CVD金刚石单晶生长及金刚石晶体管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石兼具多方面优异性质,是最重要的半导体材料之一,在众多领域具有十分重要的应用价值。近年来,高品质化学气相沉积(CVD)金刚石单晶的生长及高性能金刚石半导体器件的研究,成为金刚石领域前沿和热点研究课题。
     高品质CVD金刚石的获得依赖于生长条件的控制和优化。另外,金刚石在制备大功率电子器件方面具有独特的优势,而其栅极材料的选用十分重要。目前,用作金刚石晶体管的常用栅极氧化物为Al_2O_3,SiO_2,CaF_2等,然而这些材料的介电常数较低,无法实现对金刚石高空穴密度的完全控制,其他具有较高介电常数的绝缘材料(如铁电材料)往往需要引入合适的过渡层。因此,选择一种新型的栅极绝缘材料,是实现高性能大功率金刚石晶体管器件的关键。
     本论文采用微波等离子体CVD(MPCVD)方法,研究了生长过程中反应气氛对CVD金刚石单晶的生长速率和质量的影响。在金刚石衬底上利用不同方法进行了氧化钽(Ta_2O_5)和氧化铪(HfO_2)的沉积,研究了氧化物及金刚石/氧化物异质结的电学性质,并以Ta_2O_5为栅极材料制作了金刚石晶体管原型器件。主要成果如下:
     一、CVD金刚石单晶的生长。
     1、传统高速生长CVD金刚石单晶的气氛条件(H_2/CH_4/N_2=500sccm/60sccm/1.8sccm)下,分别通入不同流量二氧化碳(CO_2)气体,生长金刚石单晶。金刚石的生长速率随着CO_2流量的增加,呈现出先上升、后下降的趋势。引入CO2所制备的同质外延CVD金刚石单晶的结晶质量较好。
     2、采用温室气体笑气(N_2O)来辅助生长金刚石单晶。N_2O中的氮氧共同作用,可以在提高CVD金刚石质量的同时,提高了生长速率。引入最佳流量的N_2O气体(H_2/CH_4/N_2O=750sccm/90sccm/2sccm),CVD金刚石单晶生长速率最大,并且质量最好。
     3、在金刚石相关器件研究中,金刚石层厚度、表面形貌及质量的控制十分重要。我们研究了在氢气(H_2,500sccm)中不同甲烷(CH_4,1060sccm)流量下CVD金刚石单晶的生长。较低CH_4流量条件下,金刚石单晶生长速率较低,表面光滑平整,利于金刚石半导体器件的制作。随着CH_4流量的增加,生长速率提高,和碳源的增加有密切的关系,但此时样品表面出现非外延生长晶粒,不利于制作半导体器件。
     二、高介电常数(k)氧化物栅极金刚石晶体管的研究
     1、提出以Ta_2O_5作为金刚石晶体管的栅极材料,利用射频溅射法直接在金刚石上沉积得到非晶态Ta_2O_5薄膜,经氮气气氛中经800oC快速退火,获得六角相-Ta_2O_5。非晶态Ta_2O_5具有良好的绝缘体性质,其相对介电常数为16,C-V特性中表现出明显的迟滞现象。退火可以提高薄膜介电常数,达到29,消除C-V曲线中的迟滞现象,但是增大了MOS结构的漏电流。
     经过对导电机制及束缚电荷密度的分析,我们认为退火作用提高了晶体质量,因此消除了C-V特性中的迟滞现象,但是在Ta_2O_5/金刚石界面附近引入了束缚电荷使得漏电流增加。
     以Ta_2O_5为栅极绝缘材料制备了金刚石晶体管原型器件,器件表现出明显的栅极电压对漏极电流的显著控制作用。
     2、利用原子层沉积法和射频溅射法,在金刚石衬底上制备出较高品质的HfO_2薄膜,介电常数约为20,C-V曲线中的迟滞效应与制备方法有关,该工作为研制以HfO_2薄膜为栅极氧化物的金刚石晶体管奠定了一定的基础。
     本文系统地研究了CVD金刚石单晶的生长及金刚石晶体管原型器件的制备和电学特性,得到了有价值的结果,为开发新一代高性能金刚石基半导体器件打下一定的研究基础。
Diamond is a new functional material with many excellent properties, which hasbeen widely applied in many fields. Recently, the chemical vapor deposition (CVD)high quality single crystal diamonds (SCDs) and high performance diamond-basedsemiconductor devices have become hot topic issues in diamond researches. Thegrowth of high quality SCDs is dependent on the deposition conditions. Moreover,the selected suitable gate material plays an important role in improving theperformance of diamond-based high-power electronic devices.
     In this thesis, we systemically investigate the growth of SCDs under variousreaction ambient. For the diamond field-effect transistor (FET), the deposition,structure, and electronic properties of the high dielectric constant (k) materials oftantalum pentoxide (Ta_2O_5) and hafnium dioxide (HfO_2) thin films on SCD substratesare studied. Using Ta_2O_5as gate material, the prototype diamond FETs wereconstructed, which are favorable for realizing a new generation of high-performancediamond-based devices. The main content and innovation of this thesis are listed asfollowing:
     (1) The gaseous carbon dioxide (CO_2) was introduced into the traditionalreaction feeding gases of H_2/CH_4/N_2=500/60/1.8in sccm to examine the growthbehaviors of the SCDs with adding CO_2. The growth rate increases at lower flowrates of CO_2, and then decreases with a larger amount, which can be attributed to thecompetition between the increasing carbon source and enhanced oxygen etchinginduced by CO_2. The homoepitaxial SCDs layers show good crystalline quality.
     (2) The greenhouse gas nitrous oxide (N_2O) was introduced into the H_2/CH_4ambient to assist the growth of CVD SCDs. The combination of the N-and O-relatedradicals generating from N2O are favorable for not only improving the quality ofSCDs, but also increasing the growth rate. The optimized growth condition is of H_2/CH_4/N_2O=750/90/2in sccm to realize high quality and high-rate growth ofhomoepitaxial SCDs.
     (3) The growth of CVD diamond crystals has been investigated at different CH4flow rates (10,20,40,60sccm) in H_2(500sccm) plasma at a constant reactionpressure of200torr. The growth rates of SCDs are increased from2to15m/h withincreasing the flow rates of CH4. The surface of the high quality SCDs grown at lowCH4flow rates are smooth. However, at higher CH4flow rates, there are someunepitaxial grains appearing on the growth surface of the SCDs, which are notconducive to further fabricate high performance diamond-based devices.
     (4) The Ta_2O_5has been proposed as the gate material for diamond transistor.Synthesized by radio frequency sputtering, the as deposited Ta_2O_5films on p-typediamond substrate were amorphous having good insulating behavior and a dielectricconstant (k) of16. The corresponding C-V characteristic shows an obvious hysteresisphenomenon. After rapid thermal annealing in a nitrogen atmosphere at800oC, ahexagonal-Ta_2O_5film was obtained and the k value was markedly improved to be29. In this case, the hysteresis phenomenon of the C-V curve was eliminated,meanwhile, the leakage current of the MOS structure was increased. These variationscan be attributed to the annealing-induced quality improvement of Ta_2O_5film andincrease of trapped charge near the interface of Ta_2O_5/diamond. Experimentally, theprototype diamond FET with Ta_2O_5as the gate material shows obvious control ofdrain current by the gate voltage.
     (5) By the methods of atomic layer deposition and radio frequency sputtering,higher quality HfO_2films with a high K of~20have been deposited on diamondsubstrate. It is found that the hysteresis effect in the corresponding C-V curves of therelated MOS structures is strongly dependent on the deposition method.
引文
[1]陈光华.金刚石薄膜的制备与应用[M].北京,化学工业出版社,2004.3,第一版.
    [2]李明吉.大尺寸高质量金刚石厚膜制备及氮掺杂对金刚石膜生长的影响研究[D].吉林:吉林大学原子与分子物理研究所,2006
    [3] Hershey.The Book of Diamonds[M].New York: Hearthside Press,1940.
    [4]顾长志,金曾孙.金刚石膜的性质、应用及国内外研究现状[J].功能材料,1997,28(3):232-236.
    [5]金曾孙.金刚石薄膜的研究进展与展望[J].薄膜科学与技术,1995,8(3):172.
    [6] Okuzumi.F. International Conference on New Diamond Science and Technology
    [C].1990:80.
    [7] French P J, Muro H, Shinohara T, Nojiri H and Kaneko H. SOI pressure sensor[J].Sensors and Actuators A: Physical,1992,35(1):17-22.
    [8] Berman R, Thermal properties of diamond in the properties of diamond [M].Edited by J. E. Field, New York, Academic Press,1979.
    [9]戴达煌,周克崧.金刚石薄膜沉积制备工艺与应用[M].北京:冶金工业出版社,2001.
    [10]Yin Z, Akkerman Z, Yang B X, Smith F W. Optical properties and microstructureof CVD diamond films[J]. Diamond and Related Materials,1997,6(1):153-158.
    [11]王季陶,张卫,刘志杰.金刚石低压气相生长的热力学藕合模型[M].北京,科学出版社,1998.12,第一版
    [12]徐振浩,基于触媒原理的CVD金刚石薄膜抛光[D],浙江,浙江工业大学机械工程学院,2010
    [13]Spear K E. diamond-ceramic coating of the future[J]. J. Am. Ceram. Soc.,1989,72:171-191.
    [14]蒋翔六. CVD金刚石薄膜的应用和市场前景[J].薄膜科学与技术,1991,4(3):9-14.
    [15]顾毓沁,余立新,朱德贵.金刚石薄膜的导热性质研究[J].中国科学(E辑),1996,26(2):103-108.
    [16]F. Maier, J. Ristein, and L. Ley, Electron affinity of plasma-hydrogenated andchemically oxidized diamond (100) surfaces[J]. PHYSICAL REVIEW B,2001(64):165411
    [17]Hiroshi Kawarada, Makoto Aoki, and Masahiro Ito, Enhancement modemetal-semiconductor field effect transistors using homoepitaxial diamonds[J].Appl. Phys. Lett.1994(65)1563-1565,
    [18]S. A. Grot, G. S. Gildenblat, C.W. Hatfield, C. R.Wronski, A. R.Badzian, T.Badzian, and R. Messier, The effect of surface treatment on the electricalproperties of metal contacts to boron-doped homoepitaxial diamond film[J].IEEE Electron DeviceLett.1990(11)100.
    [19]J. Alvarez, J.P. Kleider, F. Houzé, M.Y. Liao, Y. Koide, Local photoconductivityon diamond metal-semiconductor-metal photodetectors measured by conductingprobe atomic force microscopy[J], Diamond and Related Materials,2007(16)1074–1077
    [20]M. Riedel, J. Ristein, and L. Ley, Recovery of surface conductivity ofH-terminated diamond after thermal annealing in vacuum[J]. PHYSICALREVIEW B2004(69),125338
    [21]Motsumoto S.Energy loss of high-density hot carriers in polar semiconductors[J].Japanese Journal of Applied Physics, Part1: Regular Papers&Short Notes,1982,21(8):1181-1183.
    [22]Jubber M G, Wilson J I B, Drummond I C, John P, Milne D K. Microwaveplasma chemical vapour deposition of high purity diamond films[J]. Diamondand Related Materials,1993,2(2-4):402-406.
    [23]Kawarada H, Mar K S, Hiraki A. Large area chemical vapour deposition ofdiamond particles and films using magneto-microwave plasma[J]. Jpn. J. Appl.Phys.,1987,26: L1032-L1034.
    [24]吕反修,唐伟忠,李成明,宋建华,黑立富,直流电弧等离子体喷射在金刚石膜制备和产业化中的应用,金属热处理,200833(1)43-48。
    [25]Liao MY, Wang X, Teraji T, Koizumi S, Koide Y, Light intensity dependence ofphotocurrent gain in single-crystal diamond detectors[J], PHYSICAL REVIEWB,2010(81)033304,
    [26]M. Kasu, K. Ueda, H. Ye, Y. Yamauchi, S. Sasaki, T. Makimoto, High RF outputpower for H-terminated diamond FETs[J], Diamond&Related Materials,2006(15),783–786
    [27]Orlando Auciello, Anirudha V. Sumant, Status review of the science andtechnology of ultrananocrystalline diamond (UNCD) films and application tomultifunctional devices[J], Diamond&Related Materials2010(19)699–718
    [28]Erhard Kohn, Andrej Denisenko, Concepts for diamond electronics[J], Thin SolidFilms2007(515)4333–4339
    [29]Shiomi Hiromu, Nishibayashi Yoshiki, Fujimori Naoji, Field-Effect Transistorsusing Boron-Doped Diamond Epitaxial Films[J], Japanese Journal of AppliedPhysics,1989(28) L2153-L2154.
    [30]Hiromu Shiomi, Yoshiki Nishibayashi and Naoji Fujimori, High-VoltageSchottky Diodes on Boron-Doped Diamond Epitaxial Films[J],1990(29)L2163-L2164.
    [31]Gennady Sh. Gildenblat, S. A. Grot, C. W. Hatfield and A. R. Badzian,High-Temperature Thin-Film Diamond Field-Effect Transistor Fabricated Usinga Selective Growth Method[J], IEEE ELECTRON DEVICE LETTERS,1991(12)37-39
    [32]Joseph S. Holmes and David L. Dreifus, Field-Effect Transistors and CircuitsFabricated From Semiconducting Diamond Thin Films[C]. Electron DevicesMeeting,1994. IEDM '94. Technical Digest., International,11-14Dec1994,423-466
    [33]Hiroshi Kawarada, Makoto Aoki, and Masahiro Ito, Enhancement modemetal-semiconductor field effect transistors using homoepitaxial diamonds[J],Appl. Phys. Lett.1994(65)1563-1565
    [34]K. Tsugawa, K. Kitatani, H. Noda, A. Hokazono, K. Hirose, M. Tajima, H.Kawarada, High-performance diamond surface-channel field-effect transistorsand their operation mechanism[J], Diamond and Related Materials1999(8)927–933.
    [35]S. Miyamoto, H. Matsudaira, H. Ishizaka, K. Nakazawa, H. Taniuchi, H.Umezawa, M. Tachiki, H. Kawarada, High performance diamond MISFETs usingCaF2gate insulator[J], Diamond and Related Materials2003(12)399–402.
    [36]Kazuyuki Hirama, Shingo Miyamoto, Hiroki Matsudaira, Keisaku Yamada, andHiroshi Kawarada, Characterization of diamond metal-insulator-semiconductorfield-effect transistors with aluminum oxide gate insulator[J], Applied PhysicsLetters2006(88)112117
    [37]Kazuyuki Hirama, Hisashi Sato, Yuichi Harada, Hideki Yamamoto, and MakotoKasu, Thermally Stable Operation of H-Terminated Diamond FETs by NO2Adsorption and Al2O3Passivation[J], IEEE Electron Device Letters,2012(33)1111.
    [38]A. Denisenko, E. Kohn, Diamond power devices. Concepts and limits[J],Diamond&Related Materials2005(14)491–498.
    [39]Takuya Ariki, Shozo Shikama, Sei Suzuki, Yuzuru Otsuka, Tetsuro Maki andTakeshi Kobayashi, Efficient field effect in heavily doped thin-film diamondMetal–Insulator-Semiconductor diode employing BaTiO3insulator film[J], Jpn.J. Appl. Phys,1994(33)L888-L891
    [40]Auciello, W. Fan, B. Kabius, S. Saha, J. A. Carlisle, R. P. H. Chang, C. Lopez, E.A. Irene, R. A. Baragiola, Hybrid titanium–aluminum oxide layer as alternativehigh-k gate dielectric for the next generation of complementarymetal–oxide–semiconductor devices[J], Applied Physics Letters,2005(86)042904
    [41]Meiyong Liao, Kiyomi Nakajima, Masataka Imura, and Yasuo Koide, Improvedferroelectric properties of Pb(Zr0.52,Ti0.48)O3thin film on single crystal diamondusing CaF2layer[J], Applied Physics Letters,2010(96)012910
    [42]Meiyong Liao, Masataka Imura, Xiaosheng Fang, Kiyomi Nakajima, GuangchaoChen, and Yasuo Koide, Integration of (PbZr0.52Ti0.48O3) on single crystaldiamond as metal-ferroelectric-insulator-semiconductor capacitor[J], AppliedPhysics Letters,2009(94),242901
    [1]黄建良,汪建华,满卫东,微波等离子体化学气相沉积金刚石膜装置的研究进展[J],真空与低温,2008,14(1)1-5
    [2]杨旭昕,石墨衬底上氮化硼膜的制备与其性质研究[D],吉林:吉林大学原子与分子物理研究所,2010
    [3]陈光华,张阳.金刚石薄膜的制备与应用[M].北京,化学工业出版社,2004.3,第一版
    [4]程光煦.拉曼布里渊散射-原理及应用[M].北京:科学出版社,2001.
    [5] Nemanich R J, Glass J T, Lucovsky G. Raman Scattering Charaterization of CarbonBonding in Diamond and Diamond like Thin Films[J]. J Vac Sci Tech,1988,A6(3):1783-1787.
    [6] Knigh D S, White W B., Characterization of Diamond Films by RamanSpectroscopy[J]. J. Mater. Res.,1989,4(2):385-393.
    [1] H.Okushi,H.Watanabe,S.Ri. The large-sized diamond single-crystal synthesis byhot filament CVD[J]. Journal of Crystal Growth2008,310(5):1019-1022
    [2] C.S.Yan, HK Mao and RJ Hemley, Very high growth rate chemical vapordeposition of single-crystal diamond[J]. Proc. Nat. Acad. Sci.99(2002)12523-12528.
    [3] Mokuno Y,Chayahara A,Soda Y,Fujimori. High rate homoepitaxial growth ofdiamond by microwave plasma CVD with nitrogen addition[J].Diamond Relat.Mater.2006,15(4/8):455-459.
    [4] A.Tallaire, A.T. Collins, D. Charles, J. Achard, R. Sussmann, A. Gicque, M.E.Newton, A.M. Edmonds and R.J. Cruddace.Characterisation of high-quality thicksingle-crystal diamond grown by CVD with a low nitrogen addition[J]. DiamondRelat. Mater.15(2006)1700-1707.
    [5] Hongdong Li, Guangtian Zou, Qiliang Wang, Shaoheng Cheng, Bo Li, JiannanLv, Xianyi Lv, Zengsun Jin. High-Rate Growth and Nitrogen Distribution inHomoepitaxial Chemical Vapour Deposited Single-crystal Diamond[J]. ChinesePhysics Letters,2008(25)1803-1806.
    [6] Qing Zhang, Hongdong Li, Shaoheng Cheng, Qiliang Wang, Liuan Li, Xianyi Lv,Guangtian Zou, The effect of CO2on the high-rate homoepitaxial growth of CVDsingle crystal diamonds[J], Diamond&Related Materials,20,496–500(2011)
    [7] Ying Su, Hongdong Li, Shaoheng Cheng, Qing Zhang, Qiling Wang, Xianyi Lv,Guangtian Zou, Xiaoqiang Pei, Jingguo Xie, Effect of N2O on high-ratehomoepitaxial growth of CVD single crystal diamonds[J], Journal of CrystalGrowth,351,51–55(2012).
    [8]王启亮,吕宪义,成绍恒,张晴,李红东,邹广田,高速生长CVD金刚石单晶及应用[J],超硬材料工程,2,1-5(2011)
    [9]李博. MPCVD法制备光学级多晶金刚石膜及同质外延金刚石单晶[D],吉林:吉林大学原子与分子物理研究所,2008.
    [10]张晴.二氧化碳对MPCVD法制备金刚石单晶影响的研究[D],吉林:吉林大学原子与分子物理研究所,2010.
    [11]苏颖,一氧化二氮对MPCVD法制备金刚石单晶生长的影响[D],吉林:吉林大学原子与分子物理研究所,2012.
    [12]王启亮, CVD曲面金刚石膜和单晶金刚石的制备及性质研究[D],吉林:吉林大学原子与分子物理研究所,2012.
    [13]T.P. Mollart, K. L. Lewis, Optical-quality diamond growth from CO2-containinggas chemistries[J]. Diamond Relat.Mater.1999(8):236-241.
    [14]M. A. Elliott, P. W. May, J. Petherbridge, S. M. Leeds, M. N. R. Ashfold, W. N.Wang, Optical emission spectroscopic studies of microwave enhanced diamondCVD using CH4/CO2plasmas[J]. Diamond Relat.Mater.9(2000):311-316.
    [15]Kamo M, Sato Y, Matsumoto S, Setaka N. Diamond synthesis from gas phase inmicrowave plasma[J]. J. Cryst. Growth,1983,3(62):642-644.
    [16]Yu-fei Meng, Chih-shiue Yan, Joseph Lai, Szczesny Krasnicki, Haiyun Shu,Thomas Yu, Qi Liang, Ho-kwang Mao, Russell J. Hemley, PNAS105(2008)17620.
    [17]H Okushi, H Watanabe, S Ri, S Yamanaka, D Takeuchi. Device-gradehomoepitaxial diamond film growth[J]. Journal of Crystal Growth,2002(237-239):1269-1276.
    [18]A Mainwood, Nitrogen and nitrogen-vacancy complexes and their formation indiamond[J]. Phys. Rev. B1994(49):7934-7940.
    [19]U Meier, K Kohse-Hoinghaus, L Schafer, et al. Two-photon excited LiFdetermination of H-atom concentrations near a heated filament in a low pressureH2evironment[J]. Appl. Opt.,1990,29:4993-4999.
    [20]Qi Liang, Cheng Yi Chin, Joseph Lai, Chih-shiue Yan, Yufei Meng, Ho-kwangMao, and Russell J. Hemley, Enhanced growth of high quality single crystaldiamond by microwave plasma assisted chemical vapor deposition at high gaspressures[J], Applied Physics Letters,2009(94),024103
    [21]B. Atakan, K. Lummer, K. Kohse-H inghaus, Nitrogen compounds and theirinfluence on diamond deposition in flames [J]. Phys. Chem. Chem. Phys.1999,1:705.
    [22]H. Koinuma, M. Yoshimoto, Y. Takaggi, A. B. Sawaoka, T. Hashimoto, T. Nagai,T. Shiraishi, Effect of nitrous oxide gas on CVD diamond film deposition[J]. Mat.Res. Soc. Symp. Proc.,1990(180)861.
    [23]Mokuno Y,Chayahara A,Soda Y,Fujimori, High rate homoepitaxial growth ofdiamond by microwave plasma CVD with nitrogen addition[J].Diamond Relat.Mater.2006,15(4/8):455-459.
    [24]Q. Liang, C. Y. Chin, J. Lai, C.S. Yan, Y.F. Meng, H.K. Mao, R.J. Hemley,Recent advances in high-growth rate single-crystal CVD diamond [J]. Appl. Phys.Lett.2009,94:24103.
    [25]T. Teraji, M. Hamada, H. Wada, M. Yamamoto and T. Ito. High-qualityhomoepitaxial diamond (100) films grown under high-rate growth condition [J].Diamond Relat. Mater.2005,14:1747.
    [26]Th. Frauenheim, G. Jungnickel, P. Sitch, M. Kaukonen, F. Weich, J. Widany, D.Porezag, A molecular dynamics study of N-incorporation into carbon systemsDoping diamond growth and nitride formation [J]. Diamond Relat. Mater.1998,7:348.
    [27]J. Achard, F. Silva, A. Tallaire, X. Bonnin, G. Lombardi, K. Hassouni and A.Gicquel, High quality MPACVD diamond single crystal growth: high microwavepower density regime[J], J. Phys. D. Appl. phys.40(2007)6175.
    [28]H. Watanabe, T. Kitamura, S. Nakashima, S. Shikata, High quality MPACVDdiamond single crystal growth high microwave power density regime [J]. J. Appl.Phys.2009,105:093529.
    [29]A. Tallaire, A.T. Collins, D. Charles, J. Achard, R. Sussmann, A. Gicquel, M.E.Newton, A.M. Edmonds, R.J. Cruddace. Characterisation of high-quality thicksingle-crystal diamond grown by CVD with a low nitrogen addition[J].Diamondand Related Materials.2006,15:1700-1707.
    [30]S.J. Charles, J.E. Butler, B.N. Feygelson, M.E. Newton, D.L. Carroll, J.W. Steeds,H. Darwish, C.S. Yan, H.K. Mao and R.J. Hemley, Characterization of nitrogendoped chemical vapor deposited single crystal diamond before and after highpressure, high temperature annealing [J]. Phys. Stat. Sol.(a)2004,201(11):2473-2485.
    [31]A Mainwood, Nitrogen and nitrogen-vacancy complexes and their formation indiamond[J]. Phys. Rev. B1994(49):7934-7940.
    [32]C.S.Yan, HK Mao and RJ Hemley, Very high growth rate chemical vapordeposition of single-crystal diamond[J]. Proc. Nat. Acad. Sci.99(2002)12523-12528.
    [33]王占国,郑有炓等,半导体材料研究进展[M],北京,高等教育出版社,2012.1,第一版
    [34]L.F. Hei, J. Liu, C.M. Li, J.H. Song, W.Z. Tang, F.X. Lu, Fabrication andcharacterizations of large homoepitaxial single crystal diamond grown by DC arcplasma jet CVD [J]. Diamond and Related Materials.30(2012)77–84.
    [1] Takeyasu Saito, Kyung-ho Park, Kazuyuki Hirama, Hitoshi Umezawa, MitsuyaSatoh, Hiroshi Kawarada, Zhiquan Liu, Kzautake Mitsuishi, Kazuo Furuya, andHideyo Okushi, Fabrication of metal–oxide–diamond field-effect transistors withsubmicron-sized gate length on boron-doped (111) H-terminated surfaces usingelectron beam evaporated SiO2and Al2O3[J], Journal of electronic materials,2011(40)247-252.
    [2] Auciello, W. Fan, B. Kabius, S. Saha, J. A. Carlisle, R. P. H. Chang, C. Lopez, E.A. Irene, R. A. Baragiola, Hybrid titanium–aluminum oxide layer as alternativehigh-k gate dielectric for the next generation of complementarymetal–oxide–semiconductor devices[J], Applied Physics Letters,2005(86)042904
    [3] Meiyong Liao, Masataka Imura, Xiaosheng Fang, Kiyomi Nakajima, GuangchaoChen, and Yasuo Koide, Integration of (PbZr0.52Ti0.48O3) on single crystaldiamond as metal-ferroelectric-insulator-semiconductor capacitor[J], AppliedPhysics Letters,2009(94)242901
    [4] Meiyong Liao, Kiyomi Nakajima, Masataka Imura, and Yasuo Koide, Improvedferroelectric properties of Pb(Zr0.52,Ti0.48)O3thin film on single crystal diamondusing CaF2layer[J], Applied Physics Letters,2010(96)012910
    [5] P. W. Peacock and J. Robertson, Band offsets and Schottky barrier heights of highdielectric constant oxides[J], J. Appl. Phys.,2002(92),4712-4721
    [6] J. Robertson, High dielectric constant oxides[J], Eur. Phys. J. Appl. Phys.,2004(28),265–291
    [7] Bohr, M.T., Chau, R.S., Ghani, T., Mistry, K., The High-k Solution[J], Spectrum,IEEE,2007(44),29-35
    [8] E. Atanassova, A. Paskaleva, Challenges of Ta2O5as high-k dielectric fornanoscale DRAMs[J], Microelectronics Reliability,2007(47)913–923
    [9] J.Lin,N.Masaaki,A.Tsukune, et al. Ta2O5thin films with exceptionally highdielectric constant[J], App.Phys.Lett.,1999,74(16)2370-2372
    [10]陈胜龙,杨建广,高亮,Ta2O5薄膜制备的研究现状及进展[J],材料导报,2010(01)
    [11]Heisuke Sakai, Yukio Furukawa, Eiichi Fujiwara, and Hirokazu Tada,Low-voltage Organic Field-effect Transistors with a Gate Insulator of Ta2O5Formed by Sputtering, Chemistry Letters,2004(33)1172-1173
    [12]S. V. Jagadeesh Chandra, P. Sreedhara Reddy, G. Mohan Rao, and S. Uthanna,Effect of Postdeposition Annealing on the Structural, Electrical, and OpticalProperties of DC Magnetron Sputtered Ta2O5Films[J], Research Letters inMaterials Science,2007,95307
    [13]T. Dimitrova, U, K. Arshak, E. Atanassova. Crystallization effects in oxygenannealed Ta O thin films on Si[J], Thin Solid Films,381(2001)31-38
    [14]E. Atanassova, N. Novkovski, A. Paskaleva, M. Pecovska-Gjorgjevich, Oxygenannealing modification of conduction mechanism in thin rf sputtered Ta2O5onSi[J], Solid-State Electronics,2002(46)1887–1898.
    [15]C. Chaneliere, J.L. Autran, R.A.B. Devine, B. Balland, Tantalum pentoxide(Ta2O5) thin films for advanced dielectric applications[J], Materials Science andEngineering,1998(R22)269-322
    [16]Z. Q. Shi and W. A. Anderson, MIS diodes on n-InP having an improvedinterface[J], Solid-State Electron,1991(34)285
    [17] R. Mahapatra, A. K. Chakraborty, N. Poolamai, A. Horsfall, S. Chattopadhyay,N. G. Wright, K. S. Coleman, P. G. Coleman, and C. P. Burrows, Leakage currentand charge trapping behavior in TiO2/SiO2high-k gate dielectric stack on4H-SiCsubstrate[J], J. Vac. Sci. Technol. B.,2007(25)217
    [18]S Uthanna1, S V Jagadeesh Chandra, P Sreedhara Reddy and G Mohan Rao,Effect of Post-Deposition Annealing on the Structural and Electrical Properties ofdc Magnetron Sputtered Ta2O5Films[J], Journal of Physics: Conference Series2008(114)012035
    [19]Jiang Lu and Yue Kuo, Hafnium-doped tantalum oxide high-k dielectrics withsub-2nm equivalent oxide thickness[J], Applied Physics Letters,2005(87)232906
    [20]S. M. Sze, Physics of Semiconductor Devices,2nd ed.[M] Wiley, New York,(1981)
    [21]Young Yun, Tetsuro Maki, and Takeshi Kobayashi, Surface state densitydistribution of semiconducting diamond films measured from the Al/CaF2/i-diamond metal-insulator-semiconductor diodes and transistors[J], J. Appl.Phys.,1997(82)3422
    [22]Shaoheng Cheng, Liwen Sang, Meiyong Liao, Jiangwei Liu, Masataka Imura,Hongdong Li and Yasuo Koide, Integration of high-dielectric constant Ta2O5oxides on diamond for power devices, Applied Physics Letters,2012(101)232907
    [23]Kazuyuki Hirama, Shingo Miyamoto, Hiroki Matsudaira, Keisaku Yamada, andHiroshi Kawarada, Characterization of diamond metal-insulator-semiconductorfield-effect transistors with aluminum oxide gate insulator[J], Applied PhysicsLetters2006(88)112117
    [24]Masataka Imura, Ryoma Hayakawa, Hirotaka Ohsato, Eiichiro Watanabe, DaijuTsuya, Takahiro Nagata, Meiyong Liao, Yasuo Koide, Jun-ichi Yamamoto,Kazuhito Ban, Motoaki Iwaya, Hiroshi Amano, Development of AlN/diamondheterojunction field effect transistors[J], Diamond&Related Materials,2012(24)206–209
    [25]Kenji Ueda, Yoshiharu Yamauchi, and Makoto Kasu, Diamond FETs onboron-implanted and high-pressure and high-temperature annealed homoepitaxialdiamond[J], phys. stat. sol.(c),2008(5)3175–3177
    [1] Hyoungsub Kim, Paul C. Mclntyre, Krishna C. Saraswat, Effects ofcrystallization on the electrical properties of ultrathin HfO2dielectrics grown byatomic layer deposition[J], Appl. Phys. Lett.,2003(82)106-108
    [2] Mark T. Bohr, Roberts. Chau, Tahir Ghani and Kaizad Mistry, The High-kSolution, IEEE Spectrum[J],2007(44)29-35
    [3]田书凤,彭英才,范志东,张弘,高k值HfO2栅介质材料电学特性的研究进展[J],材料导报,2007(21)22-26
    [4] J. H. Sim, S.C. Song, P.D. Kirsch, C. D. Young, R. Choi, D. L. Kwong, B. H. Leeand G. Bersuker, Effects of ALD HfO2thickness on charge trapping andmobility[J], Microelectronic Engineering,2005(80)218–221
    [5] Meiyong Liao, Masataka Imura, Xiaosheng Fang, Kiyomi Nakajima, GuangchaoChen, and Yasuo Koide, Integration of (PbZr0.52Ti0.48O3) on single crystaldiamond as metal-ferroelectric-insulator-semiconductor capacitor[J], AppliedPhysics Letters,2009(94)242901

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700