分析[J].交通运输工程学报,2004,4(2):10-13
    [90]钱振东,罗剑,敬淼淼.沥青混凝土钢桥面铺装方案受力分析[J].中国公路学报,2005,18(2):61-64
    [91]成峰,大跨径钢桥面铺装力学分析深入研究——静力结构分析、移动荷载响应及铺装结构优化分析[D],东南大学,硕士学位论文,2004
    [92]史超,钢桥桥面铺装若干力学问题研究[D],东南大学,硕士学位论文,2006
    [93]陈先华,基于复合梁的钢桥面铺装层疲劳特性研究[D],东南大学,博士学位论文,2006
    [94]毛志轶,杜昕,骆峻伟,大跨径悬索桥与斜拉桥钢桥面铺装在竖向荷载静力作用下的力学特性研究[J],公路工程与运输,154:42_44,2006
    [95]庞立果,大跨径正交异性钢箱梁桥面铺装复合梁疲劳试验研究[D].西安:长安大学,2008
    [96]重庆交通科研设计院.公路钢箱梁桥面铺装设计与施工技术指南[M].人民交通出版社.2006
    [97]郝培文,足尺加速加载设备简介[J].公路,1993.1:47-48
    [98]许新权.基于APT的重载交通沥青路面结构研究[D].西安:长安大学,2008
    [99]孟书涛,半刚性基层沥青路面性能的加速加载试验研究[J],公路交通科技,1997,Vo1.114,No.11:59-64
    [100]李永奇,孟书涛.加速加载试验系统-ALF [J].公路交通科技1992年第9卷第1期:71-72
    [101]郑南翔,牛思胜,许新权.重载沥青路面车辙预估的温度-轴载-轴次模型[J].中国公路学报.2009,Vo1.22,No.3:7-13
    [102]周刚,周进川,华斌,佘兆宇,沥青路面结构永久变形环道试验研究[J],同济大学学报(自然科学版),2008,Vo1.36,No.2:187-192
    [103]颜利,周晓青,李宇峙,邵腊庚,基于直道足尺车辙试验的沥青路面重载轴载换算方法研究[J],公路交通科技,2006,23(3):35-39
    [104]孟庆楠,陈建军,李立寒,沥青混合料加速加载试验车辙隆起变形的研究[J],公路工程,2008,33(4):15-19
    [105]顾兴宇.悬索桥桥面沥青铺装层力学分析及结构设计研究[D].南京:东南大学,2002
    [106]《公路桥涵设计通用规范(JTG D60-2004)》
    [107]黄卫,钱振东.高等沥青路面设计理论与方法[M].北京:科学出版社,2001
    [108]东南大学交通学院.润扬长江公路大桥钢桥面铺装研究(总报告)[R].南京:东南大学,2005
    [109]东南大学交通学院.润扬大桥钢桥面铺装技术调研报告[R].南京:东南大学,2001
    [110]余叔藩,陈仕周,陈献南.大跨径悬索桥钢桥面沥青铺装技术[J].中国公路学报.1998,13(3):32-40
    [111]长安大学,广州珠江黄埔大桥建设有限公司,日本大友建设株式会社,重庆交通科研设计院.大跨径钢箱梁桥面铺装技术体系研究总报告[R].西安:长安大学.2009
    [112]张为,赵星,刘明高,姚君华.斜拉桥有限元建模和动力特性分析[J].铁道建筑.P8-10.2006,03.
    [113]卫星,强士中.利用ANSYS实现斜拉桥非线性分析[J].四川建筑科学研究.P11-14.2003.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700