硅基材料的制备、表征及其储锂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着经济社会的迅速发展,能源作为最基本的驱动力显得更为重要。传统化石燃料的大量开发和使用带来了严峻的环境污染和生态破坏。能源危机和环境恶化已然成为人类社会必须面对的巨大挑战。开发新型可再生能源以及实现能源的高效储存成为世界各国关注的焦点。由于太阳能储量丰富,清洁无污染,太阳能的利用成为能源发展战略的重中之重,太阳光伏发电成为太阳能利用最重要的途径。另一方面,二次电池特别是锂离子电池在电能的存储上发挥着巨大作用。开发新型高容量、大功率、长寿命的锂离子电池成为当今储能电池研究的热点。薄膜Si和纳米结构Si材料是新一代薄膜光伏电池的主导材料,Si基纳米材料也是高能量密度、高功率密度锂离子电池阳极材料的研究热点。
     本论文中,我们采用等离子体增强化学气相沉积(PECVD)方法在低温下制备了晶化硅薄膜和Si、Si1-xGex纳米棒阵列结构。研究了生长条件对样品结构、形貌和光学、电学性质的影响;采用Si基纳米棒结构作为锂离子电池阳极材料,研究了其电化学性能,通过调控Si1-xGex中的Ge含量进一步改善了SiGe电极的循环稳定性能。论文的主要内容及所获得的主要研究结果总结如下:
     1.晶化硅薄膜的制备及其结构、性质的研究
     分别采用射频(13.56MHz)和甚高频(VHF,81.36MHz)等离子体增强化学气相沉积(PECVD)技术制备了晶化硅薄膜。研究了传统射频PECVD过程中Ar稀释气的加入对薄膜结构和性质的影响。结果表明,Ar的加入可以有效提高薄膜的生长速率和晶化率,这主要归功于Ar*可以促进SiHH4的分解以及提供非晶硅晶化需要的激活能。另一方面,Ar稀释气的加入,会导致薄膜中SiHH2聚合集团成分的增多,产生较多的缺陷态,使光学带隙加宽和光吸收系数减小。相对传统的射频PECVD技术,采用VHF-PECVD技术可以在H2稀释率较低的情况下快速制备出高致密度、低缺陷态密度和较高光学吸收系数的晶化硅薄膜。
     2.Si纳米棒阵列的制备及其光学减反性能研究
     结合电化学沉积和VHF-PECVD技术,我们在电化学沉积的Ni纳米锥阵列衬底上制备了Si纳米棒阵列结构。通过对Ni纳米锥衬底形貌的调控,可以得到不同结构的Si纳米棒阵列。采用紫外-可见-近红外分光光度计对Si纳米棒阵列的光学反射性能测试表明,得到的直径约为200nm,高度700nm的Si纳米棒阵列在400-1100nm的波段反射率低于5%,这主要归因于纳米棒阵列结构所具有的增强的光学散射和有效调制的光折射率。这种纳米棒阵列结构有望在光电器件中得到应用。
     3. Si、Ge和Si1-xGex纳米结构的电化学性能研究
     采用VHF-PECVD技术对Ni纳米锥结构实施包覆,我们制备了Si和Si1-xGex纳米棒结构,并将其作为锂离子电池阳极材料,组装了标准的CR-2032纽扣式锂离子二次电池,测试了其电化学性能。研究表明,Si纳米棒电极具有较高的充放电容量,在C/5电流密度下的可逆循环容量达到3400mAh/g,经过30次循环之后仍高达3249mAh/g,保持率高于95%,相对于Si薄膜电极有明显的提高。然而,随着循环次数的进一步增加,Si纳米棒的容量迅速衰减。相比Si纳米棒,Ge纳米棒呈现出较好的循环性能。在C/2的电流密度下经过50次循环之后容量仍保持在约460mAh/g,保持率达100%。综合Si和Ge的优势,我们制备了Si1-xGex纳米结构,研究了不同Ge含量的Si1-xGex纳米棒的电化学性能。实验发现,随着Ge含量的增加,Si1-xGex的首次质量比容量明显减小,这主要是因为Ge的理论质量比容量低于Si的比容量。但是,Si1-xGex的循环稳定性随着Ge含量的增大逐步提高。对于Ge含量为29%的Si0.71Ge0.29电极,在0.5A/g的电流密度下,经过65次循环之后容量仍超过1000mAh/g。在4A/g的大电流充放电条件下,可逆容量达到1500mAh/g,经过50次循环之后,容量仍高达1100mAh/g。结果表明,Si1-xGex合金可以作为高容量的锂离子电池负极材料。通过调控Ge的含量,可以进一步改善其循环稳定性能。
Accompanied by rapid economic and social development, energy as the basic driving force for modern society shows of great importance. The massive consume of the traditional fossil fuels has posed serious problems of both environmental pollution and ecological destruction. Energy and environmental issues have been the two important problems that human society must pay attention to and have to solve. Development of new energy sources and energy storage become the focus for the world. Because of its abundant, clean and non-polluting, the develop of solar cells is a top priority of the strategy. On the other hand, electricity can not be directly stored. In the development of storage batteries, new high-capacity, high power and long-life lithium-ion batteries become today's focus. Si thin films and Si nano-structured materials have become the dominant materials of the next-generation thin-film photovoltaic cells. At the same time, Si nano-materials are research focus for the high energy density, high-power lithium-ion battery anodes.
     In this thesis, the crystallized silicon films and Si, Si1-xGex nanorod arrays were prepared at low temperature by plasma enhanced chemical vapor deposition (PECVD) method. The influences of growth conditions on microstructure, morphology and the opto-electronics properties of the samples were investigated carefully. The electrochemical properties of the Si based nanorod arrays as anode were evaluated by galvanostatic battery tastings for Li ion batteries. It was showed that the electrochemical performance of Si1-xGex anodes can be improved by regulating the Ge content in the Si1-xGex. The main contents of the paper and the corresponding results are summarized as follows:
     1. The microstructures and properties of the prepared crystallized silicon films
     The crystallized silicon films were deposited on glass substrates by the conventional radio frequency (13.56MHz) and very high frequency (81.36MHz) PECVD method. Silane diluted in H2or H2+Ar was used as the source gas for preparation of crystallized Si films by conventional PECVD. The results showed that the addition of Ar in dilution gases efficiently improves the deposition rate and crystallinity due to an enhanced dissociation of the source gas as well as the energy of deexcitation of Ar*released within the growth zone. Meanwhile, excess Ar dilution will lead to the polymerization and also a bad passivation of the hydrogen on the dangling bonds which causes the increase of the optical gap and defect states in the μc-Si films. The crystallized Si films can be deposited under a lower H2dilution by the VHF-PECVD method. It is found that the crystallized Si films showed better optical properties due to the better compact and the lower defect density by using very high excitation frequency of81.36MHz.
     2. The preparation and antireflection of the Si nanorod arrays
     Si nanorod arrays were prepared by the VHF-PECVD on the electrodeposited Ni nanocone arrays. By adjusting the preparation conditions of the Ni nanocone arrays, the morphology and the density of the Si nanorods can be controlled. It is found that the well-separated nc-Si:H nanorods provide excellent low reflectance over a wide wavelength range of300-1100nm due to enhanced light scattering and appropriate modulation of the effective refractive index between air and nc-Si:H nanorod structures. The novel nc-Si:H nanorod arrays may be suitable for low-cost solar cells devices and other applications thanks to the excellent antireflection.
     3. The electrochemical performance of Si, Ge and Si1-xGex nanorod structures
     Si, Ge and Si1-xGex nanorod structures were prepared by the VHF-PECVD on the electrodeposited Ni nanocone arrays. The obtained Si, Ge and Si1-xGex samples were directly assembled against Li metal into half cells of CR-2032with Si, Ge and Si1-xGex acted as active materials, respectively. The electrochemical performance was evaluated by the galvanostatic battery testing. It is found that the Si nanorod anode shows a high reversible capacity of3400mAh/g at C/5rate. A capacity of3249mAh/g at C/5rate is attained with retention of95%after30cycles. The result is a great improvement compared to the Si film anode. But the capacity of Si nanorod shows a drastical decrease after30cycles. Compared to Si anode, Ge anode shows a stable capacity even at C/2rate for50cycles with a capacity retention of100%, but the capacity is only460mAh/g. Herein, Si1-xGex nanorod electrodes were applied for Li-ion batteries. It is found that the capacity retention is greatly improved with increasing Ge content of the Si1-xGex electrode. For Sio.71Geo.29nanorod electrodes, The charge capacity is above1000mAh/g even after65cycles at0.5A/g. The reversible charge capacity is about1500mAh/g even at high rate of4A/g. The capacity of Sio.71Geo.29is still as high as1100mAh/g after50cycles. The binder-free Si1-xGex nanorod electrodes could be further improved for a promising candidate for high-capacity and high-power Li-ion batteries.
引文
[1]能源科学学科发展战略研究组,2011-2020年我国能源科学学科发展战略报告, 第4稿(2010).
    [2]J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414(2001)359-367.
    [3]F. J. Beck, S. Mokkapati, K. R. Catchpole, Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles, Prog. Photovolt:Res. Appl.18 (2010) 500-504.
    [4]Vivian E. Ferry, Marc A. Verschuuren, Hongbo B. T. Li, Ruud E. I. Schropp, Harry A. Atwater, Albert Polman, Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,Appl. Phys. Lett.95 (2009) 183503-183503.
    [5]Linwei Yu, Benedict O'Donnell, Pierre-Jean Alet, Pere Roca i Cabarrocas, All-in-situ fabrication and characterization of silicon nanowires on TCO/glass substrates for photovoltaic application, Sol. Energ. Mat. Sol. C.94 (2010) 1855-1859.
    [6]Nan Y. Pacella, Mayank T. Bulsara, Eugene A. Fitzgerald, Si CMOS Contacts to III-V Materials for Monolithic Integration of III-V and Si Devices, ECS Trans.35 (2011) 225-229.
    [7]Bae Joonho, Kim Hyunjin, Zhang Xiao-Mei, H. Dang Cuong, Zhang Yue, Choi Young Jin, Nurmikko Arto, Wang Zhong Lin, Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters, Nanotech.21 (2010) 095502.
    [8]Zhi Li, Barada K. Nayak, Vikram V. Iyengar, Dion McIntosh, Qiugui Zhou, Mool C. Gupta, Joe C. Campbell, Laser-textured silicon photodiode with broadband spectral response, Appl. Opt.50 (2011)2508-2511.
    [9]S.R. Wenham, M.A. Green, M.E. Watt, R. Corkish, Applied photovoltaics, Earthscan/James & James,2007.
    [10]JK Rath, Low temperature polycrystalline silicon:a review on deposition, physical properties and solar cell applications, Sol. Energ. Mat. Sol. C.76 (2003) 431-487.
    [11]M. Tzolov, F. Finger, R. Carius, P. Hapke, Optical and transport studies on thin microcrystalline silicon films prepared by very high frequency glow discharge for solar cell applications, J. Appl. Phys.81 (1997)7376.
    [12]RC Chittick, JH Alexander, HF Sterling, The preparation and properties of amorphous silicon, J. Electrochem. Soc.116 (1969) 77.
    [13]P. Alpuim, V. Chu, JP Conde, Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition, J. Appl. Phys.86 (1999) 3812.
    [14]何宇亮,陈光华,张仿清编著,非晶态半导体物理学,高等教育出版社,北京,1989.
    [15]D.L. Staebler, CR Wronski, Reversible conductivity changes in discharge(?)\produced amorphous Si,Appl. Phys. Lett.31 (1977)292-294.
    [16]I. Chun Cheng, Sigurd Wagner, Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150 C,Appl. Phys. Lett.80 (2002) 440-442.
    [17]R. J. Walters, P. G. Kik, J. D. Casperson, H. A. Atwater, R. Lindstedt, M. Giorgi, G. Bourianoff, Silicon optical nanocrystal memory, Appl. Phys. Lett.85 (2004) 2622-2624.
    [18]y A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, Thin-film Silicon Solar Cell Technology, Prog. Photovolt:Res. Appl.12 (2004) 113-142.
    [19]L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett.57(1990) 1046-1048.
    [20]S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, V. V. Moshchalkov, Classification and control of the origin of photoluminescence from Si nanocrystals, Nat Nano 3 (2008) 174-178.
    [21]RS Wagner, WC Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Appl. Phys. Lett. 4(1964)89-90.
    [22]El Givargizov, Fundamental aspects of VLS growth, Journal ofcrystal growth 31 (1975) 20-30.
    [23]A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279 (1998) 208.
    [24]T. Stelzner, M. Pietsch, G. Andr, F. Falk, E. Ose, S. Christiansen, Silicon nanowire-based solar cells, Nanotech.19 (2008) 295203.
    [25]Yi-Fan Huang, Surojit Chattopadhyay, Yi-Jun Jen, Cheng-Yu Peng, Tze-An Liu, Yu-Kuei Hsu, Ci-Ling Pan, Hung-Chun Lo, Chih-Hsun Hsu, Yuan-Huei Chang, Chih-Shan Lee, Kuei-Hsien Chen, Li-Chyong Chen, Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, Nat Nano 2 (2007) 770-774.
    [26]Zhiyong Fan, Haleh Razavi, Jae-won Do, Aimee Moriwaki, Onur Ergen, Yu-Lun Chueh, Paul W. Leu, Johnny C. Ho, Toshitake Takahashi, Lothar A. Reichertz, Steven Neale, Kyoungsik Yu, Ming Wu, Joel W. Ager, Ali Javey, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates, Nat Mater 8 (2009) 648-653.
    [27]V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, S. H. Christiansen, Silicon Nanowire-Based Solar Cells on Glass:Synthesis, Optical Properties, and Cell Parameters, Nano Lett.9(2009) 1549-1554.
    [28]Bozhi Tian, Xiaolin Zheng, Thomas J. Kempa, Ying Fang, Nanfang Yu, Guihua Yu, Jinlin Huang, Charles M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature 449 (2007) 885-889.
    [29]Erik Garnett, Peidong Yang, Light Trapping in Silicon Nanowire Solar Cells, Nano Lett.10 (2010) 1082-1087.
    [30]Erik C. Garnett, Peidong Yang, Silicon Nanowire Radial p-n Junction Solar Cells, J. Am. Chem. Soc.130(2008)9224-9225.
    [31]Kuiqing Peng, Ying Xu, Yin Wu, Yunjie Yan, Shuit-Tong Lee, Jing Zhu, Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications, Small 1 (2005) 1062-1067.
    [32]Yuerui Lu, Amit Lal, High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography, Nano Lett.10 (2010)4651-4656.
    [33]吴宇平,戴晓兵,马军旗,程预江,锂离子电池—实践与应用[M],北京:化学工业出版社(2004)9-10.
    [34]郭丙焜,徐徽,王先友,肖利新,锂离子电池[M],长沙:中南大学出版社(2002)12-13.
    [35]Rotem Marom, S. Francis Amalraj, Nicole Leifer, David Jacob, Doron Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem.21 (2011).
    [36]Xin Zhao, Cary M. Hayner, Mayfair C. Kung, Harold H. Kung, Flexible Holey Graphene Paper Electrodes with Enhanced Rate Capability for Energy Storage Applications, ACS Nano 5 (2011) 8739-8749.
    [37]Daniel T. Welna, Liangti Qu, Barney E. Taylor, Liming Dai, Michael F. Durstock, Vertically aligned carbon nanotube electrodes for lithium-ion batteries, J. Power Sources 196 (2011) 1455-1460.
    [38]Yoshio Idota, Tadahiko Kubota, Akihiro Matsufuji, Yukio Maekawa, Tsutomu Miyasaka, Tin-Based Amorphous Oxide:A High-Capacity Lithium-Ion-Storage Material, Science 276 (1997) 1395-1397.
    [39]Xiangpeng Fang, Bingkun Guo, Yifeng Shi, Bin Li, Chunxiu Hua, Chaohua Yao, Yichi Zhang, Yong-Sheng Hu, Zhaoxiang Wang, Galen D. Stucky, Liquan Chen, Enhanced Li storage performance of ordered mesoporous MoO2via tungsten doping, Nanoscale 4 (2012).
    [40]Yude Wang, Ting Chen, Qiuying Mu, Electrochemical performance of W-doped anatase TiO2 nanoparticles as an electrode material for lithium-ion batteries, J. Mater. Chem.21 (2011).
    [41]Sukeun Yoon, Arumugam Manthiram, Microwave-hydrothermal synthesis of W0.4Mo0.6O3 and carbon-decorated WOx-MoO2 nanorod anodes for lithium ion batteries, J. Mater. Chem.21 (2011).
    [42]Jane Yao, Xiaoping Shen, Bei Wang, Huakun Liu, Guoxiu Wang, In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries, Electrochem. Comm. 11 (2009) 1849-1852.
    [43]Le-Sheng Zhang, Ling-Yan Jiang, Hui-Juan Yan, Wei D. Wang, Wei Wang, Wei-Guo Song, Yu-Guo Guo, Li-Jun Wan, Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries, J. Mater. Chem.20 (2010).
    [44]X. H. Huang, J. P. Tu, X. H. Xia, X. L. Wang, J. Y. Xiang, L. Zhang, Y. Zhou, Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries, J. Power Sources 188(2009)588-591.
    [45]X. H. Huang, J. P. Tu, C. Q. Zhang, F. Zhou, Hollow microspheres of NiO as anode materials for lithium-ion batteries, Electrochimica Acta 55 (2010) 8981-8985.
    [46]Xinghui Wang, Xiuwan Li, Xiaolei Sun, Fei Li, Qiming Liu, Qi Wang, Deyan He, Nanostructured NiO electrode for high rate Li-ion batteries, J. Mater. Chem.21 (2011).
    [47]Chao Li, Wei Wei, Shaoming Fang, Huanxin Wang, Yong Zhang, Yanghai Gui, Rongfeng Chen, A novel CuO-nanotube/Sn02 composite as the anode material for lithium ion batteries, J. Power Sources 195 (2010) 2939-2944.
    [48]J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L. Wang, S. J. Shi, Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries, J. Power Sources 195 (2010) 313-319.
    [49]Zheng-Wen Fu, Ying Wang, Xiao-Li Yue, Shang-Li Zhao, Qi-Zong Qin, Electrochemical Reactions of Lithium with Transition Metal Nitride Electrodes, J. Phys. Chem. B 108 (2004) 2236-2244.
    [50]Motoaki Nishijima, Noriko Tadokoro, Yasuo Takeda, Nobuyuki Imanishi, Osamu Yamamoto, Li Deintercalation-Intercalation Reaction and Structural Change in Lithium Transition Metal Nitride, Li7MnN4, J. Electrochem. Soc.141 (1994) 2966-2971.
    [51]P. Lavela, J. L. Tirado, M. Womes, J. C. Jumas, Elucidation of Capacity Fading on CoFe2O4 Conversion Electrodes for Lithium Batteries Based on [sup 57]Fe M[o-umlaut]ssbauer Spectroscopy, J. Electrochem. Soc.156 (2009) A589-A594.
    [52]D. Guyomard, C. Sigala, A. de Gal La Salle, Y. Piffard, New amorphous oxides as high capacity negative electrodes for lithium batteries:the LixMV04 (M=Ni, Co, Cd, Zn;1 &It; x≤8) series, J. Power Sources 68 (1997) 692-697.
    [53]Ning Ding, Jing Xu, Yaxuan Yao, Gerhard Wegner, Ingo Lieberwirth, Chunhua Chen, Improvement of cyclability of Si as anode for Li-ion batteries, J. Power Sources 192 (2009) 644-651.
    [54]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Searching for new anode materials for the Li-ion technology:time to deviate from the usual path, J. Power Sources 97-98 (2001) 235-239.
    [55]J. O. Besenhard, J. Yang, M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?, J. Power Sources 68 (1997) 87-90.
    [56]Shigeki Ohara, Junji Suzuki, Kyoichi Sekine, Tsutomu Takamura, Li insertion/extraction reaction at a Si film evaporated on a Ni foil, J. Power Sources 119-121 (2003) 591-596.
    [57]K. L. Lee, J. Y. Jung, S. W. Lee, H. S. Moon, J. W. Park, Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries, J. Power Sources 129 (2004) 270-274.
    [58]Shigeki Ohara, Junji Suzuki, Kyoichi Sekine, Tsutomu Takamura, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, Journal of Power Sources 136(2004)303-306.
    [59]T. Takamura, S. Ohara, M. Uehara, J. Suzuki, K. Sekine, A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life, J. Power Sources 129 (2004) 96-100.
    [60]T. Zhang, J. Gao, L. J. Fu, L. C. Yang, Y. P. Wu, H. Q. Wu, Natural graphite coated by Si nanoparticles as anode materials for lithium ion batteries, J. Mater. Chem.17 (2007) 1321-1325.
    [61]Candace K. Chan, Hailin Peng, Gao Liu, Kevin Mcllwrath, Xiao Feng Zhang, Robert A. Huggins, Yi Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nano.3 (2008) 31-35.
    [62]Li-Feng Cui, Riccardo Ruffo, Candace K. Chan, Hailin Peng, Yi Cui, Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes, Nano Lett. 9(2008)491-495.
    [63]Xilin Chen, Konstantinos Gerasopoulos, Juchen Guo, Adam Brown, Chunsheng Wang, Reza Ghodssi, James N. Culver, Virus-Enabled Silicon Anode for Lithium-Ion Batteries, ACS Nano 4 (2010)5366-5372.
    [64]Jeannine R. Szczech, Song Jin, Nanostructured silicon for high capacity lithium battery anodes, Energ. Environ. Sci.4 (2011) 56-72.
    [65]Hong Li, Xuejie Huang, Liquan Chen, Zhengang Wu, Yong Liang, A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries, Electrochem. Solid-State Lett.2 (1999)547-549.
    [66]Hyejung Kim, Minho Seo, Mi-Hee Park, Jaephil Cho, A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries, Angew. Chem., Int. Ed.49 (2010) 2146-2149.
    [67]Huixin Chen, Ying Xiao, Lin Wang, Yong Yang, Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries, J. Power Sources 196 (2011) 6657-6662.
    [68]Hung T. Nguyen, Fei Yao, Mihai R. Zamfir, Chandan Biswas, Kang Pyo So, Young Hee Lee, Seong Min Kim, Seung Nam Cha, Jong Min Kim, Didier Pribat, Highly Interconnected Si Nanowires for Improved Stability Li-Ion Battery Anodes, Adv. Energy Mater.1 (2011) 1154-1161.
    [69]Mi-Hee Park, Min Gyu Kim, Jaebum Joo, Kitae Kim, Jeyoung Kim, Soonho Ahn, Yi Cui, Jaephil Cho, Silicon Nanotube Battery Anodes, Nano Lett.9 (2009) 3844-3847.
    [70]Taeseup Song, Jianliang Xia, Jin-Hyon Lee, Dong Hyun Lee, Moon-Seok Kwon, Jae-Man Choi, Jian Wu, Seok Kwang Doo, Hyuk Chang, Won II Park, Dong Sik Zang, Hansu Kim, Yonggang Huang, Keh-Chih Hwang, John A. Rogers, Ungyu Paik, Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries, Nano Lett.10 (2010) 1710-1716.
    [71]Shigeki Ohara, Junji Suzuki, Kyoichi Sekine, Tsutomu Takamura, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, J. Power Sources 136 (2004) 303-306.
    [72]M. D. Fleischauer, J. M. Topple, J. R. Dahn, Combinatorial Investigations of Si-M (M=Cr+Ni, Fe, Mn) Thin Film Negative Electrode Materials, Electrochem. Solid-State Lett.8 (2005) A137-A140.
    [73]Chang-Mook Hwang, Chae-Ho Lim, Jae-Hoon Yang, Jong-Wan Park, Electrochemical properties of negative SiMox electrodes deposited on a roughened substrate for rechargeable lithium batteries, J. Power Sources 194(2009) 1061-1067.
    [74]Weibing Xing, A. M. Wilson, K. Eguchi, G. Zank, J. R. Dahn, Pyrolyzed Polysiloxanes for Use as Anode Materials in Lithium-Ion Batteries, J. Electrochem. Soc.144 (1997) 2410-2416.
    [75]Masaki Yoshio, Takaaki Tsumura, Nikolay Dimov, Electrochemical behaviors of silicon based anode material, J. Power Sources 146(2005) 10-14.
    [76]N. Dimov, S. Kugino, M. Yoshio, Mixed silicon-graphite composites as anode material for lithium ion batteries:Influence of preparation conditions on the properties of the material, J. Power Sources 136(2004) 108-114.
    [77]Heon-Young Lee, Sung-Man Lee, Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries, Electrochem. Commun.6 (2004) 465-469.
    [78]A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater.9 (2010) 353-358.
    [79]Rahul Krishnan, Toh-Ming Lu, Nikhil Koratkar, Functionally Strain-Graded Nanoscoops for High Power Li-Ion Battery Anodes, Nano Lett.11 (2010) 377-384.
    [80]Xin Zhao, Cary M. Hayner, Mayfair C. Kung, Harold H. Kung, In-Plane Vacancy-Enabled High-Power Si-Graphene Composite Electrode for Lithium-Ion Batteries, Adv. Energy Mater.1 (2011)1079-1084.
    [1]郑伟涛,薄膜材料与薄膜技术,北京:化学工业出版社(2003).
    [2]杨邦超,王文生,薄膜物理与技术,电子科技大学出版社(1994).
    [3]Saravanapriyan Sriraman, Sumit Agarwal, Eray S. Aydil, Dimitrios Maroudas, Mechanism of hydrogen-induced crystallization of amorphous silicon, Nature 418 (2002) 62-65.
    [4]A. J. Flikweert, T. Zimmermann, T. Merdzhanova, D. Weigand, W. Appenzeller, A. Gordijn, Microcrystalline thin-film solar cell deposition on moving substrates using a linear VHF-PECVD reactor and a cross-flow geometry, J. Phys. D:Appl. Phys.45 (2012) 015101.
    [5]Ihsanul Afdi Yunaz, Kenji Hashizume, Shinsuke Miyajima, Akira Yamada, Makoto Konagai, Fabrication of amorphous silicon carbide films using VHF-PECVD for triple-junction thin-film solar cell applications, Sol. Energ. Mat. Sol. C.93 (2009) 1056-1061.
    [6]M. Brinza, J. K. Rath, R. E. I. Schropp, Thin film silicon n-i-p solar cells deposited by VHF PECVD at 100 ℃ substrate temperature, Sol. Energ. Mat. Sol. C.93 (2009) 680-683.
    [7]Yongsheng Chen, Jinhua Gu, Yanhua Xu, Jingxiao Lu, Shi-e Yang, Xiaoyong Gao, The light stability of microcrystalline silicon thin films deposited by VHF-PECVD method, Solar Energy 84 (2010) 1337-1341.
    [8]Monica Brinza, Jatindra K. Rath, Ruud E. I. Schropp, Thin film silicon deposited at 100 ℃ by VHF PECVD:optoelectronic properties and incorporation in solar cells, physica status solidi (c) 7 (2010) 1093-1096.
    [9]G.霍兹著,赵辉等译,纳米材料电化学,北京:科学出版社(2006).
    [10]Hang Tao, Li Ming, Fei Qin, Mao Dali, Characterization of nickel nanocones routed by electrodeposition without any template, Nanotechnology 19 (2008) 035201.
    [11]Tao Hang, Anmin Hu, Huiqin Ling, Ming Li, Dali Mao, Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition, Appl. Surf. Sci.256 (2010) 2400-2404.
    [12]Dong Fang, Kelong Huang, Suqin Liu, Dingyuan Qin, High density copper nanowire arrays deposition inside ordered titania pores by electrodeposition, Electrochem. Commun. 11 (2009)901-904.
    [13]Sheng Zhong, Thomas Koch, Mu Wang, Torsten Scherer, Stefan Walheim, Horst Hahn, Thomas Schimmel, Nanoscale Twinned Copper Nanowire Formation by Direct Electrodeposition, Small 5 (2009) 2265-2270.
    [1]Yongsheng Chen, Jinhua Gu, Yanhua Xu, Jingxiao Lu, Shi-e Yang, Xiaoyong Gao, The light stability of microcrystalline silicon thin films deposited by VHF-PECVD method, Solar Energy 84 (2010) 1337-1341.
    [2]J. Meier, R. Fluckiger, H. Keppner, A. Shah, Complete microcrystalline p-i-n solar cell-Crystalline or amorphous cell behavior?, Appl. Phys. Lett.65 (1994) 860-862.
    [3]R. J. Walters, P. G. Kik, J. D. Casperson, H. A. Atwater, R. Lindstedt, M. Giorgi, G. Bourianoff, Silicon optical nanocrystal memory, Appl. Phys. Lett.85 (2004) 2622-2624.
    [4]K. H. Li, W. Z. Shen, Uniformity and bandgap engineering in hydrogenated nanocrystalline silicon thin films by phosphorus doping for solar cell application, J. Appl. Phys.106(2009)063505.
    [5]Takuya Matsui, Akihisa Matsuda, Michio Kondo, High-rate microcrystalline silicon deposition for p-i-n junction solar cells, Sol. Enegy Mater. Sol. Cells 90 (2006) 3199-3204.
    [6]A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic Technology:The Case for Thin-Film Solar Cells, Science 285 (1999) 692-698.
    [7]X. Y. Chen, et al., High electron mobility in well ordered and lattice-strained hydrogenated nanocrystalline silicon, Nanotechnology 17 (2006) 595.
    [8]S. Binetti, M. Acciarri, M. Bollani, L. Fumagalli, H. von Kanel, S. Pizzini. Nanocrystalline silicon films grown by Low Energy Plasma Enhanced Chemical Vapor Deposition for optoelectronic applications, Thin Solid Films 487 (2005) 19-25.
    [9]J. Meier, R. Fluckiger, H. Keppner, A. Shah, Complete microcrystalline p-i-n solar cell---Crystalline or amorphous cell behavior?,Appl. Phys. Lett.65 (1994) 860-862.
    [10]Rong Zhang, Hua Wu, Xinyi Chen, Wenzhong Shen, Electronic states in Si nanocrystal thin films, Appl. Phys. Lett.94 (2009) 242105-242103.
    [11]G. Ambrosone, U. Coscia, A. Cassinese, M. Barra, S. Restello, V. Rigato, S. Ferrero, Low temperature electric transport properties in hydrogenated microcrystalline silicon films, Thin Solid Films 515 (2007) 7629-7633.
    [12]Koyel Bhattacharya, Debajyoti Das, Nanocrystalline silicon films prepared from silane plasma in RF-PECVD, using helium dilution without hydrogen:structural and optical characterization, Nanotechnology (2007) 415704.
    [13]Debajyoti Das, Control of hydrogenation and modulation of the structural network in Si:H by interrupted growth and H-plasma treatment, Phys. Rev.B 51 (1995) 10729-10736.
    [14]U. K. Das, P. Chaudhuri, S. T. Kshirsagar, Effect of argon dilution on the structure of microcrystalline silicon deposited from silane, J. Appl. Phys.80 (1996) 5389-5397.
    [15]Koyel Bhattacharya, Debajyoti Das, Effect of deposition temperature on the growth of nanocrystalline silicon network from helium diluted silane plasma, J. Phys. D:Appl. Phys. (2008)155420.
    [16]Zeguo Tang, Wenbin Wang, Bo Zhou, Desheng Wang, Shanglong Peng, Deyan He, The influence of H2/(H2+Ar) ratio on microstructure and optoelectronic properties of microcrystalline silicon films deposited by plasma-enhanced CVD Applied Surface Science 255 (2009) 8867-8873
    [17]M. Brinza, J. K. Rath, R. E. I. Schropp, Thin film silicon n-i-p solar cells deposited by VHF PECVD at 100 ℃ substrate temperature, Sol. Energ. Mat. Sol. C.93 (2009) 680-683.
    [18]Monica Brinza, Jatindra K. Rath, Ruud E.I. Schropp, Thin film silicon deposited at 100 ℃ by VHF PECVD:optoelectronic properties and incorporation in solar cells, physica status solidi (c) 7 (2010) 1093-1096.
    [19]A. J. Flikweert, T. Zimmermann, T. Merdzhanova, D. Weigand, W. Appenzeller, A. Gordijn, Microcrystalline thin-film solar cell deposition on moving substrates using a linear VHF-PECVD reactor and a cross-flow geometry, J. Phys. D:Appl. Phys.45 (2012) 015101.
    [20]Ihsanul Afdi Yunaz, Kenji Hashizume, Shinsuke Miyajima, Akira Yamada, Makoto Konagai, Fabrication of amorphous silicon carbide films using VHF-PECVD for triple-junction thin-film solar cell applications, Sol. Energ. Mat. Sol. C.93 (2009) 1056-1061.
    [21]F. Finger, P. Hapke, M. Luysberg, R. Carius, H. Wagner, M. Scheib, Improvement of grain size and deposition rate of microcrystalline silicon by use of very high frequency glow discharge, Appl. Phys. Lett.65 (1994) 2588-2590.
    [22]Michio Kondo, Makoto Fukawa, Lihui Guo, Akihisa Matsuda, High rate growth of microcrystalline silicon at low temperatures, J. Non-Cryst. solids 266-269 (2000) 84-89.
    [23]Yongsheng Chen, Jinhua Gu, Yanhua Xu, Jingxiao Lu, Shi-e Yang, Xiaoyong Gao, The light stability of microcrystalline silicon thin films deposited by VHF-PECVD method, Solar Energy 84 (2010) 1337-1341.
    [24]U. Graf, J. Meier, U. Kroll, J. Bailat, C. Droz, E. Vallat-Sauvain, A. Shah, High rate growth of microcrystalline silicon by VHF-GD at high pressure, Thin Solid Films 427 (2003) 37-40.
    [25]R Swanepoel, Determination of the thickness and optical constants of amorphous silicon, J. Phys. E:Sci. Instrum. (1983)1214.
    [26]Y. H. Wang, J. Lin, C. H. A. Huan, Structural and optical properties of a-Si:H/nc-Si:H thin films grown from Ar-H2-SiH4 mixture by plasma-enhanced chemical vapor deposition, Mater. Sci. Eng. B 104 (2003) 80-87.
    [27]R. Saleh, N. H. Nickel, Raman spectroscopy of B-doped microcrystalline silicon films, Thin Solid Films 427 (2003) 266-269.
    [28]A. Nakajima, Y. Sugita, K. Kawamura, H. Tomita, N. Yokoyama, Microstructure and optical absorption properties of Si nanocrystals fabricated with low-pressure chemical-vapor deposition, J. Appl. Phys.80 (1996) 4006-4011.
    [29]R Tsu, P Menna, A.H Mahan, Optical absorption and disorder in hydrogenated amorphous Si-Ge and Si-C alloy systems. Solar Cells 21 (1987) 189-194.
    [30]Zeguo Tang, Wenbin Wang, Desheng Wang, Dequan Liu, Qiming Liu, Min Yin, Deyan He, The effect of Ar flow rate in the growth of SiGe:H thin films by PECVD, Appl. Surf. Sci.256(2010)7032-7036.
    [31]G. Ambrosone, R. Murri U. Coscia, N. Pinto, M. Ficcadenti, L. Morresi, Structural, optical and electrical characterizations of [mu]c-Si:H films deposited by PECVD, Sol. Enegy Mater. Sol. Cells 87 (2005) 375-386.
    [32]C. Song, G. R. Chen, J. Xu, T. Wang, H. C. Sun, Y. Liu, W. Li, Z. Y. Ma, L. Xu, X. F. Huang, K. J. Chen, Evaluation of microstructures and carrier transport behaviors during the transition process from amorphous to nanocrystalline silicon thin films, J. Appl. Phys. 105(2009)054901-054905.
    [33]Debajyoti Das, Ratnabali Banerjee, A.K. Batabyal, A.K.. Barua, Influence of different deposition parameters on the properties of hydrogenated amorphous silicon films prepared by magnetron sputtering, J. Non-Cryst. solids 103 (1988) 143-148.
    [34]W.J. Soppe, C. Devilee, M. Geusebroek, J. Loffler, H.-J. Muffler, The effect of argon dilution on deposition of microcrystalline silicon by microwave plasma enhanced chemical vapor deposition, Thin Solid Films 515 (2007) 7490-7494.
    [35]J. Torres, J. I. Cisneros, G. Gordillo, F. Alvarez, A simple method to determine the optical constants and thicknesses of ZnxCd1-xS thin films, Thin Solid Films 289 (1996) 238-241.
    [36]H. Chen, M. H. Gullanar, W. Z. Shen, Effects of high hydrogen dilution on the optical and electrical properties in B-doped nc-Si:H thin films, J. CRYST. GROWTH 260 (2004) 91-101.
    [37]A. Achiq, R. Rizk, F. Gourbilleau, R. Madelon, B. Garrido, A. Perez-Rodriguez, J. R. Morante, Effects of prior hydrogenation on the structure and properties of thermally nanocrystallized silicon layers, J. Appl. Phys.83 (1998) 5797-5803.
    [38]J. C. Bruyere, A. Deneuville, A. Mini, J. Fontenille, R. Danielou, Influence of hydrogen on optical properties of a-Si:H, J. Appl. Phys.51 (1980) 2199-2205.
    [39]M. H. Brodsky, On the deposition of amorphous silicon films from glow discharge plasmas of si lane, Thin Solid Films 40 (1977) L23-L25.
    [1]Martin A. Green, The path to 25% silicon solar cell efficiency:History of silicon cell evolution, Prog. Photovoltaics 17 (2009) 183-189.
    [2]Peter Bermel, Chiyan Luo, Lirong Zeng, Lionel C. Kimerling, John D. Joannopoulos, Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals, Opt. Express 15(2007) 16986-17000.
    [3]Harry A. Atwater, Albert Polman, Plasmonics for improved photovoltaic devices, Nat Mater.9 (2010) 205-213.
    [4]D. M. Schaadt, B. Feng, E. T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles, Appl. Phys. Lett.86 (2005) 063106-063103.
    [5]J. Y. Chen, K. W. Sun, Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells, Sol. Energ. Mat. Sol. C.94 (2010) 930-934.
    [6]Brendan M. Kayes, Harry A. Atwater, Nathan S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys.97 (2005) 114302-114311.
    [7]Junshuai Li, HongYu Yu, She Mein Wong, Gang Zhang, Xiaowei Sun, Patrick Guo-Qiang Lo, Dim-Lee Kwong, Si nanopillar array optimization on Si thin films for solar energy harvesting,Appl. Phys. Lett.95 (2009) 033102-033103.
    [8]Junshuai Li, HongYu Yu, Yali Li, Fei Wang, Mingfei Yang, She Mein Wong, Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells, Appl. Phys. Lett.98 (2011) 021905-021903.
    [9]Kuiqing Peng, Ying Xu, Yin Wu, Yunjie Yan, Shuit-Tong Lee, Jing Zhu, Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications, Small 1 (2005) 1062-1067.
    [10]Jia Zhu, Zongfu Yu, George F. Burkhard, Ching-Mei Hsu, Stephen T. Connor, Yueqin Xu, Qi Wang, Michael McGehee, Shanhui Fan, Yi Cui, Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays, Nano Lett.9 (2008) 279-282.
    [11]Michael D. Kelzenberg, Shannon W. Boettcher, Jan A. Petykiewicz, Daniel B. Turner-Evans, Morgan C. Putnam, Emily L. Warren, Joshua M. Spurgeon, Ryan M. Briggs, Nathan S. Lewis, Harry A. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nat Mater.9 (2010) 239-244.
    [12]Linwei Yu, Benedict O'Donnell, Pierre-Jean Alet, Pere Roca i Cabarrocas, All-in-situ fabrication and characterization of silicon nanowires on TCO/glass substrates for photovoltaic application, Sol. Energ. Mat. Sol. C.94 (2010) 1855-1859.
    [13]Yuerui Lu, Amit Lal, High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography, Nano Lett.10 (2010) 4651-4656.
    [14]L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells, Appl. Phys. Lett.91 (2007) 233117-233113.
    [15]Michael D. Kelzenberg, Daniel B. Turner-Evans, Brendan M. Kayes, Michael A. Filler, Morgan C. Putnam, Nathan S. Lewis, Harry A. Atwater, Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells, Nano Lett.8(2008)710-714.
    [16]Bozhi Tian, Xiaolin Zheng, Thomas J. Kempa, Ying Fang, Nanfang Yu, Guihua Yu, Jinlin Huang, Charles M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature 449 (2007) 885-889.
    [17]Tao Hang, Ming Li, Qin Fei, Dali Mao, Characterization of nickel nanocones routed by electrodeposition without any template, Nanotechnology 19 (2008) 035201.
    [18]Desheng Wang, Zhibo Yang, Fei Li, Dequan Liu, Peng Wang, Deyan He, Broadband antireflection of silicon nanorod arrays prepared by plasma enhanced chemical vapor deposition, Appl. Surf. Sci.258(2011) 1058-1061.
    [19]R. Saleh, N. H. Nickel, Raman spectroscopy of B-doped microcrystalline silicon films, Thin Solid Films 427 (2003) 266-269.
    [20]Sumita Mukhopadhyay, Chandan Das, Swati Ray, Structural analysis of undoped microcrystalline silicon thin films deposited by PECVD technique, J. Phys. D:Appl. Phys. 37(2004) 1736.
    [1]Byoungwoo Kang, Gerbrand Ceder, Battery materials for ultrafast charging and discharging, Nature 458 (2009) 190-193.
    [2]M. Armand, J. M. Tarascon, Building better batteries, Nature 451 (2008) 652-657.
    [3]吴宇平,戴晓兵,马军旗,程预江,锂离子电池—实践与应用[M],北京:化学工业出版社(2004)9-10.
    [4]Hong Li, Zhaoxiang Wang, Liquan Chen, Xuejie Huang, Research on Advanced Materials for Li-ion Batteries, Adv. Mater.21 (2009) 4593-4607.
    [5]Min Gyu Kim, Jaephil Cho, Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries, Adv. Func. Mater.19 (2009) 1497-1514.
    [6]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Searching for new anode materials for the Li-ion technology:time to deviate from the usual path, J. Power Sources 97-98(2001)235-239.
    [7]Mino Green, Elizabeth Fielder, Bruno Scrosati, Mario Wachtler, Judith Serra Moreno, Structured Silicon Anodes for Lithium Battery Applications, Electrochem. Solid-State Lett. 6(2003)A75-A79.
    [8]L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, J. R. Dahn, Reaction of Li with Alloy Thin Films Studied by In Situ AFM, J. Electrochem. Soc.150 (2003) A1457-A1464.
    [9]S. D. Beattie, D. Larcher, M. Morcrette, B. Simon, J. M. Tarascon, Si Electrodes for Li-Ion Batteries---A New Way to Look at an Old Problem, J. Electrochem. Soc.155 (2008) A158-A163.
    [10]Uday Kasavajjula, Chunsheng Wang, A. John Appleby, Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources 163 (2007) 1003-1039.
    [11]A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater.9 (2010) 353-358.
    [12]Fei-Fei Cao, Jun-Wen Deng, Sen Xin, Heng-Xing Ji, Oliver G. Schmidt, Li-Jun Wan, Yu-Guo Guo, Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries, Adv. Mater.23 (2012) 4415-4420.
    [13]Wei Wang, Rigved Epur, Prashant N. Kumta, Vertically aligned silicon/carbon nanotube (VASCNT) arrays:Hierarchical anodes for lithium-ion battery, Electrochem. Comm.13 (2011)429-432.
    [14]Shichao Zhang, Zhijia Du, Ruoxu Lin, Tao Jiang, Guanrao Liu, Xiaomeng Wu, Dangsheng Weng, Nickel Nanocone-Array Supported Silicon Anode for High-Performance Lithium-Ion Batteries, Adv. Mater.22 (2010) 5378-5382.
    [15]Xilin Chen, Konstantinos Gerasopoulos, Juchen Guo, Adam Brown, Chunsheng Wang, Reza Ghodssi, James N. Culver, Virus-Enabled Silicon Anode for Lithium-Ion Batteries, ACS Nano 4 (2010) 5366-5372.
    [16]Shigeki Ohara, Junji Suzuki, Kyoichi Sekine, Tsutomu Takamura, Li insertion/extraction reaction at a Si film evaporated on a Ni foil, J. Power Sources 119-121 (2003)591-596.
    [17]Vijay A. Sethuraman, Kristin Kowolik, Venkat Srinivasan, Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries, J. Power Sources 196(2011)393-398.
    [18]T. Zhang, H. P. Zhang, L. C. Yang, B. Wang, Y. P. Wu, T. Takamura, The structural evolution and lithiation behavior of vacuum-deposited Si film with high reversible capacity, Electrochimica Acta 53 (2008) 5660-5664.
    [19]K. L. Lee, J. Y. Jung, S. W. Lee, H. S. Moon, J. W. Park, Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries, J. Power Sources 129 (2004) 270-274.
    [20]Shigeki Ohara, Junji Suzuki, Kyoichi Sekine, Tsutomu Takamura, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, Journal of Power Sources 136 (2004) 303-306.
    [21]T. Takamura, S. Ohara, M. Uehara, J. Suzuki, K. Sekine, A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life, J. Power Sources 129(2004)96-100.
    [22]T. Hang, M. Li, Q. Fei, D. Mao, Characterization of nickel nanocones routed by electrodeposition without any template, Nanotechnology 19 (2008) 035201.
    [23]Candace K. Chan, Hailin Peng, Gao Liu, Kevin Mcllwrath, Xiao Feng Zhang, Robert A. Huggins, Yi Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nano.3(2008)31-35.
    [24]Li-Feng Cui, Yuan Yang, Ching-Mei Hsu, Yi Cui, Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries, Nano Lett.9 (2009) 3370-3374.
    [1]Byoungwoo Kang, Gerbrand Ceder, Battery materials for ultrafast charging and discharging, Nature 458 (2009) 190-193.
    [2]Candace K. Chan, Xiao Feng Zhang, Yi Cui, High Capacity Li Ion Battery Anodes Using Ge Nanowires, Nano Lett.8 (2007) 307-309.
    [3]J. Graetz, C. C. Ahn, R. Yazami, B. Fultz, Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities, J. Electrochem. Soc. 151 (2004)A698-A702.
    [4]Nahong Zhao, Gaojun Wang, Yan Huang, Bin Wang, Baodian Yao, Yuping Wu, Preparation of Nanowire Arrays of Amorphous Carbon Nanotube-Coated Single Crystal SnO2, Chem Mater 20 (2008) 2612-2614.
    [5]N. H. Zhao, L. C. Yang, P. Zhang, G. J. Wang, B. Wang, B. D. Yao, Y. P. Wu, Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries, Mater Lett 64 (2010) 972-975.
    [6]Hyojin Lee, Jaephil Cho, Sn78Ge22@Carbon Core-Shell Nanowires as Fast and High-Capacity Lithium Storage Media, Nano Lett.7 (2007) 2638-2641.
    [7]Yong Min Lee, Jun Young Lee, Heung-Taek Shim, Joong Kee Lee, Jung-Ki Park, SEI Layer Formation on Amorphous Si Thin Electrode during Precycling, J. Electrochem. Soc. 154(2007)A515-A519.
    [8]Nam-Soon Choi, Yan Yao, Yi Cui, Jaephil Cho, One dimensional Si/Sn-based nanowires and nanotubes for lithium-ion energy storage materials, J. Mater. Chem.21 (2011) 9825-9840.
    [9]Yongquan Qu, Hailong Zhou, Xiangfeng Duan, Porous silicon nanowires, Nanoscale (2011) DOI:10.1039/C1031NR10668F.
    [10]B. Laforge, L. Levan-Jodin, R. Salot, A. Billard, Study of Germanium as Electrode in Thin-Film Battery, J. Electrochem. Soc.155 (2008) A181-A 188.
    [11]Chang-Mook Hwang, Jong-Wan Park, Electrochemical characterization of a Ge-based composite film fabricated as an anode material using magnetron sputtering for lithium ion batteries, Thin Solid Films 518 (2010) 6590-6597.
    [12]L. C. Yang, Q. S. Gao, L. Li, Y. Tang, Y. P. Wu, Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction, ELECTROCHEM COMMUN 12 (2010) 418-421.
    [13]Hyojin Lee, Hansu Kim, Seok-Gwang Doo, Jaephil Cho, Synthesis and Optimization of Nanoparticle Ge Confined in a Carbon Matrix for Lithium Battery Anode Material, J. Electrochem. Soc.154 (2007) A343-A346.
    [14]Mi-Hee Park, Kitae Kim, Jeyoung Kim, Jaephil Cho, Flexible Dimensional Control of High-Capacity Li-Ion-Battery Anodes:From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies, Adv. Mater.22 (2010) 415-418.
    [15]Antonino Salvatore Arico, Peter Bruce, Bruno Scrosati, Jean-Marie Tarascon, Walter van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater.4 (2005) 366-377.
    [16]Young-Dae Ko, Jin-Gu Kang, Gwang-Hee Lee, Jae-Gwan Park, Kyung-Soo Park, Yun-Ho Jin, Dong-Wan Kim, Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity, Nanoscale 3 (2011) 3371-3375.
    [17]Min-Ho Seo, Mihee Park, Kyu Tae Lee, Kitae Kim, Jeyoung Kim, Jaephil Cho, High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries, Energ. Environ. Sci.4 (2011) 425-428.
    [18]L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, J. R. Dahn, Reaction of Li with Alloy Thin Films Studied by In Situ AFM, J. Electrochem. Soc.150 (2003) A1457-A1464.
    [19]Chang-Mook Hwang, Jong-Wan Park, Electrochemical properties of Si-Ge-Mo anode composite materials prepared by magnetron sputtering for lithium ion batteries, ElectrochimicaActa 56 (2011) 6737-6747.
    [20]Chang-Mook Hwang, Chae-Ho Lim, Jong-Wan Park, Evaluation of Si/Ge multi-layered negative film electrodes using magnetron sputtering for rechargeable lithium ion batteries, Thin Solid Films 519 (2011) 2332-2338.
    [21]Chang-Mook Hwang, Jong-Wan Park, Electrochemical characterizations of multi-layer and composite silicon-germanium anodes for Li-ion batteries using magnetron sputtering, J. Power Sources 196 (2011) 6772-6780.
    [22]Taeseup Song, Huanyu Cheng, Heechae Choi, Jin-Hyon Lee, Hyungkyu Han, Dong Hyun Lee, Dong Su Yoo, Moon-Seok Kwon, Jae-Man Choi, Seok Gwang Doo, Hyuk Chang, Jianliang Xiao, Yonggang Huang, Won Il Park, Yong-Chae Chung, Hansu Kim, John A. Rogers, Ungyu Paik, Si/Ge Double-Layered Nanotube Array as a Lithium Ion Battery Anode, ACS Nano 6 (2011) 303-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700