金属箔电爆炸及其在冲击动力学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属导体的电爆炸及其相关现象是一个很有意义并且富有应用前景的研究课题,一方面金属的电爆炸过程为我们对高能量密度状态下金属的物理性质研究提供了很好的研究途径,另一方面,不同状态下金属导体的电爆炸在脉冲功率技术、爆炸动力学以及材料制备等方面具有广阔的应用前景。
     本文主要对金属箔电爆炸的相关理论、数值模拟以及具体的物理实验进行了研究。主要获得了以下结果:
     1.对金属导体电爆炸的物理过程给出了概括性的叙述,归纳了不同实验条件下电爆炸发生时金属导体导电性丧失的原因以及后续的电击穿过程。对导体电爆炸过程的描述,有助于我们对具体物理实验中金属箔的电爆炸过程有一个清晰的物理认识。
     2.通过引进包含固-液-气-等离子体四个状态的SESAME状态方程库和Burgess电阻率模型,采用修正后的电阻率模型参数,在一维反应流体动力学程序SSS基础上编写了计算金属箔电爆炸的一维磁流体动力学程序EEP(Electrical Explosion Program)。 EEP程序在不引入人为假定参数的情况下,在(0.76mm)2~(30mm)2爆炸箔面积,7.8kA~1.0MA爆炸电流,2km/s~18km/s速度范围内对不同电炮实验系统铝箔或铜箔的电爆炸过程具有相当好的预估能力。采用该程序,分析了不同材料金属箔电爆炸产生的等离子体驱动塑料飞片能力差异的原因以及电磁力对飞片速度的影响。分析结果表明,不同材料的金属箔电爆炸驱动飞片能力的差异源于电爆炸等离子体绝热指数的不同;电磁力对飞片终态速度的贡献取决于爆炸电流与峰值电流线密度的大小,若通过金属箔的爆炸电流线密度较大(如>50kA/mm)且小于最大放电电流线密度,电磁力可能会导致塑料飞片的二次加速。
     3.采用EEP程序计算了金属箔电爆炸驱动平面等离子体射流过程及相关物理参数的时空演化。计算结果表明,一面受约束一面为自由表面的金属箔电爆炸会造成金属箔表层高密度物质的抛射,抛射速度可高达60km/s。在此基础上,计算了平面等离子体射流撞击铝箔靶的物理过程并开展了相关实验,计算结果与实验结果比较吻合。
     4.发展了二级电炮实验技术,使之成为一种成熟的加载手段。采用理论分析与数值模拟相结合的办法,对二级飞片发射过程中金属飞片与衰减板的脱离以及如何保证二级金属飞片的完整及其速度稳定这两个关键因素进行了研究与分析。提出了复合衰减板结构以解决这两个问题,获得了良好的实验结果。
     5.利用电炮,研究了不同速度下撞击Zr51Ti5Ni10Cu25Al9非晶合金的冲击动力学行为。实验观察到了异于传统多晶金属的弹-塑性响应,获得了该材料8GPa-17GPa压力范围的冲击绝热线。本实验结果和Xi Feng等人报道的该材料在18GPa-110GPa压力范围的冲击绝热线存在明显的差异。实验观察到了Zr51Ti5Ni10Cu25Al9非晶合金卸载波速随加载应力增大而显著增大的现象。利用二级电炮,研究了Zr51Ti5Ni10Cu25Al9非晶合金在低于其HEL冲击压力下的动力学响应。回收样品的宏观裂纹和断面SEM分析表明,低速撞击下Zr51Ti5Ni10Cu25Al9非晶合金表现出明显的脆性响应,这意味着该非晶合金在高速冲击下容易发生脆性断裂,因此不宜作为结构材料在冲击条件下使用。
     6.采用Gleeble3500热模拟试验机研究了Zr51Ti5Ni10Cu25Al9非晶合金在预压条件下的热冲击力学性能,以便对这类非晶合金的力学性能给出更加全面的认识。实验发现预压力和温升率较低时,随着温度的升高,材料强度减小,样品最后发生塑性变形;预压力和温升率较高时样品则发生剪切断裂,且发生剪切破坏时样品的温度高于其玻璃化转变温度。基于变温条件下非晶合金的结构弛豫模型,分析了块体非晶合金在快速加热条件下的变形过程,给出了非晶合金材料发生屈服时温升率、预压力与屈服温度之间的相互关系。通过对回收样品的金相观察,分析了预压载荷下快速加热过程中该材料发生剪切破坏的临界条件。
The electrical explosion of metals is attractive due to the unique state of metals under rapid heating with high inner energy offers the opportunity to investigate physical phenomena undiscovered other-where and its wide applications in fields such as pulse technique, exploding dynamics, new material preparation and others.
     In the present work, theory of electrical explosion of metals, related numerical simulations and experiments have been implemented and the following conclusions can be done:
     1. Recapitulative descriptions of the electrical explosion process of metals have been done and the disappearance of metal's conductivity is discussed. This is helpful to give a clear physical impression of the metallic foil exploding process in electrical gun experiments.
     2. Based on the one dimensional reaction hydrodynamics program SSS, a magnetohydrodynamics code has been developed incorporating with tabular EOS and Burgess resistivity model considering multi-phases using a unified set of modified resistivity coefficients for aluminum (or cooper) foils to calculate the metallic foils exploding process in EGs and the launching process of two-stage metallic flyers in TSEGs. Calculated results are widely compared with experimental data of ours and those reported in literatures in past decades, good agreements indicate that this model is applicative universally in calculations of EGs with aluminum or copper bridge foils in size ranging0.76×0.76mm2~30×30mm2, burst current7.8kA~1MA and EGs' flyer velocity2km/s~18km/s. Utilizing the MHD code, effects of metallic foils' materials on plastic flyers' final velocities and contributions of Lorentz force to the flyers' acceleration are analyzed. Calculated results indicate that the acceleration ability difference of foil materials may be attributed to the adiabatic indexes of expanding foil plasmas, and if the linear density of burst current is much smaller than that of maximum current and its absolute value is large enough (for example,>50kA/mm), the Lorentz force may cause a second acceleration of plastic flyers.
     3. The process of metallic foil exploding driven planar plasma jet is calculated by the MHD code mentioned above and the parameters in the process, such as particle velocity, plasma density and the momentum of the plasma are computed. Calculated results show that a thin layer with high density following by high temperature and high pressure plasma is projected to a speed up to60km/s. The course of plasma jet impacting an aluminum foil target is calculated also and the computed results coincide with the experimental results.
     4. The two staged electrical gun(TSEG) technique has been developed to launch thicker metallic flyers. The key factors in the TSEG launch process, such as the separation of metallic flyer and attenuator and the adjustment of metallic flyer to insure its integrity and stable speed, are explored in detail by simulations and experiments. Composite attenuators are proposed to solve these problems and good results are obtained.
     5. Impact dynamic behaviors of the Zr51Ti5Ni10Cu25Al9bulk metallic glass have been studied under different impacting velocities using0.5mm thick polymers flyer accelerated by the14.4kJ EG. Disparate elastic-plastic behaviors are observed and the Hugoniot curve in8GPa-17GPa stress range has been measured. Compared to the Hugoniot curve reported in literature in stress range18GPa to110GPa, it is found that the Hugoniot curve slopes in different stress range are different. Meanwhile, experimental results show that the unloading wave speed increases with impact stresses. Utilizing the TSEG, dynamic behaviors of Zr51Ti5Ni10Cu25Al9and Zr41.2Ti13.8Cu10Ni12.5Be22bulk metallic glasses are studied by stainless steel flyers planar impacts in velocity range100m/s-300m/s. Macroscopic observation and the SEM image of the fracture surfaces indicate that dynamic behaviors of the two Zr based bulk metallic glasses act as brittle, which means that they are not suitable in impacting situations.
     6. Systematic experimental study were performed using Gleeble3500thermal-mechanical testing system to study the effects of heating rates on mechanical behaviors of Zr51Ti5Ni10Cu25Al9bulk metallic glass under pre-load. Experimental results show that the failure models of this material change from heating soften to catastrophic rupture with increasing pre-load and heating rate. Under the pre-stress which is much lower than the material strength at room temperature and rapid heating, it is found that the sample cracks dramatically at the temperature close to or above the material's glass transition temperature. The relations of yield temperature and heating rate as well as pre-stress are deduced based on amorphous alloys structure relaxation theory under changing temperatures. Metallographic observation of recovery samples show that the catastrophic rupture is caused by the overlap of heat dis-match stress and concentration stress caused by pre-load in defects concentrating regions, a critical failure model is given out also.
引文
[1].张寒虹,陈志福,张弛.水中电爆炸的实验研究[J].爆炸与冲击,2002.22(4):p.363-367.
    [2]. F.D.Bennett Cylindrical Shock Waves from Exploding Wires[J]. Physics of Fluids,1958.1(4): p.347-352.
    [3]. A.Grinenko, S. Efimov, A. Fedotov. Addressing the problem of plasma shell formation around an exploding wire in water[J]. Physics of Plasmas,2006.13(5):p.052703.
    [4].伍友成,邓建军,郝世荣等.电爆炸丝法制备纳米A1203粉末[J].强激光与粒子束,2006.17(11):p.1753-1756.
    [5]. Y.A.Kotov and O.M. Samatov. Production of nanometer-sized ain powders by the exploding wire method. Nanostructured Materials[J],1999.12(1-4):p.119-122.
    [6]. P. Sen, Joyee Ghosh, Alqudami Abdullah et.al., Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique[J]. Journal of Chemical Sciences,1999.115(5-6):p.499-508
    [7].龚兴根,电爆炸断路开关[J].强激光与粒子束,2002.14(4):p.577-582.
    [8].赵科义,李治源,吕庆敖等.电爆炸金属导体在Marx发生器中的应用[J].高电压技术,2003.29(10):p.47.
    [9]. W.M.CONN, The Use of "Exploding Wires" as a Light Source of Very High Intensity and Short Duration[J]. JOSA,1951.41(7):p.445-449.
    [10]. G. K.Oster and R.A. Marcus, Exploding Wire as a Light Source in Flash Photolysis[J]. The Journal of Chemical Physics,1957.27(1):p.189-192.
    [11]. D.W.Brinkman and R.D.Sacks, Exploding wires as an intense ultraviolet continuum excitation source with preliminary application to atomic fluorescence spectrometry[J]. Anal. Chem.,1975. 47(8):p.1279-1285.
    [12]. T.A.Shelkovenko, S. A. Pikuz, D. A. Hammer, et al. Evolution of the structure of the dense plasma near the cross point in exploding wire X pinches[J]. Physics of Plasmas,1999.6(7):p. 2840-2846.
    [13]. T.A. Shelkovenko, D.B. Sinars, and S.A. Pikuz, Point-projection x-ray radiography using an X pinch as the radiation source[J]. Review of Scientific Instruments,2001.72(1):p.667-670.
    [14]. S.A. Pikuz, D.B. Sinars, T.A. Shelkovenko.et.al. High Energy Density Z-Pinch Plasma Conditions with Picosecond Time Resolution[J]. Physical Review Letters,2002.89(3):p. 035003.
    [15]. A.H.Guenther, D.C.Wunsch, and T.D.Soapers, Acceleration of thin plates by exploding foil techniques, in Exploding wires 2, W.G.Chace and H.K.Moore, Editors.1962, Plenum Press: New York. p.279.
    [16]. D.V.Keller and J.R.Penning, Exploding foil-the production of plane shock waves and the acceleration of thin plates, in Exploding wires 2, W.G.Chace and H.K.Moore, Editors.1962, Plenum Press:New York. p.263-277.
    [17]. J.R.Stroud and E.F.Nikkola, Flying Plate ("Slapper") Detonators-Experimental Results[R]. UCRL-50938,1970.
    [18]. J.L.Cutting, R.S.Lee, and R.I.Hongin, Slapper detonator performance[R]. UCRL-ID117787, 1994.
    [19].袁士伟,曾庆轩,冯长根.新型冲击片雷管设计研究[J].火工品,2002(2):p.5-7.
    [20].王桂吉,蒋吉昊,邓向阳等.电爆炸驱动小尺寸冲击片实验与数值计算研究[J].兵工学报,2008.29(6):p.657-661.
    [21].郝世荣,刘伟,王敏华等.电爆炸箔断路开关的理论和实验研究[J].强激光与粒子束,2004.16(8):p.1071-1074.
    [22]. I. R. Lindemuth, J. H. Brownell, A.E. Greene, et al. A computetional model of exploding metallic fuses for mutimegajoule switching[J]. J. Appl.Phys,1985.57(9):p.4447-4460.
    [23]. H.R.Stewardson,B.M.Novac, I.R. Smith. Fast exploding-foil switch techniques for capacitor bank and flux compressor output conditioning[J]. Journal of Physics D:Applied Physics,1995. 28(12):p.2619.
    [24]. A.Majalee, V.R.Ikkurthi, P.Doiphode, et.al. Mixed 3-D/2-D simulation of an exploding foil opening switch.2003:p.1359-1362.
    [25]. P.L.Stanton, The acceleration of flyer plates by electrically exploded foils[R],1975. SAND-75-0221
    [26]. John E.Osher, G. Barnes, Henry H.Chau, et al. Operating Characteristics and Modeling of the LLNL 100-kV Electric Gun. IEEE TRANSACTIONS ON PLASMA SCIENCE[J],1989.17(3): p.392-402.
    [27]. R.C.Weingart, H.H.Chau, D.R.Goosman, et al. The electrical gun:a new tool for ultrahigh-pressure research[R].1979, UCRL-52752.
    [28]. Steinberg D, H.H.Chau, G. Dittbenner, et.al. The electric gun:A new method for generating shock pressures in excess of 1 TPa[R].1978, UCID:17943
    [29]. R.C. Weingart, R.S. Lee, P.K. Jackson, et.al. Acceleration of thin flyers by exploding metal foils application to initiation studies[C]. in Proc.6th.symp.(Int) on Detonation.1976.
    [30]. K.E.Foreschner, R.S.Lee, H.H.Chau, et.al., Shock hugoniot measurements on Ta to 0.78 TPa[R].1983,UCRL-88974.
    [31]. D.A.Shcoky, D.R.Curran, et.al. Disintegration behavior of metal rods subjected to hypervelocity impact[J]. International Journal of Impact Engineering,1987.5:p.585-593.
    [32]. J.E.Osher, H.H.Chau, G.R.Gathers, et.al. Hypervelocity acceleration and impact experiments with the LLNL electric guns[J]. International Journal of Impact Engineering,1990.10:p. 439-452.
    [33]. A.K.Saxena, T. C. Kaushik, and S.C. Gupta, Shock experiments and numerical simulations on low energy portable electrically exploding foil accelerators[J]. REVIEW OF SCIENTIFIC INSTRUMENTS,2010.81(3):p.033508.
    [34].徐兴海,陈素年,高顺受等.电爆炸金属箔推动下的薄飞片运动[C],第二届全国爆炸力学学术会议.1981:扬州.
    [35].王治平.飞片雷管中飞片直径对飞片速度的影响[J].爆炸与冲击,1982.2(2):p.83.
    [36].王治平,欧阳登焕,彭德志.HNS炸药的小面积短脉冲冲击引爆特性[J].爆炸与冲击,1987.7(2):p.154-158.
    [37].丰树平,孙承纬.电炮二次飞片冲击加载及测量[C],激光的热和力学效应学术会议.1991:上海.
    [38].赵剑衡,孙承纬,唐小松等.高效能电炮实验装置的研制[J].实验力学,2006.21(3):p.369-375.
    [39].王桂吉,赵剑衡,唐小松等.平面一维应变电炮加载技术研究[J].高压物理学报,2005.19(3):p.269-274.
    [40].王桂吉,赵剑衡,唐小松等.电炮驱动Mylar膜飞片完整性实验研究[J].实验力学,2006.21(4):p.454-458.
    [41].熊信,电炮驱动金属飞片加载下韧性金属层裂研究.2007,中国工程物理研究院硕士学位论文:四川绵阳.
    [42].张兴卫,电炮加载下块体金属玻璃层裂研究.2010,中国工程物理研究院硕士学位论文:四川绵阳.
    [43].陈林,戴英敏,苏建军等.60 kJ高速电炮的装置性能[J].爆炸与冲击,2010.30(3):p. 283-287.
    [44], J.D.Logan, R.S.Lee, R.C.Weingart, et.al. Calculation of heating and burst phenomena in electrically exploded foils[J]. Journal of Applied Physics 1977.48(2):p.621-628
    [45].李玉斌,董献文,董维申.电加热金属箔爆炸的有限元法计算[J].爆炸与冲击,1981.1(1):p.28.
    [46]. Xianwen, L, Yubin D, and Xinhai X. Experimental and numerical caculation of the behavior of electric gun[C]. in Proc.Int.Symp. onintense dynamic loading and its effects.1986.
    [47]. N.O.Photo, Flyer sensitivity test.1981. MHSMP81-09
    [48]. J.M.Zentler, FUSE:A simple simulation model for a flyer-plate detonator system.1982. UCRL-53260
    [49]. Ronald.S.Lee, FIRESET.1988, UCID-21322.
    [50]. Y.T.Lee and M. R, More, An electron conductivity model for dense plasmas[J]. Phys. Fluids, 1984.27(2):p.1273-1286.
    [51].成剑,栗保明.电爆炸过程导体放电电阻的一种计算模型[J].南京理工大学学报2003.27(4):p.371-375.
    [52]. R.J.Zollweg and R. W.Liebermann, Electrical conductivity of nonideal plasmas[J]. J. Appl.Phys,1987.62(19):p.621-627.
    [53].曾庆轩,赵彦,梁琦等.金属箔电爆炸驱动飞片模型的设计及应用[J].火炸药学报,2008.36(6):p.50-53.
    [54].赵彦,曾庆轩,梁琦.电爆炸箔电导率模型研究[J].兵工学报,2008.29(8):p.902-906.
    [55].贺佳,赵剑衡,谭福利.电爆炸箔驱动绝缘飞片的一维数值模拟[J].高压物理学报,2009.23(6):p.476-480.
    [56].贺佳,电爆炸金属箔驱动多级飞片动力学过程的数值模拟.2007,中国工程物理研究院硕士学位论文:四川绵阳.
    [57].李涛,傅华,谭多望等.金属桥箔电爆炸及飞片驱动过程的计算[J].爆炸与冲击,2010.30(1):p.070-074.
    [58]. C.M.Furnberg, GR.Peevy, and W.P.Brigham, Computer modeling of electrical performance of detonators[R].1994, SAND94-2814C.
    [59]. T.J.Burgess, Electrical resistivity model of metals[C]. Megagauss Technology and Pulsed Power Applications, C.M. Fowler, R.S. Caird, and D.J. Erickson,Editors.1987, Plemun New York. p.307.
    [60]. D.J.McCloskey, Rand Corp.1964, RM-3905-PR.
    [61]. T.J.Tucker and P.L.Stanton, Electrical gurney energy:a new concept in modeling of energy transfer from electrically exploded conductors[R].1975, SAND-75-0224.
    [62]. R.W.Gurney., The initial velocities of fragments from bombs,shells,and grenads[R].1943, BRL REPORT 405.
    [63].王治平,电爆炸驱动技术[B],《动高压原理与技术》,经福谦,陈俊祥编.2006,国防工业出版社:北京.
    [64]. A.C.Schwarz, Study of factors which influence the shock initiation sensitivity of hexanitrotilbene(HNS) [R],1980, SAND-80-2327.
    [65]. Alfred.C.Schwarz, A new technique dor determing the shock initiation sensitivity of explosives[R].1975, SAND-75-0314.
    [66]. S.C.Schmidt, W.L.Seitz, and J.Wackerle, An empirical model to compute the velocity histories .of flyer driven by electrically exploding foils[R].1977, LA-6809.
    [67].梁龙河,电爆炸箔加速飞片的数值模拟研究[J].兵工学报,1999.20(2):p.102.107.
    [68].安纳多里耶维奇,瓦连金诺维奇,弗拉及米尔维奇编著,肖泽梅译,陶益之审,孙承纬校.导体电爆炸及其在电物理装置中的应用[B]中国工程物理研究院.
    [1]. W. G. Chace. A Survey of exploding wire progress[C]. in Exploding Wires 3.1964. Boston: Plenum Press.
    [2]. I.F.Kvartskhava, A.A.Plyutto, A.A.Chernov, et al. Zh.Eksp.Teor.Fiz,1956.30(42).
    [3].安纳多里耶维奇,瓦连金诺维奇,弗拉及米尔维奇编著,肖泽梅译,陶益之审,孙承纬校.导体电爆炸及其在电物理装置中的应用[B]中国工程物理研究院..
    [4].张寒虹,陈志福水中高压放电的二次放电现象[J].物理学报,2001.50(4):p.748-751.
    [5]. Chace, W.G. and H.K.M. (editors), Exploding Wires. Vol.1.1959, New York:Plenum Press.
    [6]. Chace, W.G. and H.K.M. (editors), Exploding Wires. Vol.2.1962, New York:Plenum Press.
    [7]. Chace, W.G. and H.K.M. (editors), Exploding Wires. Vol.3.1964, New York:Plenum Press.
    [8]. W.G.Chace and M.A.Levine, J. Appl.Phys,1960.30:p.1298.
    [9]. S.V.Lebedev and A.I. Savvatimski, Metals during rapid heating by dense current. Sov. Phys. Usp,1984.27(10):p.749-771.
    [1].孙承纬,一维冲击波和爆轰波计算程序SSS[J].计算物理,1986.3(2):p.142-154.
    [2]. J.M.Walsh and R.H.Christian, Equation of state of metals from shock wave measurements[J]. PHYSICAL REVIEW 1955.97.
    [3].夏先贵,SESAME库的引进和开发[J].爆轰波与冲击波,1992.2:p.26.
    [4].夏先贵,开发和应用SESAME EOS数据库在爆轰物理实验中应用[J].爆轰波与冲击波,1993(3):p.19-28.
    [5].贺佳,电爆炸金属箔驱动多级飞片动力学过程的数值模拟.2007,中国工程物理研究院硕士学位论文:四川绵阳.
    [6].蒋吉昊,私人通讯.2010.
    [7].陈汤铭,刘保安,罗应立等.电感计算手册[M].1992,北京:机械工业出版社.
    [8]. Burgess, T.J., Electrical resistivity model of metals[C], in Megagauss Technology and Pulsed Power Applications, C.M. Fowler, R.S. Caird, and D.J. Erickson, Editors.1987, Plemun New York. p.307.
    [9]. V. N. Korobenko, A. D. Rakhel, A. I. Savvatimsk, et al. Measurement of the electrical resistivity of hot aluminum passing from the liquid to gaseous state at supercritical pressure[J]. PHYSICAL REVIEW B,2005.71,014208.
    [10].A.W.Desilva and J.D.Katsouros, Electrical conductivity of dense copper and aluminum plasmas[J]. PHYSICAL REVIEW E,1998.57(5):p.5945-5951.
    [11]. Alfred.C.Schwarz, A new technique for determing the shock initiation sensitivity of explosives[R],1975, SAND75-0314
    [12]. P.L.Stanton, The acceleration of flyer plates by electrically exploded foils[R],1975. SAND-75-0221
    [13]. T.J.Tucker and P.L.Stanton, Electrical gurney energy:a new concept in modeling of energy transfer from electrically exploded conductors[R].1975, SAND-75-0224.
    [14]. R.C.Weingart, H.H.Chau, D.R.Goosman, et al. The electrical gun:a new tool for ultrahigh-pressure research[R].1979, UCRL-52752.
    [15]. John E.Osher, G. Barnes, Henry H.Chau, et al. Operating Characteristics and Modeling of the LLNL 100-kV Electric Gun[J]. IEEE TRANSACTIONS ON PLASMA SCIENCE,1989. 17(3):p.392-402.
    [16]. S.C.Schmidt, W.L.Seitz, and J. Wackerle, An empirical model to compute the velocity histories of flyer driven by electrically exploding foils[R].1977, LA-6809.
    [1].赵剑衡,孙承纬,唐小松等.高效能电炮实验装置的研制[J].实验力学,2006.21(3):p.369-375.
    [2]. John E.Osher, G. Barnes, et al. Operating Characteristics and Modeling of the LLNL 100-kV Electric Gun[J]. IEEE TRANSACTIONS ON PLASMA SCIENCE,1989.17(3):p.392-402.
    [1].赵剑衡,孙承纬,唐小松等.高效能电炮实验装置的研制[J].实验力学,2006.21(3):p.369-375.
    [2].王桂吉,赵剑衡,唐小松等.电炮驱动Mylar膜飞片完整性实验研究[J].实验力学,2006. 21(4):p.454-458.
    [3].陈汤铭,刘保安,罗应立等.电感计算手册[M].1992,北京:机械工业出版社.
    [4].李维波,毛承雄,李启炎等.陡脉冲大电流的Rogowski测量线圈仿真研究[J].高电压技术,2002.28(8).
    [5].王浩,焦清介.罗果夫斯基线圈测试技术研究[J].电子工业专用设备新技术应用,2005(129):p.71-74.
    [6].胡绍楼,激光干涉测速技术[B].2001,北京:国防工业出版社.
    [7].李泽仁,姚建铨,VISAR测速中的信号丢失及丢失条纹数的确定[J].爆炸与冲击,1999.19(2):p.182-187.
    [8].赵剑衡,VISAR测试可靠性分析,未发表.
    [9].陈光华,李泽仁,刘元坤.VISAR数据处理新方法及程序[J].爆炸与冲击,2001.21(4):p.315-320.
    [10].丰树平,孙承纬,电炮二次飞片冲击加载及测量[C],激光的热和力学效应学术会议.1991:上海.
    [11]. Chengwei Sun., Shiming Zhuang, Cangli Liu, et al., Dynamic fracture in metals at high strain rate, in High-Pressure Shock Compression of Solids Ⅱ,Dynamic Fracture and Fragmentation, L. Davison, D. E.Grady, and M. Shahinpoor, Editors.1996, Springer:New York.
    [1]. W. Klement, R. H. Willens, and P. Duwez, Non-Crystalline Structure in Solidified Gold-Silicon Alloys[J]. Nature,1960.187:p.869-870.
    [2]. A.Inoue, T.zhang, and T.Masumoto, Al-La-Ni amorphous alloys with a wide supercooled liquid region[J]. Mater Trans JIM,1989.30:p.965.
    [3].A.Peker and W.L.Johnson, A highly processable metallic glass. Zr41.2Ti13.8Cu12.5Ni10Be22.5[J]. Appl Phys Lett,1993.63(2342).
    [4].惠希东,陈国良.块体非晶合金[B].2007,北京:化学工业出版社.
    [5]. J. Lu, G. Ravichandran, W.L. Johnson. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be.225 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Materialia,2003. 51:p.3429-3443.
    [6]. MinTao. High Temperature Deformation of Vitreloy Bulk Metallic Glasses and Their Composite.2006, California Institute of Technology:Pasadena, California.
    [7]. Ghatu Subhash, Robert J.Dowding, L. J.Kecskes. Characterization of uniaxial compressive response of bulk amorphous Zr-Ti-Cu-Ni-Be alloy[J]. Materials Science and Engineering, 2002. A334:p.33-40.
    [8]. L.Jun. Mechanical Behavior of a Bulk Metallic Glass and its Conposite over a Wide Range of Strain Rates and Tempertures.2002, California Institute of Technology:Pasadena, California.
    [9]. T.C.Hufnagel, T.Jiao, and Y.Li, Deformation and failure of Zr57Ti5Cu20Ni8A110 bulk metallic glass under quasi-static and dynamic compression[J]. J. Mater. Res,2002.17(6).
    [10]. T.G. Nieh, C.Schuh, J.Wadsworth, et al. Strain rate-dependent deformation in bulk metallic glasses[J]. Intermetallics,2002.10:p.1177-1182.
    [11]. Toshiji Mukai, T.GNieh, Yoshihito Kawamura, et.al. Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass[J]. Intermetallics,2002.10:p.1071-1077.
    [12]. Hao Li, Ghatu. Subhash, Xin-Lin Gao, et.al. Negative strain rate sensitivity and compositional dependence of fracture strength in Zr/Hf based bulk metallic glasses[J]. Scripta Materialia,2003.49:p.1087-1092.
    [13]. T.Jiao, L.J.Kecskes, T.C.Hufnagel,et.al. Deformation and Failure of Zr57Nb5Al10Cu15.4Ni12.6 /W Particle Composites Under Quasi-Static and Dynamic Compression[J]. Metallurgical and Materials Transactions;,2004.35A:p.3439-3444.
    [14]. L.F. Liu, L.H.Dai, Y.L.Bai, et.al. Strain rate-dependent compressive deformation behavior of Nd-based bulk metallic glass[J]. Intermetallics,2005.13:p.827-832.
    [15]. Jia Zhang, Hai-feng Zhuang, Ming-xiu Quan, et.al. Effect of strain rate on compressive behavior of Ti45Zr16Ni9Cu10Be20 bulk metallic glass[J]. Materials Science and Engineering A, 2007. A 449-451:p.290-294.
    [16]. W.D.Liu and K.X.Liu, Mechanical behavior of a Zr-based metallic glass at elevated temperature under high strain rate[J]. JOURNAL OF APPLIED PHYSICS,2010.108(3):p. 033511.
    [17]. Shiming Zhuang, Jun Lu, and G. Ravichandran, Shock wave response of a zirconium-based bulk metallic glass and its composite[J]. APPLIED PHYSICS LETTERS,2002.80(24).
    [18]. T.Mashimo, H.Togo, Y.Zhang, et al. Hugoniot-compression curve of Zr-based bulk metallic glass[J]. APPLIED PHYSICS LETTERS,2006.89:p.241904.
    [19]. H.Togo, Y.Zhang, Y.Kawamura, et al. Properties of Zr-based bulk metallic glass under shock compression[J]. Materials Science and Engineering:A,2007.449-451:p.264-268.
    [20]. M. Martin, L.Kecskes, N.N.Thadhani. High-Pressure Equation of the State of a Zirconium Based Bulk Metallic Glass[J]. Metallurgical and Materials Transactions A,2007.38A:p. 2689-2696.
    [21]. Feng Xi, Yuying Yu, Chengda Dai, et al. Shock compression response of a Zr-based bulk metallic glass up to 110 GPa[J]. JOURNAL OF APPLIED PHYSICS,2010.108(8):p. 083537.
    [22]. Stefan J. Turneaure, S. K. Dwivedi, and Y.M. Gupta, Shock-wave induced tension and spall in a zirconium-based bulk amorphous alloy [J]. JOURNAL OF APPLIED PHYSICS,2007. 101(4):p.0435141-5.
    [23]. Escobedo, J.P. and Y.M. Gupta, Dynamic tensile response of Zr-based bulk amorphous alloys:Fracture morphologies and mechanisms[J]. Journal of Applied Physics,2010.107(12): p.123502.
    [24]. X. Huang, Z. Ling, Z.D.Liu, et al. How does spallation microdamage nucleate in bulk amorphous alloys under shock loading?[J], JOURNAL OF APPLIED PHYSICS,2011. 110(10):p.103519.
    [25]. Fuping Yuan, Vikas Prakash, and J. J.Lewandowski. Spall strength of a zirconium-based bulk metallic glass under shock-induced compression-and-shear loading[J]. Mechanics of Materials,2009.41:p.886-897.
    [26].张兴卫,电炮加载下块体金属玻璃层裂研究.2010,中国工程物理研究院硕士论文,四川绵阳.
    [27]. M.Q. Jiang, J.X.Meng, v.keryvin, et al. Crack branching instability and directional stability in dynamic fracture of a tough bulk metallic glass[J]. Intermetallics,2011.19:p.1775-1779.
    [28].胡克迈,Gleeble3500数控热机模拟试验系统[J].物理测试,2006.24(5):p.34-36.
    [29].刘宗德,韩铭宝,孙承纬等.金属快速加热的非弹性热软化研究[J].金属学报,1995.31(7):p.329-336.
    [30].刘宗德,刘怡光,韩铭宝.不同热冲击速率和预应力下A3钢的力学性能[J].材料研究学报,2000.14(1):p.24-28.
    [31]. A.Q. Alam著,丁光宙译Short-time elevated temperature tests[B].1963,北京:国防工业出版社.
    [32].张哲峰,伍复发,范吉堂等.非晶合金材料的变形与断裂[J].中国科学G辑,2008.38(4):p.349-372.
    [33].郭贻诚,王震西编.非晶态物理学[B].1984,北京:科学出版社.
    [34]. O.V.Mazurin, Relaxation phenomena in glass[J]. J.Non-cryst,Solid,1977.25:p.129-169.
    [35].杨运民,彭向和,陈裕泽.温升率对LY12铝合金拉伸响应特性的影响[J].金属学报,2000.36(9):p.926-930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700