用户名: 密码: 验证码:
CC趋化因子受体4拮抗剂的设计、合成与活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CC趋化因子受体4(CC chemokine receptor4,CCR4)属于G蛋白偶联受体家族,广泛表达于免疫系统的细胞表面,特别是Treg细胞和Th2细胞。CCR4对T细胞迁移到胸腺和T细胞发育成熟起到重要作用。CCR4有三个天然特异性配体:胸腺活化调节趋化因子(TARC)、巨噬细胞衍生的趋化因子(MDC)和趋化素样因子1(CKLF1)。其中TARC和MDC是CCR4的高亲和性配体。
     细胞表面的CCR4与配体结合,可激活偶联的G蛋白,进而发生级联细胞激活效应,包括激活磷脂酶C和蛋白激酶C的活化,同时也激活了Ras和Rho。通过这一系列的信息传递实现趋化靶细胞向特定位置迁移,发挥生物学效应。CCR4可以调节T细胞迁移到身体炎症部位,包括皮肤和肺。研究证实,CCR4与哮喘、过敏性鼻炎、异位性皮炎、系统性红斑狼疮和类风湿性关节炎等免疫相关性疾病的发生发展密切相关。同时,CCR4在肿瘤微环境中起到调控作用,诱导肿瘤的免疫逃逸和促进肿瘤细胞的转移等。
     因此,CCR4已经成为治疗免疫相关性疾病和肿瘤免疫治疗的重要的药物靶标,研发选择性拮抗CCR4的小分子药物将为上述疾病的治疗提供新的选择,尤其是在治疗哮喘和CCR4阳性的恶性肿瘤等疾病方面具有广阔的应用前景。目前为止,只有拮抗CCR4的单克隆抗体Mogamulizumab于2012年被批准上市,用于治疗复发或难治性CCR4阳性的成人T细胞性白血病淋巴瘤,还没有小分子CCR4拮抗剂应用于临床,大部分小分子CCR4拮抗剂都处于生物活性测试或临床前研究阶段。相信随着研究的深入,会有很多的小分子CCR4拮抗剂应用于临床,为哮喘和CCR4阳性的恶性肿瘤等疾病患者提供新的治疗方案。
     目前,没有CCR4晶体结构的报道,CCR4与其他GPCR受体同源性较低,现有的CCR4拮抗剂与受体作用位点不是很明确,这些不利因素限制了利用计算机辅助药物设计的方法进行目标化合物的设计。本文从hit to lead的思路出发,采用基于配体的Me-too策略,在总结目前已报道的活性较高的氨基嘧啶类CCR4拮抗剂的结构特征和规避现有化合物专利保护的基础上,设计了两种三取代嘧啶胺类新化合物。已公开报道的小分子CCR4拮抗剂依据化合物结构母核的不同可分为:三取代噻唑烷酮衍生物、三取代内酰胺衍生物、2-氨基噻唑衍生物、氨基嘧啶衍生物、芳基磺酰胺衍生物、3-哌嗪基香豆素衍生物、2-苯基取代吗啉衍生物和双哌啶羧酸胺衍生物等。基于2-氨基噻唑和芳基磺酰胺两类CCR4拮抗剂的结构特点,根据化合物类药原理和生物电子等排原理,采用活性片段拼接和逆合成分析的方法,设计了萘磺酰胺噻唑烷酮类新化合物。共设计合成了两大类65个新结构目标化合物,对关键中间体和目标化合物的合成方法进行了研究和优化。所有化合物的结构经1H-NMR、ESI-MS和HRMS等确证。
     采用细胞趋化抑制实验和非标记全细胞检测实验对目标化合物进行了活性评价,并对优选化合物进行了CCR4受体选择性实验研究。采用MTT法评价了目标化合物的细胞毒作用。细胞趋化抑制实验结果表明,大部分目标化合物在1μM浓度下对TARC和MDC介导的CCR4转染的L1.2细胞的趋化运动都表现出了不同程度的趋化抑制作用,其中部分化合物表现出了高于阳性化合物的抑制活性,且化合物对二者的抑制作用效果基本相同。对活性较好的优选目标化合物测试了IC50值,发现化合物N-14、N-36和N-39表现出了与阳性化合物1相近的抑制活性,IC50值为别为64nM、69nM、77nM和78nM。三个化合物还表现出了对CCR4拮抗作用的选择性。非标记全细胞检测实验结果表明,化合物N-39与阳性化合物BMS-397具有相当的抑制活性,IC50值分别为1.913μM和1.062μM。MTT实验结果表明化合物(N-51除外)在10μM浓度下对细胞无毒性。化合物N-39表现出了高活性和安全性以及较好的受体选择性,值得进一步的研究。
     根据活性评价结果,本文对目标化合物进行了初步的构效关系分析:嘧啶母核2位哌嗪基连接的羰基是保持活性的必需基团。与羰基相连的取代基以位含氨基的饱和取代基活性高,取代基不含杂原子或为芳香取代基活性明显下降。嘧啶母核4位的取代基团对活性影响较大,2,4-卤素双取代的苄氨基有利于活性的保持,单取代的活性明显下降。嘧啶母核6位取代基的空间结构和极性大小对活性有很大的影响,空间结构和极性都很小的氯或甲基取代活性最好,其中取代基为甲基时,化合物对TARC和MDC介导的细胞趋化运动都有稳定的抑制活性。这对进一步开发高效、低毒、选择性强的CCR4拮抗剂具有一定的指导意义。
The CC chemokine receptor4(CCR4) belongs to the superfamily of Gprotein-coupled receptors, is broadly expressed on the cells of immunesystem,specificallyTreg cells and T helper2cells. It plays a key role inT cells migrateto the thymus andT cell maturation and education. Three natural chemokine ligandsfor CCR4have been identified as thymus and activation-regulated chemokine(TARC), macrophage-derived chemokine (MDC) and chemokine-like factor1(CKLF1). TARC and MDC are highly specific ligands with strong affinities forCCR4.
     Chemokine ligands binding to CCR4on the cell surface can activate coupledG-protein and a number of intracellular signaling pathways, including activation ofphospholipase C, protein kinase C,proteins Ras and Rho. CCR4plays a biologicaleffect to lead to the target cell migration to a specific location by the series ofinformation transmission. CCR4can regulate T cell migration to the sites ofinflammation in the body, including the skin and lungs.The studies have demonstratedthat CCR4and its ligands are closely related to the development of asthma, allergicrhinitis and atopic dermatitis, systemic lupus erythematosus and rheumatoid arthritisand other diseases. Meanwhile, CCR4is expressed in the tumor microenvironmentand play a role in regulating the tumor growth. CCR4can induce tumor immuneescape and promote metastasis of tumor cells.
     Therefore, CCR4has become an important potentialtherapeutic target forallergicinflammatory diseases and cancer immunotherapy.The selectively small molecularCCR4antagonists as drug will provide a new option for treatment of these diseases, inparticular treatment of asthma and CCR4-positive cancer so on.
     To date, only CCR4monoclonal antibody Mogamulizumab has been approved forlisting for the treatment of relapsed or refractory CCR4-positive adult T-cell leukemialymphoma in2012.The majority of small molecule CCR4antagonists are in bioassay or preclinical research stage.With in-depth research,there will be many smallmolecular CCR4antagonists used in clinical and provide new treatment options forpatients with asthma and CCR4-positivecancer in the future.
     To date, crystal structure of CCR4hasn’t been reported. CCR4does not have highhomology with other GPCRs. Binding sites of CCR4antagonists is not very clear.These disadvantage factors limit the use of computer-aided drug design in designingaimed compounds. Based on hits to leaddesign ideas and me-too strategy, wedesigned two types of novel trisubstituted pyrimidine amine derivatives as CCR4antagonists through summarizing structural features of many high activity pyrimidineamines CCR4antagonists and avoiding the existing compound patents. The publiclyreported CCR4antagonists can be subdivided into eight categories depending on thegeneral structure of the compounds. These categories are trisubstituted thiazolidinonederivatives, trisubstituted lactam derivatives,2-aminothiazole derivatives, aminopyrimidine derivatives, aryl sulfonamide derivatives,3-piperazinyl coumarinderivatives,2-phenyl morpholine derivatives and bipiperidinyl carboxylic acid amidederivatives so on. We take advantage of active fragment splicing and inverse syntheticanalysis to design novel naphthalene sulfonamide thiazolidinedione derivatives asCCR4antagonists on the basis of structural features of2-aminothiazole and arylsulfonamide derivatives. We have synthesized sixty five novel compounds, andoptimized methods of the synthesis of target compounds and key intermediates.Themolecular structures have been confirmed by1H-NMR, ESI-MS and HRMS.
     The activities of these compounds were evaluated by the chemotaxis inhibitionassay and label-free cellular assay. And the preferred compounds were studiedthrough CCR4receptor selective experiment. The cell cytotoxicity of compounds hasbeen evaluated by MTT experiment. Chemotaxis experiments indicated that most ofthe compounds at1μM showed ability to inhibit. Some of the compounds exhibithigher inhibitory activity than positive compounds.And inhibitory effects of TARCand MDC mediatedcells chemotaxis are the same. We tested IC50values of preferredcompounds. Compounds N-14, N-36and N-39(IC50values of64,77and69nM,respectively) showed similar activity with the positive control compound1(IC50value of78nM). Meanwhile the compounds show high selectivity for CCR4.Thelabel-freecellular assay experimental results show that the compound N-39(IC50value of1.913μM) has considerable inhibitory activity with the compound BMS-397(IC50valueof1.062μM).The MTT experiment results show that the compounds (excludeN-51)are non-cytotoxic at10μM.Compound N-39has shown higher activity, better safetyand receptor selectivity, andbeen worth further study.
     The preliminary structure-activity relationships of these trisubstituted pyrimidineamide derivatives were discussed based on the obtained experimental data.The resultsfrom the SAR study indicated that for maintaining the activity it was critical that thesubstituents which attached to piperazinyl group located in the2-position of thepyrimidine nucleus contain carbonyl groups. The substituents contain a saturatedcarbonyl group with the-position nitrogen atom, which attached to carbonyl group,and have high activity. The activity of the compounds which contain the substituentsthat don’t contain hetero atom or the aromatic substituents decreased significantly.The substituents which located in the4-position of the pyrimidine nucleus play animportant role in maintaining the activity. A benzyl amide group substituted withhalogen at the2-and4-positions is beneficial for maintaining the activity. The size ofthe spatial structure and the polar of the substituents which located in the6-position ofthe pyrimidine nucleus play an important role in maintaining the activity. Small andless polar substituents, Cl and methyl group, are more potent. Wherein the substituentis methyl, the compounds have stabilized activity of inhibiting TARC and MDCmediated cells chemotaxis.The discussion of SARs should be helpful for furtherdevelopment of the new CCR4antagonists which are more potent, lower toxicity andmore specificity.
引文
[1] Baggiolini M1, Walz A, Kunkel SL. Neutrophil-activatingpeptide-1/interleukin8,a novel cytokine that activates neutrophils [J]. J Clin Invest,1989,84(4):1045-1049.
    [2] Fricker SP, Metz M. Chemokine receptor modeling: an interdisciplinary pproachto drug design [J]. Future Med Chem,2014,6(1):91-114.
    [3] White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronicinflammation--therapeutic opportunities and pharmacological challenges [J].Pharmacol Rev,2013,65:47-89.
    [4] Scholten DJ, Canals M, Maussang D,et al. Pharmacological modulation ofchemokine receptor function [J]. Br J Pharmacol,2012,165:1617-1643.
    [5] Baggiolini M, Loetscher P. Chemokines in inflammation and immunity [J].Immunol Today,2000,21(9):418-420.
    [6] Cascieri MA, Springer MS. The chemokine/chemokine-receptor family: potentialand progress for therapeutic intervention [J]. Curr Opin Chem Biol,2000,4(4):420-427.
    [7] Proudfoot, A.E. Chemokine receptors: multifaceted therapeutic targets [J]. NatRev Immunol,2002,2:106-115.
    [8]陈兰妹,胡春. Maraviroc(Selzentry)[J].中国药物化学杂志,2008,18:79.
    [9]高源,赵临襄. Plerixafor(Mozobil)[J].中国药物化学杂志,2009,19:315.
    [10]Beck A,Reichert JM. Marketing approval of mogamulizumab: a triumph forglyco-engineering [J]. MAbs,2012,4(4):419-425.
    [11]Power CA1, Meyer A, Nemeth K, et al. Molecular cloning and functionalexpression of a novel CC chemokine receptor cDNA from a human basophiliccell line [J]. J Biol Chem,1995,270(33):19495-19500.
    [12]Ness TL, Ewing JL, Hogaboam CM, et al. CCR4is a key modulator of innateimmune responses [J]. J Immunol,2006,177(11):7531-7539.
    [13]Purandare AV, Somerville JE. Antagonists of CCR4as immunomodulatory agents[J]. Curr Top Med Chem,2006,6(13):1335-1344.
    [14]Wang Y, Zhang Y, Yang X, et al. Chemokine-like factor1is a functional ligandfor CC chemokine receptor4(CCR4)[J]. Life Sci,2006,78(6):614-621.
    [15]Murdoch C, Finn A. Chemokine receptors and their role in inflammation andinfectious diseases [J]. Blood,2000,95(10):3032-3043.
    [16]Imai T1, Yoshida T, Baba M, et al. Molecular cloning of a novel T cell-directedCC chemokine expressed in thymus by signal sequence trap using Epstein-Barrvirus vector [J]. J Biol Chem,1996,271:21514-21521.
    [17]Sandoval-López G, Teran LM. TARC: novel mediator of allergic inflammation[J]. Clin Exp Allergy,2001,31(12):1809-1812.
    [18]Saeki H, Tamaki K. Thymus and activation regulated chemokine (TARC)/CCL17and skin diseases [J]. J Dermatol Sci,2006,43(2):75-84.
    [19]Fujisawa T1, Fujisawa R, Kato Y, et al. Presence of high contents of thymus andactivation-regulated chemokine in platelets and elevated plasma levels of thymusand activation-regulated chemokine and macrophage-derived chemokine inpatients with atopic dermatitis [J]. J Allergy Clin Immuno,2002,110(1):139-146.
    [20]Al-haidari AA, Syk I, Jirstr m K, et al. CCR4mediates CCL17(TARC)-inducedmigration of human colon cancer cells via RhoA/Rho-kinase signaling [J]. Int JColorectal Dis,2013,28(11):1479-1487.
    [21]Godiska R, Chantry D, Raport CJ, et al. Human macrophage-derived chemokine(MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells,and natural killer cells [J].J Exp Med,1997,185(9):1595-1604.
    [22]Horikawa T, Nakayama T, Hikita I, et al.IFN-gamma-inducible expression ofthymus and activation-regulated chemokine/CCL17and macrophage-derivedchemokine/CCL22in epidermal keratinocytes and their roles in atopic dermatitis[J]. Int Immunol,2002,14(7):767-773.
    [23]Han WL, Ding PG, Xu MX, et al. Identification of eight genes encodingchemokine-like factor superfamily members1-8(CKLFSF1-8) by in silicocloning and experimental validation [J]. Genomics,2003,81(6):609-617.
    [24]王应,马大龙.新细胞因子趋化素样因子(CKLF1)的发现与新药研发[J].中国药学杂志,2011,46:241-244.
    [25]Honjo A, Ogawa H, Azuma M, et al. Targeted reduction of CCR4cells issufficient to suppress allergic airway inflammation [J]. Respir Investig,2013,51(4):241-249.
    [26]Lloyd CM, Rankin SM. Chemokines in allergic airway disease [J]. Curr OpinPharmacol,2003,3:443-448.
    [27]Mostafa GA1, Tomoum HY, Salem SA, et al. Serum concentrations of CCR4ligands in relation to clinical severity of atopic dermatitis in Egyptian children [J].Pediatr Allergy Immunol,2008,19(8):756-762.
    [28]Ishida T, Ueda R. CCR4as a novel molecular target for immunotherapy of cancer[J]. Cancer Sci,2006,97(11):1139-1146.
    [29]Ishida T, Ueda R. Immunopathogenesis of lymphoma: focus on CCR4[J]. CancerSci,2011,102(1):44-50.
    [30]Bayry J1, Tchilian EZ, Davies MN, et al. In silico identified CCR4antagoniststarget regulatory T cells and exert adjuvant activity in vaccination [J]. Proc NatAcad Sci,2008,105(29):10221-10226.
    [31]吉海杰,胡金凤,陈乃宏.以趋化因子受体为靶点的抗哮喘小分子药物研究进展[J].药学学报,2011,46:1286-1290.
    [32]Vijayanand P, Durkin K, Hartmann G, et al. Chemokine receptor4plays a keyrole in T cell recruitment into the airways of asthmatic patients [J]. J Immunol,2010,184(8):4568-4574.
    [33]Purandare AV, Wan H, Gao A, et al. Optimization of CCR4antagonists:side-chain exploration [J]. Bioorg Med Chem Lett,2006,16(1):204-207.
    [34]Pilette C1, Jacobson MR, Ratajczak C, et al. Aberrant dendritic cell functionconditions Th2-cell polarization in allergic rhinitis [J]. Allergy,2013,68(3):312-321.
    [35]Yanai M, Sato K, Aoki N, et al. The role of CCL22/macrophage-derivedchemokine in allergic rhinitis [J]. Clin Immunol,2007,125(3):291-298.
    [36]Qi H, Zheng Y, Xu E, et al. An antagonist for CCR4alleviates murine allergicrhinitis by intranasal administration [J].Int Arch Allergy Immunol,2012,159(3):297-305.
    [37]Wakugawa M, Nakamura K, Kakinuma T, et al. CC chemokine receptor4expression on peripheral blood CD4+T cells reflects disease activity of atopicdermatitis [J]. J Invest Dermatol,2001,117(2):188-196.
    [38]Purwar R, Werfel T, Wittmann M. IL-13-stimulated human keratinocytespreferentially attract CD4+CCR4+T cells: possible role in atopic dermatitis [J]. JInvest Dermatol,2006,126(5):1043-1051.
    [39]Hase K, Tani K, Shimizu T,et al. Increased CCR4expression in active systemiclupus erythematosus [J]. J Leukoc Biol,2001,70(5):749-755.
    [40]杨娉婷,沈辉,赵丽娟等.趋化因子受体CCR4在活动期类风湿关节炎患者外周血CD4+T细胞表达的研究[J].中华风湿病学杂志,2005,9:401-404.
    [41]Yang PT, Kasai H, Zhao LJ, et al. Increased CCR4expression on circulatingCD4(+) T cells in ankylosing spondylitis, rheumatoid arthritis and systemic lupuserythematosus [J]. Clin Exp Immunol,2004,138(2):342-347.
    [42]Tobinai K, Takahashi T, Akinaga S. Targeting chemokine receptor CCR4in adultT-cell leukemia-lymphoma and other T-cell lymphomas [J]. Curr Hematol MaligRep,2012,7(3):235-240.
    [43]Somasundaram R, Jacob L, Swoboda R, et al. Inhibition of cytolytic Tlymphocyte proliferation by autologous CD4+/CD25+regulatory T cells in acolorectal carcinoma patient is mediated by transforming growth factor-beta [J].Cancer Res,2002,62(18):5267-5272.
    [44]Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells inovarian carcinoma fosters immune privilege and predicts reduced survival [J].Nat Med,2004,10(9):942-949.
    [45]Hoeller C, Richardson SK, Ng LG, et al. In vivo imaging of cutaneous T-celllymphoma migration to the skin [J]. Cancer Res,2009,69:2704-2708.
    [46]Ishii T, Ishida T, Utsunomiya A, et al. Defucosylated humanized anti-CCR4monoclonal antibody KW-0761as a novel immunotherapeutic agent for adultT-cell leukemia/lymphoma [J]. Clin Cancer Res,2010,16:1520-1531.
    [47]Catley MC, Coote J, Bari M, et al. Monoclonal antibodies for the treatment ofasthma [J]. Pharmacology Therapeutics,2011,132:333-351.
    [48]MillsSG,Springer MS, Maccoss M. Substituted aryl piperazines as modulators ofchemokine receptor activity: WO,9825617[P/OL].1998-06-18[2014-03-01].http://patentscope.wipo.int/search/en/detail.jsf?docId=WO1998025617&recNum=2&maxRec=2&office=&prevFilter=&sortOption=Pub+Date+Desc&queryString=ALLNUM%3A9825617&tab=PCTDescription
    [49]Collins T,DairaghiDJ,Mahmud H,et al. Modulation of CCR4function:WO,2002030358[P/OL].2002-04-18[2014-03-01].http://patentscope.wipo.int/search/en/detail.jsf?docId=WO2002030358&recNum=1&office=&queryString=ALLNUM%3A%28PCT%2FUS2001%2F042625%29&prevFilter=&sortOption=Pub+Date+Desc&maxRec=1
    [50]Allen S, Newhouse B, Anderson AS, et al. Discovery and SAR of trisubstitutedthiazolidinones as CCR4antagonists [J]. Bioorg Med Chem Lett,2004,14:1619-1624.
    [51]Newhouse B, Allen S, Fauber B, et al. Racemic and chiral lactams as potent,selective and functionally active CCR4antagonists [J]. Bioorg Med Chem Lett,2004,14(22):5537-5542.
    [52]Wang X, Xu F, Xu Q, et al. Optimization of2-aminothiazole derivatives as CCR4antagonists [J]. Bioorg Med Chem Lett,2006,16(10):2800-2803.
    [53]赵芳,肖军海,王应等.芳酰氨基噻唑类衍生物的合成及其CCR4趋化抑制活性研究[J].中国药物化学杂志,2009,19:1-6.
    [54]Purandare AV, Gao A, Wan H, et al. Identification of chemokine receptor CCR4antagonist [J]. Bioorg Med Chem Lett,2005,15(10):2669-2672.
    [55]Purandare AV, Wan H, Somerville JE, et al. Core exploration in optimization ofchemokine receptor CCR4antagonists [J]. Bioorg Med Chem Lett,2007,17(3):679-682.
    [56]Yokoyama K, Ishikawa N, Igarashi S, et al. Discovery of potent CCR4antagonists: Synthesis and structure–activity relationship study of2,4-diaminoquinazolines [J]. Bioorg Med Chem,2008,16:7021-7032.
    [57]Yokoyama K, Ishikawa N, Igarashi S, et al. Potent and orally bioavailable CCR4antagonists: Synthesis and structure–activity relationship study of2-aminoquinazolines [J]. Bioorg Med Chem,2009,17:64-73.
    [58]Nakagami Y, Kawase Y, Yonekubp K, et al. RS-1748, a Novel CC ChemokineReceptor4Antagonist, Inhibits Ovalbumin-Induced Airway Inflammation inGuinea Pigs [J]. Biol Pharm Bull,2010,33:1067-1069.
    [59]Sato T, Komai M, Iwase M, et al. Inhibitory Effect of the New Orally ActiveCCR4Antagonist K327on CCR4+CD4+T Cell Migration into the Lung of Micewith Ovalbumin-Induced Lung Allergic Inflammation [J]. Pharmacology,2009,84:171-182.
    [60]Sato T, Iwase M, Miyama M, et al. Internalization of CCR4and Inhibition ofChemotaxis by K777, a Potent and Selective CCR4Antagonist [J]. Pharmacology,2013,91:305-313.
    [61]Komiya T, Sugiyama T, Takeda K, et al. Suppressive effects of a novel CCchemokine receptor4antagonist on Th2cell trafficking in ligand-andantigen-induced mouse models [J]. Eur J Pharmacol,2013,720:335-343.
    [62]Procopiou PA, Ford AJ, Graves RH, et al. Lead optimisation of the N1substituentof a novel series of indazole arylsulfonamides as CCR4antagonists andidentification of a candidate for clinical investigation [J]. Bioorg Med Chem Lett,2012,22(8):2730-2733.
    [63]Cahn A, Hodgson S, Wilson R, et al.Safety,tolerability,pharmacokinetics andpharmacodynamics of GSK2239633, a CC-chemokine receptor4antagonist, inhealthy male subjects: results from an open-label and from a randomised study [J].BMC Pharmacology and Toxicology,2013,14:14.
    [64]Li G, Wang D, Sun M, et al. Discovery and optimization of novel3-piperazinylcoumarin antagonist of chemokine-like factor1with oral antiasthmaactivity in mice [J]. J Med Chem,2010,53(4):1741-1754.
    [65]Nakagami Y, Kawashima K, Yonekubo K, et al. Novel CC chemokine receptor4antagonist RS-1154inhibits ovalbumin-induced ear swelling in mice [J]. Eur JPharmacol,2009,624:38-44.
    [66]Nakagami Y, Kawashima K, Etori M, et al. A novel CC chemokine receptor4antagonist RS-1269inhibits ovalbumin-induced ear swelling andlipopolysaccharide-induced endotoxic shock in mice [J]. Basic Clin PharmacolToxicol,2010,107(4):793-797.
    [67]Kuhn CF, Bazin M, Philippe L, et al. Bipiperidinyl Carboxylic Acid Amides asPotent, Selective, and Functionally Active CCR4Antagonists [J]. Chem BiolDrug Des,2007,70:268-272
    [68]Zhao F,Xiao JH,Wang Y,et al. Synthesis of thiourea derivatives as CCR4antagonists [J]. Chinese Chemical Letters,2009,20:296-299.
    [69]Tan Q, Zhu Y, Li J, et al. Structure of the CCR5chemokine receptor-HIV entryinhibitor maraviroc complex [J]. Science,2013,341:1387-1390.
    [70]巩宏伟,綦辉,孙薇等.哌嗪嘧啶类CCR4拮抗剂的设计、合成及生物活性[J].高等学校化学学报,2013,34(9):2131-2138.
    [71]Kamano N,Ishikawa N,Kaizawa H,et al. Quinazoline derivatives: WO,2005123697[P/OL].2005-12-19[2014-03-01].http://patentscope.wipo.int/search/en/detail.jsf?docId=WO2005123697&recNum=2&office=&queryString=ALLNUM%3A%282005123697%29&prevFilter=&sortOption=Pub+Date+Desc&maxRec=3
    [72]Machii D, Yamaura Y, Arai H, et al. Anti-inflammatory agent: WO,2003082855[P/OL].2003-10-09[2014-03-01].http://patentscope.wipo.int/search/en/detail.jsf?docId=WO2003082855&recNum=2&office=&queryString=ALLNUM%3A2003082855&prevFilter=&sortOption=Pub+Date+Desc&maxRec=3
    [73]Furukubo S, Miyazaki H, Nakajima T,et al. Heterocyclic compound:WO,2008146914[P/OL].2008-12-04[2014-03-01].http://patentscope.wipo.int/search/en/detail.jsf?docId=WO2008146914&recNum=2&office=&queryString=ALLNUM%3A2008146914&prevFilter=&sortOption=Pub+Date+Desc&maxRec=3
    [74]Andrews G, Jones C, Wreggett KA. An intracellular allosteric site for a specificclass of antagonists of the CC chemokine G protein-coupled receptors CCR4andCCR5[J]. Mol Pharmacol,2008,73(3):855-867.
    [75]Montebugnoli D,Bravo P,Brenna E,et al. Traceless solid-phase synthesis of2,4,6-chlorodiamino and triaminopyrimidines [J]. Tetrahedron,2003,59:7147-7156.
    [76]Zanda M, Talaga P, Wagner A,et al. Efficient and regioselective4-amino-de-chlorination of2,4,6-trichloropyrimidine with N-sodium carbamates[J]. Tetrahedron Letters,2000,41:1757-1761.
    [77]Nakazato A, Kumagai T, Okubo T,et al. Design, Synthesis and Structure-AffinityRelationships of4-Methylidenepiperidine and4-Aryl-1,2,3,6-tetrahydropyridineDerivatives as Corticotropin-Releasing Factor1Receptor Antagonists [J]. BioorgMed Chem,2000,8:1183-1193.
    [78]Sagi VN, Liu T, Lu X, et al. Synthesis and biological evaluation of novelpyrimidine derivatives as sub-micromolar affinity ligands of GalR2[J]. BioorgMed Chem Lett,2011,21(23):7210-7215.
    [79]Singh SP, Parmar SS, Raman K, et al. Chemistry and biological activity ofthiazolidinones [J]. Chem Rev,1981,81:175-203.
    [80]Al-Ansary GH, Ismail MA, Abou El Ella DA, et al. Molecular design andsynthesis of HCV inhibitors based on thiazolone scaffold [J]. Eur J Med Chem,2013,68:19-32.
    [81]Allen CF, VanAllan JA. Pseudothiohydantoin [J]. Org Synth,1947,27:71-72.
    [82]Ding Y, Smith KL, Varaprasad CV, et al. Synthesis of thiazolone-basedsulfonamides as inhibitors of HCV NS5B polymerase. Bioorg Med Chem Lett,2007,17(3):841-845.
    [83]King LC, Ostrum GK. Selective bromination with Copper(Ⅱ) bromide [J]. J OrgChem,1964,29:3459-3561.
    [84]胡艾希,陈平,杨郑等.溴化铜对芳基烷基酮的选择性溴化反应研究[J]中国药物化学杂志,2002,12:340-343.
    [85]Wang Y, Zhang Y, Han W, et al. Two C-terminal peptides of human CKLF1interact with the chemokine receptor CCR4[J]. Int J Biochem Cell Biol,2008,40(5):909-919.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700