波动性高糖对氧化应激诱导的雪旺细胞凋亡通路的影响及干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究高糖尤其是波动性高糖对氧化应激反应诱导的雪旺细胞凋亡及其信号转导通路的影响,同时在细胞水平上观察α-硫辛酸及中药单体丹参酚酸B是否具有干预波动性高糖通过氧化应激所诱导的细胞凋亡的作用,并进一步探明其作用机制。
     方法:原代培养大鼠雪旺细胞,分别加入不同条件培养48小时:(1)正常对照组(Con):葡萄糖5.6mmol/L;(2)稳定性高糖组(HG):葡萄糖50mmol/L;(3)波动性高糖组(IHG):细胞交替培养在含葡萄糖5.6mmol/L及50mmol/L中,8小时换液1次;(4)渗透压对照组:细胞交替培养在含葡萄糖5.6mmol/L及含葡萄糖5.6mmol/L+甘露醇44.4mmol/L的培养基中,8小时换液1次;(5)α-硫辛酸大剂量组:波动性高糖+500μ mol/L α-硫辛酸;(6)α-硫辛酸中剂量组:波动性高糖+50μ mol/L α-硫辛酸;(7)α-硫辛酸小剂量组:波动性高糖+5μ mol/Lα-硫辛酸;(8)丹参酚酸B大剂量组:波动性高糖+10μ mol/L丹参酚酸B;(9)丹参酚酸B中剂量组:波动性高糖+1μ mol/L丹参酚酸B;(10)丹参酚酸B小剂量组:波动性高糖+0.1μ mol/丹参酚酸B。流式细胞术通过DCFH-DA及DHE荧光探针检测细胞内ROS含量,JC-1荧光探针检测细胞线粒体膜电位变化;Elisa法检测细胞内8-OHdG含量;Annexin V/PI及TUNEL法检测细胞凋亡;实时荧光定量PCR法检测bcl-2及bax mRNA的表达;Western blot检测bcl-2、bax、 AIF、cyto c、caspase-9、caspase-3及PARP的表达。
     结果:(1)稳定性高糖和波动性高糖提高了雪旺细胞内ROS水平,增加了DNA氧化损伤标志物8-OHdG的生成,降低线粒体膜电位,下调雪旺细胞内bcl-2蛋白及mRNA的表达,上调雪旺细胞内bax蛋白及mRNA的表达,促进cyto C从线粒体到胞浆的释放及AIF的核转位,同时促进了caspase-9、caspase-3及PARP的活化,并增加了雪旺细胞的凋亡。(2)波动性高糖对雪旺细胞氧化应激及凋亡的影响比稳定性高糖更为明显,且这种作用与渗透压作用无关。(3)α-硫辛酸可以降低雪旺细胞内ROS水平及8-OHdG农度,从而改善了波动性高糖对雪旺细胞的氧化应激损伤。同时,α-硫辛酸提高了线粒体膜电位,上调了bcl-2蛋白及mRNA的表达,下调了bax蛋白及mRNA的表达,抑制了线粒体cyto C的释放及AIF的核转位,降低了PARP、caspase-9及caspase-3(?)勺活化,通过caspase依赖性及caspase非依赖性通路抑制了雪旺细胞凋亡。α-硫辛酸的这种作用在一定剂量范围内呈剂量依赖性的趋势。(4)丹参酚酸B降低了雪旺细胞内ROS及8-OHdG水平,提高线粒体膜电位,上调bcl-2蛋白及mRNA的表达,下调bax蛋白及mRNA的表达,抑制cyto c从线粒体到胞浆的释放及AIF从线粒体到细胞核的转位,降低了PARP、caspase-9及caspase-3的活化水平。
     结论:(1)波动性高糖和稳定性高糖可以通过氧化应激反应促进雪旺细胞的凋亡,线粒体在此过程中起着重要作用。(2)雪旺细胞的凋亡是通过caspase依赖性及caspase非依赖性途径共同实现的。(3)波动性高糖的损伤作用更为明显,且与渗透压无关。(4)α-硫辛酸和丹参酚酸B可以通过抑制氧化应激反应从线粒体途径抑制了波动性高糖所导致的雪旺细胞凋亡。
Objective:To investigate the inhibitory effects of Alpha lipoic acid (ALA) and Salvianolic acid B (Sal B) on the intermittent high glucose (IHG)-induced oxidative stress-induced mitochondrial pathway activation and Schwann cells (SCs) apoptosis in vitro.
     Methods:SCs were primarily cultured and were verified by immunostaining for S-100protein. The cultured SCs were treated in duplicate consistently with5.6mM of glucose as the control (con), consistently with50mM of glucose as HG, with5.6and50mM glucose altering every8hrs as IHG, with IHG in the presence of5μmol/L,50μmol/L and500μmol/L of ALA or0.1μmol/L,1μmol/L and10μmol/L of Sal B for48hrs, respectively. There are two osmotic controls, one was that treating the cells with44.4mM mannitol plus5.6mM glucose; the other was an intermittent high osmotic control, which treated the cells with5.6mM glucose or44.4mM mannitol plus5.6mM glucose (total50mM) alternatively at the interval of8hours.Apoptosis was confirmed by the Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) and Annexin V/PI method.The concentration of8-hydroxy-2-deoxy Guanosine (8-OHdG) was detected by Elisa. Intracellular ROS generation and mitochondrial transmembrane potential (△ψm) were detected by flow cytometry analysis. Quantitative real-time reverse transcriptase PCR was performed to analyze the expression levels of bax and bcl-2.Western blot were performed to analyze the expression levels of some important transcription factors and proteins, such as bcl-2, bax, AIF, cyto c, caspase-9, caspase-3and PARP.
     Results:(1) The relative levels of intracellular hydrogen peroxides and superoxide anions showed a marked increase in SCs that were exposed to HG group compared with normal glucose exposure and further increased under IHG conditions. The percentages of depolarized cells in HG and IHG groups significantly increased and the concentrations of8-OHdG in the HG and IHG groups were significantly increased than that in the control.Treatment with HG and IHG up-regulated the release of cytochrome c, AIF nuclear translocation and Bax expression of protein and mRNA, but up-regulated the Bcl-2expression of protein and mRNA. In addition, treatment with HG and IHG increased the activation of caspase-9and caspase-3and the cleavage of PARP in SCs. The percentages of apoptotic cells were increased exposed to HG and substantially more in cells exposed to the IHG.(2) The cytotoxic effect of IHG was significantly more potent than that of HG and the cytotoxicy of IHG is not related to osmolarity, instead, it is a direct effect of glucose on the cell.(3) Treatment with ALA inhibited the IHG-induced oxidative stress by reducing ROS production and8-OHdG levels, mitochondrial depolarization and apoptosis in SCs. Furthermore, treatment with ALA down-regulated the IHG-induced release of cytochrome c, AIF nuclear translocation and Bax expression, but mitigated the IHG-mediated down-regulation of Bcl-2expression in SCs. In addition, treatment with ALA attenuated the IHG-induced activation of caspase-9and caspase-3and minimized the cleavage of PARP in SCs. Clearly, IHG induced mitochondrial dysfunction, and triggered high frequency of SCs apoptosis in both the caspase-dependent and the AIF-mediated caspase-independent pathway. More importantly, ALA inhibited the activation of molecular pathways of apoptosis in a dose-dependent manner.(4) Sal B inhibited the IHG-induced oxidative stress by reducing ROS production and8-OHdG levels, mitochondrial depolarization and apoptosis in SCs in a dose-dependent manner. Furthermore, Sal B down-regulated the IHG-induced release of cytochrome c, AIF nuclear translocation and Bax expression, but mitigated the IHG-mediated down-regulation of Bcl-2expression in SCs. In addition, treatment with Sal B attenuated the IHG-induced activation of caspase-9and caspase-3and minimized the cleavage of PARP in SCs.
     Conclusions:(1) IHG and HG induced SCs apoptosis via oxidative stress and mitochondrial pathway played a key role in the process.(2) IHG and HG induced SCs apoptosis in both caspase-dependent and caspase-independent pathways.(3)The cytotoxic effect of IHG was significantly more potent than that of HG and is not related to osmolarity, instead, it is a direct effect of glucose on the cell.(4) ALA and Sal B antagonized the IHG-induced oxidative stress-related activation of mitochondrial pathway and apoptosis in SCs.
引文
1.潘长玉,陆菊明.糖尿病及相关疾病研究进展.解放军医学杂志.2006,31(9):925-926
    v 2. Cockram CS. The epidemiology of diabetes mellitus in the Asia-pacific region. HKMJ.2000,6:43-52
    3. Yang WY, Lu JM, Weng JP, et al.Prevalence of diabetes among men and women in China. N Engl J Med.2010,362(12):1090-1101
    4. Ceriello A, Ihnat, MA.'Glycaemic variability':a new therapeutic challenge in diabetes and the critical care setting. Diabetic Medicine.2010,27:862-867
    5. Piconi L, Corgnali M, Roberto Da Ros R, et al.The protective effect of rosuvastatin in human umbilical endothelial cells exposed to constant or intermittent high glucose. J Diabetes Complications.2008,22:38-45
    6. Horvath EM, Benko R, Kiss L,et al.Rapid'glycaemic swings'induce nitrosative stress,activate poly(ADP-ribose) polymerase and impair endothelial function in a rat model of diabetes mellitus. Diabetologia,2009,52(5):952-961
    7. Edwards JL, Vincent AM, Cheng HT, et al. Diabetic neuropathy:mechanisms to management. Pharmacol Ther.2008,120:1-34
    8. Dobretsov M, Romanovsky D, Stimers JR.Early diabetic neuropathy:Triggers and mechanisms. World J Gastroenterol,2007,13(2):175-191
    9. Figueroa-Romero C, Sadid M, Feldman EL.Mechanisms of disease:the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord.2008,9(4):301-314
    10. Siemionow M, Demir Y. Diabetic neuropathy:pathogensis and treatment.J Reconstr Microsurg.2004,20(3):241-252
    11. Casellini CM, Vinik AI. Recent advances in the treatment of diabetic neuropathy. Currrent Opinion in Endocrinology and Diabetes.2006,13(2):147-153
    12.Cameron NE, Eaton SE, Cotter MA, et al.Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy.Diabetologia.2001, 44(11):1973-1988
    13. Brownlee M. Biochemistry and molecular cell biology of diabetic complications.Nature.2001,414:813-820
    14. Allen, DA, Harwood, S, Varagunam, M, et al. High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB.2003,17:908-910
    15. Le Bras M, Clement MV, Pervaiz S, et al.Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol.2005,20:205-219
    16. Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Ann NY Acad Sci.2002,959:368-383
    17. Yasuda H, Terada M, Maeda K, et al. Diabetic neuropathy and nerve regeneration. Prog Neurobiol.2003,69(4):229-285
    18. Eckersley L.Role of the Schwann cell in diabetic neuropathy. Int Rev Neurobiol. 2002,50:293-321
    19. Fansa H, Keilhoff G, Plogmeier K, et al. Successful implantation of Schwann cells in acellular muscles. J Reconstr Microsurg.1999,15(1):61-65
    20. Torigoe k. The role of migratory Schwann cells in nerve regeneration as studied by the film model. J Peripher Nerv syst.1997,2(3):227-231
    21. Magnani P, Thomas TP, Tennekoon G, et al. Regulation of glucose transport in cultured Schwann cells.J Peripher Nerv Syst.1998.3:28-36
    22. Muona P, Sollberg S, Peltonen J, et al.Glucose transporters of rat peripheral nerve. Differential expression of GLUT1 gene by Schwann cells and perineural cells in vivo and in vitro.Diabetes.1992,41:1587-159.
    23. Kalichman MW, Powell HC, Mizisin AP. Reactive,degenerative,and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol.1998,95(1):47-56
    24 Eckersley L, Ansselin AD, Tomlinson DR.Effects of experimental diabetes on axonal and Schwann cell changes in sciatic nerve isografts. Brain Res Mol Brain Res, 2001,92(1-2):128-137.
    25. Scarpini E, Doronzo R, Baron P, et al.Phenotypic and proliferative properties of Schwann cells from nerves of diabetic patients. Int J Clin Pharmacol Res.1992, 12(5-6):211-215
    26. Foster TS.Efficacy and safety of alpha-lipoic acid supplementation in the treatment of symptomatic diabetic neuropathy. Diabetes Educ.2007,33:111-117
    27. SYDNEY Trial Study Group. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid:The SYDNEY trial.Diabetes Care.2003, 26:770-776
    28. Tankova T, Koev D, Dakovska L. Alpha-lipoic acid in the treatment of autonomic diabetic neuropathy (controlled, randomized, open-label study). Rom J Internal Med.2004,42:457-464
    29. Ziegler D, Hanefeld M, Ruhnau K, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid:a 7-month multicenter randomized controlled trial (ALADIN III Study).ALADIN III study group, alpha-lipoic acid in diabetic neuropathy. Diabetes Care.1999,22:1296-1301
    30. Ziegler D, Schatz H, Conrad F, et al.Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study).Deutsche Kardiale Autonome Neuropathie. Diabetes Care.1997,20:369-373
    31. Stevens MJ, Obrosova I, Cao X, et al.Effects of DL-a-Lipoic Acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental siabetic neuropathy.Diabetes.2000,49(6):1006-1015
    32. Kowluru RA, Odenbach S. Effect of long-term administration of a-Lipoic Acid on retinal capillary cell death and the development of retinopathy in diabetic rats.Diabetes.2004,53(12):3233-3238
    33. Tian LL,Wang XJ,Sun Y N,et al. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells. Int J Biochem Cell Biol.2008,40(3):409-422
    34. Lin YL, Wu CH, Luo MH, et al.In vitro protective effects of salvianolic acid B on primary hepatocytes and hepatic stellate cells.J Ethnopharmacol.2006,105(1-2): 215-222
    35. Soung DY, Rhee SH, Kim JS, et al.Peroxynitrite scavenging activity of lithospermate B from Salvia miltiorrhiza.J Pharm Pharmacol.2003, 55(10):1427-1432
    36. Chen YH, Du GH, Zhang JT. Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats. Acta Pharmacol Sin.2000,21(5):463-466
    1. Yasuda H,Terada M, Maeda K,et al. Diabetic neuropathy and nerve regeneration. Prog Neurobiol.2003,69(4):229-285
    2. Eckersley L.Role of the Schwann cell in diabetic neuropathy.Int Rev Neurobiol. 2002,50:293-321
    3. Fansa H, Keilhoff G, Plogmeier K, et al. Successful implantation of Schwann cells in acellular muscles. J Reconstr Microsurg.1999,15(1):61-65
    4. Torigoe k.The role of migratory Schwann cells in nerve regeneration as studied by the film model. J Peripher Nerv syst.1997,2(3):227-231
    5. Kalichman MW, Powell HC, Mizisin AP. Reactive,degenerative,and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol.1998,95(1):47-56
    6. Eckersley L, Ansselin AD, Tomlinson DR.Effects of experimental diabetes on axonal and Schwann cell changes in sciatic nerve isografts. Brain Res Mol Brain Res. 2001,92(1-2):128-137
    7. Scarpini E, Doronzo R, Baron P, et al.Phenotypic and proliferative properties of Schwann cells from nerves of diabetic patients. Int J Clin Pharmacol Res,1992, 12(5-6):211-215
    8. Casella GT, Bunge RP, Wood PM. Improved method for harvesting human Schwann cells from mature Peripheral nerve and expansion in vitro. Glia.1996, 17(4):327-338
    9.潘良春,尹宗生,王伟,等.新生和成年大鼠雪旺细胞培养、纯化的实验研究.中国康复医学杂志.2005,20(11):817-819
    10. Komiyama A, Suzuki K. Age-related changes in attachment and proliferation of mouse Schwann cells in vitro.Brain Res Dev Brain Res.1991,62(1):7-16
    11. Komiyama A, Suzuki K. Age-related diferences in proliferative responses of Schwann cells during Wallerian degeneration.Brain Res.1992,573(2):267-275
    12. Brockes JP, Fields KL, Raff MC. Studies on culture rat Schwann cells: establishment of purified population from culture of peripheral nerve. Brain Res. 1979,165(1):105-118
    13.黄小强,罗卓荆,李明全.新生SD大鼠坐骨神经雪旺细胞培养与纯化的方法学研究.中华创伤骨科杂志.2005,7(4):341-343
    14. Sasaki H, Schmelzer JD, Zollman PJ, et al. Neuropathology and blood flow of nerve, spinal roots and dorsal root ganglia in longstanding diabetic rats. Acta Neuropathol.1997,93(2):118-28
    15. Schmeichel AM, Schmelzer JD, Low PA.Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy.Diabetes. 2003,52(1):165-71
    1. Del Prato S. In serch of normoglycemia in diabetes:controlling postprandial glucose.Int J Obes Relat Metab Disord.2002,26 (Suppl 3):S9-S17
    2. Ceriello A, Ihnat, MA.'Glycaemic variability':a new therapeutic challenge in diabetes and the critical care setting.Diabetic Medicine.2010,27:862-867
    3. Piconi L, Corgnali M, Roberto Da Ros R, et al. The protective effect of rosuvastatin in human umbilical endothelial cells exposed to constant or intermittent high glucose.J Diabetes Complications.2008,22:38-45
    4. Horvath EM, Benko R, Kiss L, et al.Rapid'glycaemic swings'induce nitrosative stress,activate poly(ADP-ribose) polymerase and impair endothelial function in a rat model of diabetes mellitus.Diabetologia.2009,52(5):952-961
    5. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature.2001.414:813-820
    6. Allen DA, Harwood S, Varagunam M, et al.High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB.17:908-910
    7. Le Bras M., Clement MV, Pervaiz S, et al.Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol.2005,20:205-219
    8. Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Ann NY Acad Sci.2002,959:368-383
    9. Edwards JL, Vincent AM, Cheng HT, et al.Diabetic neuropathy:mechanisms to management.Pharmacol Ther.2008,120(1):1-34
    10. Hirsch B.Glycemic variability:it's not just about Ale any more.Diabetes Technol Ther.2005,7(5):780-783
    11. Horvath EM, Benko R, Kiss L, et al.Rapid'glycaemic swings" induce nitrosative stress,activate poly(ADP-ribose) polymerase and impair endothelial function in a rat model of diabetes mellitus.Diabetologia.2009,52(5):952-961
    12.王先令,陆菊明.血糖波动对糖尿病预后及其慢性并发症发生发展的影响.国外医学-内分泌学分册.2005,25((3):169—173
    13. Almhanna K,Wilkins PL,Bavis JR,et al.Hyperglycemia triggers abnormal signaling and proliferative responses in Schwann cells[J].Neurochem Res,2002, 27(11):1341-1347.
    14. Gumy LF,Bampton ET,Tolkovsky AM.Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine.Mol Cell Neurosci.2008,37(2):298-311
    15. Delaney CL, Cheng HL, Feldman EL.Insulin-like growth factor-I prevents caspase-mediated apoptosis in Schwann cell.J Neurobiol.1999,41(4):540-548
    16. Delaney CL, Russell JW, Cheng HL, et al.Insulin-like Growth factor-I and over-expression of Bcl-XL prevent glucose-mediated apotosis in Schwann cells. J Neuropathol Exp Neurol.2001,60(2):147-160
    17. Miinea C, Kuruvilla R, Merrikh H, et al.Altered arachidonic acid biosynthesis and antioxidant protection mechanisms in Schwann cells gorown in elevated glucose. J Neurochem.2002,81(6):1253-1262
    18. Karihaloo AK, Joshi K, Chopra JS.Effect of sorbinil and ascorbic acid on myo-inositol transport in cultured rat Schwann cells exposed to elevated extracellular glucose. J Neurochem.1997,69(5):2011-2018
    19. Sango K, Suzuki T, Yanagisawa H, et al. High glucose-induced activation of the polyol pathway and changes of gene expression profiles in immortalized adult mouse Schwann cells IMS32.J Neurochem.2006,98 (2):446-458
    20. Suzuki T, Sekido H, Kato N, et al. Neurotrophin-3-induced production of nerve growth factor is suppressed in Schwann cells exprosed to high glucose:involvement of the polyol pathway.J Neurochem.2004,91(6):1430-1438
    21. Suzuki T,Mizuno K,Yashima S, Watanabe K,et al.Characterization of polyol pathway in Schwann cells isolated from adult rat sciatic nerves. J Neurosci Res.1999, 57(4):495-503
    22.张云云,汪洋,丁正同,等.高糖下调大鼠许旺细胞calpain Ⅱ的表达.中国病理生理杂志.2006,22(2):398-399,407
    23.张云云,王坚,丁正同,等.高葡萄糖对施万细胞CGT和GalC表达的影响.中国临床神经科学.2004,13(1):20-23
    24.孙连庆,梁晓春,张宏,等。中药筋脉通对高糖培养雪旺细胞增殖和表达的影响.中华中医药杂志.2009,24(8):1019-1022
    25. Qu L, Liang XC, Zhang H, et al. Effect of Jinmaitong serum on the proliferation of rat Schwann cells cultured in high glucose medium.Chin J Integr Med.2008,14: 293-297
    26. Dobretsov M, Romanovsky D, Stimers JR.Early diabetic neuropathy:Triggers and mechanisms. World J Gastroenterol.2007,13(2):175-191
    27. Figueroa-Romero C, Sadid M, Feldman EL.Mechanisms of disease:the oxidative stress theory of diabetic neuropathy.Rev Endocr Metab Disord.2008,9(4):301-314
    28. Siemionow M, Demir Y.Diabetic neuropathy:pathogensis and treatment.J Reconstr. Microsurg.2004,20(3):241-252
    29. Casellini CM, Vinik AI. Recent advances in the treatment of diabetic neuropathy. Currrent Opinion in Endocrinology and Diabetes.2006,13(2):147-153
    30. Cameron NE, Eaton SE, Cotter MA, et al.Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy.Diabetologia.2001, 44(11):1973-1988
    31. Jonassen JA, Cao LC, Honeyman et al. Mechanisms mediating oxalate-induced alterations in renal cell functions Crit Rev Eukaryot Gene Expr.2003,13(1):55-72
    32. Forbes JM, Coughlan MT, Cooper ME.Oxidative stress as a major culprit in kidney disease in diabetes.2008,57(6):1446-1454
    33. Hernadez-Garcia D, Wood CD, Castro-Obregon S, et al. Reactive oxygen species: a radical role in development? Free Radic Biol Med.2010,49(2):130-143
    34. Wu LL, Chiou CC,Chang PY, et al. Urinary 8-OHDG:a marker of oxidative stess to DNA and a risk factor for cancer.Atherselerosis and diabetics. Clin Chim Acta.2004,339(6):1-9
    35. Piconi L, Quagliaro L, Assaloni R, et al.Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev.2006,22:198-203
    36. Schisano B, Tripathi G, McGee K, et al. Glucose oscillations, more than constant high glucose, induce p53 activation and a metabolic memory in human endothelial cells. Diabetologia.2011,54:1219-1926
    37. Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells:the role of protein kinase C and NAD(P)H-oxidase activation.Diabetes.2003,52: 2795-2804
    1. Oliver FJ, de la Rubia G, Rolli V, et al.Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis.Lesson from an uncleavable mutant. J Biol Chem.1998,273:33533-33539
    2. Geren DR, Kroemer GThe pahtophysiology of mitochondrial cell death.Science. 2004,305:626-629
    3. Gross A, McDonnell JM,Korsmeyer SJ.Bcl-2 family members and the mitochondria in apoptosis.Genes Dev.1999,13(15):1899-1911
    4. Adams JM, Cory S.Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci.2001,26(1):61-66
    5. Tsujimoto Y.Cell death regulation by the Bcl-2 protein family in the mitochondria.J Cell Physiol.2003,195(2):158-167
    6. Jiang X, Wang X.Cytochrome c-mediated apoptosis.Annu Rev Biochem.2004,73: 87-106
    7. Fisher U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin:a comprenhensive update of caspase substrates. Cell Death Differ.2003,10(1):76-100
    8. Oliver FJ,de la Rubia G,Rolli V,et al. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis.Lesson from an uncleavable mutant.J Biol Chem. 1998,273(50):33533-33539
    9. Bursztajn S, Feng JJ,Berman SA, et al.Poly(ADP-ribose) polymerase induction is an early signal of apoptosis in human neuroblastoma.Brain Res Mol Brain Res. 2000,76(2):363-376
    10. Martin SS,Perez-Polo JR, Noppens KM,et al.Biphasic changes in the levels of poly(ADP-ribose) polymerase-1 and caspase 3 in the immature brain following hypoxia-ischemia. Int J Devl Neuroscience.2005,23(8):673-686
    11. Yu SW, Wang H, Poitras MF,et al.Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science.2002, 297(5579):259-263
    12. Boulares AH,Yakovlev AG,Ivanova V,et al.Role of Poly(ADP-ribose) Polymerase (PARP) Cleavage in Apoptosis.J Biol Chem.1999,274(33) 22932-22940
    13. Susin SA, Zamzami N, Castedo M, et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med.1996,184 (4):1331-1341
    14 Susin SA,Lorenzo HK,Zamzami N.Molecular characterization of mitochondrial apoptosis-inducing factor. Nature.1999,397(6718):441-446
    1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature.2001,414:813-820
    2. Naziroglu M, Butterworth P. Protective effects of moderate exercise with dietary vitaminC and E on blood antioxidative defense mechanism in rats with streptozotocin-induced diabetes.Can J Appl Physiol.2005,30(2):172-185
    3. Reed LJ. From lipoic acid to multi-enzyme complexs.Protein Sci.1998,7:220-224
    4. Packer L, Witt EH, Tritschler HJ, et al. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med.1995,19(2):227-250
    5. Singh U, Jialal I. Alpha-lipoic acid supplementation and diabetes. Nutr Rev. 2008.66(11):646-657
    6. Packer L, Kraemer K, Rimbach G.N Molecular aspects of lipoic acid in the prevention of diabetes complications.Nutrition 2001,17(10):888-895
    7. Jones W,Li X, Qu ZC, et al.Uptake, recycling, and antioxidant actions of alpha-lipoic acid in endothelial cells. Free Radic Biol Med.2002,33:83-93
    8. Kozlov AV, Gille L, Staniek K, et al. Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by two-electron reduction of ubiquinone and one-electron reduction of ubisemiquinone.Arch Biochem Biophys.1999,363:148-154
    9. Suh JH, Shenvi SV, Dixon BM, et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci.2004,101:3381-3386
    10. Bast A, Haenen GR. Lipoic acid:a multifunctional antioxidant. Biofactors. 2003,17:207-213
    11. Suzuki YJ,Mizuno M,Tritschler HJ,et al. Redox regulation of NF-kappa B DNA binding activity by dihydrolipoate. Biochem Mol Biol Int.1995,36(2):241-246
    12. Na MH, Seo EY, Kim WK. Nutr Res Pract. Effects of alpha-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells.2009,3(4):265-271
    13. Kagan VE,Shvedova A,Serbinova E,et al.Dihydrolipoic acid--a universal antioxidant both in the membrane and in the aqueous phase. Reduction of peroxyl, ascorbyl and chromanoxyl radicals. Biochem Pharmocol.1992,44(8):1637-1649
    14. Stevens MJ, Obrosova I,Cao X,et al.Effects of DL-a-Lipoic Acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes.2000,49(6):1006-1015
    15. Kowluru R A,Odenbach S. Effect of long-term administration of α-Lipoic Acid on retinal capillary cell death and the development of retinopathy in diabetic rats.Diabetes.2004,53(12):3233-3238
    16. SYDNEY Trial Study Group.The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid:The SYDNEY trial.Diabetes Care.2003, 26(3):770-776
    17. Ziegler D,Schatz H,Conrad F,et al.Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients.A 4-month randomized controlled multicenter trial (DEKAN Study).Deutsche Kardiale Autonome Neuropathie.Diabetes Care.1997,20(3):369-373
    18. Ziegler D, Hanefeld M,Ruhnau KJ,et al.Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid:a 7-month multicenter randomized controlled trial (ALADIN III Study).ALADIN III study group, alpha-lipoic acid in diabetic neuropathy.Diabetes Care.1999,22(8):1296-1301
    19. Ziegler D,Reljanovic M,Mehnert H,et al.Alpha-lipoic acid in the treatment of diabetic polyneuropathy in Germany:current evidence from clinical trials.Exp Clin Endocrinol Diabetes.1999,107(7):421-430
    20. Tankova T, Koev D,Dakovska L.Alpha-lipoic acid in the treatment of autonomic diabetic neuropathy (controlled, randomized, open-label study). Rom J Internal Med. 2004,42(2):457-464
    21. Foster TS.Efficacy and safety of alpha-lipoic acid supplementation in the treatment of symptomatic diabetic neuropathy.Diabetes Educ.2007,33(1):111-117
    22. Artwohl M, Muth K, Kosulin K, et al. R-(+)-alpha-lipoic acid inhibits endothelial cell apoptosis and proliferation:involvement of Akt and retinoblastoma protein/E2F-1.Am J Physiol Endocrinol Metab.2007,293:E681-689
    23. Zhang WJ, Frei B. α-Lipoic acid inhibits TNF-α-induced NF-KB activation and adhesion molecule expression in human aortic endothelial cells.FASEB.2001,15: 2423-2432
    1.吴静,钟慧菊,孙志湘,等.灯盏花素治疗糖尿病周围神经病变的疗效观察.湖南医科大学学报.2002,27(4):337-338
    2.单俊杰,张敏,武春密,等.抗糖尿病及并发症黄酮类化合物的研究进展.中国新药杂志.2008,17(12):899-908
    3.叶仁群,陈泽奇,熊丽丽,等.加味补肝汤对糖尿病大鼠背根神经节细胞凋亡的影响.湖南中医药大学学报.2008,28(5):44-47
    4.封卫毅,侯家玉,陈伟,等.周通络对糖尿病大鼠坐骨神功能、醛糖还原酶活性及抗自由基能力的影响.北京中药大学学报.2004,27(1):45
    5. Tian LL,Wang XJ,Sun Y N,et al. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells. Int J Biochem Cell Biol.2008,40(3):409-422
    6. Lin YL, Wu CH, Luo MH, et al.In vitro protective effects of salvianolic acid B on primary hepatocytes and hepatic stellate cells.J Ethnophannacol. 2006,105(1-2):215-222.
    7. Soung D Y,Rhee S H, Kim J S,et al. Peroxynitrite scavenging activity of lithospermate B from Salvia miltiorrhiza.J Pharm Pharmacol.2003,55(10):1427-1432
    8. Chen YH,Du GH,Zhang JT.Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats. Acta Pharmacol Sin.2000,21(5):463-466
    9.廖文,张庆富,赵永歧,等.复方丹参对周围神经再生的影响.中国康复.2004,19(3):131-133
    10.尹宗生,顾玉东,朱腾芳.中药治疗对大鼠坐骨神经损伤后NGF-mRNA表达的影响.中华现代外科学杂志,2005,2(12):1062-1065
    11. Imanshahidi M, Hosseinzadeh H. The pharmacological effects of Salvia species on the central nervous system.Phytother Res.2006,20(6):427-437
    12.刘军,匡培根,吴卫平,等.大鼠脑缺血再灌注区小胶质细胞反应及丹参影响.中华老年心脑血管病杂志.2002,4(2):127-129
    13.崔桂云,沈霞,张璐,等.丹参神经保护作用机制的研究.徐州医学院报.2002,22(6):492-494
    14关听,吴立军,解黎雯.丹参现代研究概况.实用中医药杂志,2005,21(7):445-446
    15.杜冠华,张均田.丹参水溶性有效成分-丹酚酸研究进展.基础医学与临床.2000,20(5):210-214
    16.李朝霞,王地.丹参水溶性成分的研究进展.北京中医.2004,23(3):176-178
    17.王凤美,陈军辉,李磊,等.高纯度丹酚酸B的制备工艺研究.时珍国医国药.2005,16(6):476-478
    18.张军,王凤云,赖小平,等.丹参药材提取液中丹酚酸稳定性影响因素的考察.中国中药杂志.2005,30(10):789-790
    19.林青,黄琳,肖晓丽,等.丹参水提液中丹酚酸B湿热降解动力学研究.中国现代中药.2008,20(8):29-31
    20.倪力军,邬科芳,张立国.加热方式对丹酚酸提取物质量的影响.中药新药与临床药理.2006,17(1):55-58
    21.徐德然,王康才,王峥涛,等.丹参中丹参素、原儿茶醛来源的初步研究.中国天然药物.2005,3(3):148-150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700