用户名: 密码: 验证码:
气力式油菜精量排种器结构解析与排种过程仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国重要的油料作物之一,因其籽粒半径小,表皮易于破损,限制了油菜籽的机械化播种发展;长江中下游地区作为我国油菜的主产区,但其机械化播种水平均不高。随着我国人们生活水平的提高,每年的油菜产量已经不能满足人们对植物油的需求,因此,提高油菜的机械化播种水平成为当前急需解决的难题。
     油菜直播机的核心部件是排种器,故油菜精量排种器的排种性能直接决定了油菜直播机的工作性能。本文是在气力式油菜精量排种器的研究基础上,开展了影响排种器性能的运行参数试验研究,探寻了各参数之间的变化规律;并利用EDEM和ANSYS软件对排种器的排种过程开展了仿真分析,并借助高速摄像技术和图像目标追踪技术捕获了油菜籽在排种器投种过程中的运动变化规律;开展了气力式油菜精量排种器的气室结构的仿真分析和试验研究,明确了排种器的负压出气孔、正压进气孔和气室容积等结构参数对排种性能的影响,为进一步优化排种器的结构提供参考。主要研究内容包括:
     (1)根据气力式油菜精量排种器稳定工作的负压-1000~-4500Pa、正压50~250Pa和排种轴转速10-45r/min范围,分别以排种器的合格指数、漏播指数和重播指数为因变量,开展全因素试验研究,并统计分析了排种器的正负气压比例关系与排种性能的变化规律,提出了正负压比例系数,通过建立其与排种性能的三元二次回归方程,分析了正压、排种轴转速和正负压比例系数及其之间的交互作用对性能指数的影响;根据试验结果,分析了排种器合格指数高于90%工况下正负气压比例系数范围,构建了不同排种轴转速下正负压比例系数的数学模型。本文提出正负压比例系数来阐述气力式排种器正负气压的匹配关系,并构建了排种器正负压比例系数的数学模型,该研究对调节排种器的正负气压具有一定的创新性,其结果可为油菜直播机田问工作时排种器的正负气压的匹配和调节提供参考。
     (2)基于ANSYS、EDEM和高速摄像技术等对排种器的三个排种过程丌展了试验和仿真研究,其主要研究结果如下:
     ①基于EDEM软件开展了油菜籽在排种器充种过程的仿真分析,明确了排种轴转速为15r/min时,排种器内油菜种群随时间的变化规律,通过分析油菜籽在排种器罩壳内的运移规律,明确油菜籽充入排种器罩壳的影响因素;随机追踪罩壳内单颗油菜籽,获得了油菜籽速度随着时间的变化曲线。仿真结果表明:罩壳内油菜籽种群的平均速度随着时间呈指数下降并逐渐稳定。
     ②根据排种器的工作原理,建立了油菜籽吸种过程的动力学模型,计算并获得了负压气室稳定吸附油菜籽的最低压强,并在ANSYS/CFX中对排种器负压气室流体模型开展仿真研究,确定负压出气孔在-1000~-4500Pa范围内,观察分析了气室流场的压强云图,并得到了负压区型孔表明的压强和流速,并确定了型孔压强和流速与负压出气孔压强之间的关系,结果表明:型孔表面压强和流速随着负压出气孔压强增大而逐渐增大;
     ③分析了油菜籽的投种过程并得到其投种轨迹的动力学模型,明确了影响油菜籽投种轨迹的各参数影响,在ANSYS/CFX中建立正压气室流体模型,以正压50~250Pa范围内,追踪了正压区型孔的压强和流速,得到了其变化规律;结合高速摄像技术在排种盘转速为15r/min和25r/min和正压50~600Pa范围内工况下开展油菜籽投种过程的试验研究,采用目标追踪技术提取油菜籽坐标,绘制其实际投种轨迹曲线,通过统计分析了油菜籽的投种距离、投种速度和加速度,对比分析了不同转速下油菜籽的投种运动规律,明确了正压大小和导种管结构对油菜籽的投种轨迹的影响,试验结果表明:当排种盘的转速从15r/min增大到25r/min时,油菜籽的投种距离越小,其投种速度越大;
     ④利用高速摄像技术对排种器的充种过程和吸种过程开展了验证试验,观察分析了油菜籽在罩壳内的充种运动规律和吸种过程规律,分别对充种过程和吸种过程的仿真结果丌展试验分析。本文主要运用了EDEM和ANSYS软件、高速摄像技术解析了排种器的充种过程、吸种过程和投种过程,揭示了油菜籽在充种过程中的运动规律,分析了吸种过程中负气压区型孔处压强和流速的变化规律,明确了油菜籽在投种过程的迁移运动轨迹,为排种器结构的优化设计提供新的依据。
     (3)分析了排种器正负压气室的结构参数,在ANSYS/CFX中对不同结构参数下气室流体模型开展仿真研究,主要对负压出气孔内径6-17mm、负压出气孔位置0。~165。、负压气室内径62-106mm、排种盘型孔数量15-55、正压进气孔内径6~17mm、正压气室内径62~106mm等因素进行仿真试验,并对正压区和负压区内排种盘型孔处压强和流速大小。试验结果表明:负压出气孔内径大小对排种器气室型孔表面的压强和流速影响较显著;
     (4)利用JPS-12型排种器性能检测试验台开展了排种器的结构改进试验研究,结合仿真试验结果分别对负压出气孔内径在6~12mm范围内、气室内侧直径在62~110mm范围内、负压出气孔在气室圆周上偏角分别为15。、90。和125。位置时,开展单因素和正交试验研究,分别对不同正压、负压和排种轴转速条件下,排种器性能变化开展了分析研究,其试验结果表明:负压出气孔内径大小和出气孔位置对排种器性能影响显著,确定了其最佳的改进参数,为排种器结构的优化提供参考。
Rapeseed is a kind of important oil crops with the small diameter and easy damage, its disadvantage confines the development of planting in the field, Yangtze River area is the most famous place to cultivate the rapeseed, the level of planting rapeseed is still very low. But with the development of daily life, the domestic demand of plant oil could not meet the requirements, so to develop the mechanical level of planting rapeseed become a urgent task.
     As we all know that the key part of seeder is the metering device, so the performance of direct seeder for rapeseed is determined by the metering device. This study was based on the pneumatic precision metering device; the experiments were conducted to study the relationship between the operational parameters, EDEM and ANSYS were used to simulate the metering processes, the dropping process of rapeseed in the metering device was applied by the high-speed camera to capture the trajectories of rapeseed during different positive pressures, the simulation and experiments would conduct to investigate the relationship between the parameters of chambers, the outlet of negative pressure chamber, the inlet of positive pressure chamber and the volume of chamber were considered to optimize the structure of chamber.
     (1) According to negative pressure, positive pressure and rotating speed of metering device, the three-factor factorial split-split experiment was introduced to investigate the relationship between negative pressure and positive pressure, and the rate coefficient of positive and negative pressures was firstly employed to describe the relationship between them, quality of feed index, miss index and multiple index of metering device were conducted to build the mathematical model, the most important factors and the influence between them in the experiments were analyzed, to make sure the stable performance of metering device with quality of feed index above90%, the operational parameters were concluded for the models.it was the first time to introduce the negative and positive pressure coefficient to express the relationship between positive pressure and negative pressure.
     (2) The processes of pneumatic metering device was divided into three stages including filling process, suction process and dropping process, the simulation software EDEM, ANSYS and high-speed camera were conducted to study the processes, the results were as follows:
     ①The filling process was simulated on EDEM, when the rotary speed was15rpm, the law of rapeseed flowed from the seed box into the shell was studied to investigate the average velocity of rapeseed during the whole process, the influence factors were analyzed through the simulation, the single rapeseed was chose to capture during the filling process, then the velocity was conducted during the process, the results showed that the velocity of mass dropped as the exponent relationship;
     ②Dynamic model of rapeseed during the sucking process was conducted to analyze the minimum negative pressure, the negative pressure fluid model was built in ANSYS/CFX with the range of negative pressre-1000~-4500Pa, the pressure contour of negative pressure area was captured, and the pressure and velocity of nozzle were calculated through the software, the results showed they would increase with the increase of negative pressure in the outlet;
     ③Analyze the dropping process of rapeseed in the positive pressure area to build the dynamic models, the factors were conducted in the models, the positive pressure fluid model was built in the ANSYS/CFX with the positive pressure of inlet50~250Pa, the pressure and velocity of nozzles in the positive pressure area were calculated, and the high speed system was introduced to observe the dropping process in the experiments with the rotating speed15rpm and25rpm, positive pressure50~600Pa, respectively. The coordinate of rapeseed was found in the video and conducted through special software, the parameters of horizontal distance, velocity and acceleration for rapeseed were calculated to compare with different rotating speeds, and the influence of horizontal distance was investigated with the structure of seed spout, the results showed that when the rotating speed increased from15to25rpm, the horizontal distance and velocity increased.
     ④The high-speed camera system was conducted to observe the filling and suction process, the results were investigated through the picture and video. It was the first time to separate the metering process of pneumatic metering device, the filling process was simulated by the EDEM, and the sucking process was achieved in the ANSYS, the high speed camera technology and target technology was applied to capture the trajectories of rapeseed. The processes of metering device were studied through simulation software; it could express the working principle of pneumatic metering device;
     (3) The structural parameters of chambers in the metering device were simulated through ANSYS; the pressure contour in the chambers was formed and compared with different parameters of diameters of inlet and outlet, volume of chambers, number of nozzles, the relationship between the parameters and pressures and velocity of nozzle was analyzed, the results showed that inner diameter of outlet in the negatie pressure area had significant influence in pressures and velocity of nozzles;
     (4) The experiments were studied on the JPS-12performance testing system in the lab, the different parameters were analyzed with diameters of inlet and outlet in chamber from6-12mm, volume of chambers from62-110mm, the position of outlet in the chamber in15,90and125degree, the single factor experiments were studied, in order to investigate the change of performance of metering device, the operational parameters were considered to determined the optimal parameters, it could be applied to optimize the structure of chamber in the metering device.
引文
1.边疆.基于高速摄像系统的精密排种器性能检测方法及试验研究[D].镇江:江苏大学.2009.
    2.曹文,丁俊华,李再臣.机械式精密排种器的研究与设计[J].农机化研究,2009,7:142-145.
    3.陈学庚,卢勇涛.气吸滚筒式棉花精量穴播器排种性能试验[J].农业机械学报,2010,41(8):35-38.
    4.崔清亮,裘祖荣,贺俊林.2BQYF 6A型气压式硬茬精密播种机的研究[J].农业机械学报,2001,32(4):31-33.
    5.陈进,李耀明,王希强等.气吸式排种器吸孔气流场的有限元分析[J].农业机械学报,2007,38(9):59-62.
    6.陈进,边疆,李耀明等.基于高速摄像系统的精密排种器性能检测试验[J].农业工程学报,2009,25(9):90-95.
    7.陈凤艳,张晋国,陈凤娟.槽缝式小麦气吸精密播种机的设计与研究[J].农机化研究,2008,12:203-206.
    8.段宏兵,廖庆喜,田波平等.正负气压组合式排种器气室[P].中国专利:CN201332578,2009-10-28.
    9.杜文勇,黄海东,樊放洲.ANSYS在油菜联合收割机清选机构气流场中的应用[J].农机化研究,2007,10:174-175.
    10.杜辉,樊桂菊,刘波.气力式精量播种机与排种器的研究现状[J].农业装备技术,2002,3:13-14.
    11.董艳,杨坚,杨晓丽等.电磁振动排种器仿真研究[J].农机化研究,2005,6:97-100.
    12.冯晓静,刘俊峰,杨欣等.小麦精密排种器伤种的计算机模拟[J].河北农业大学学报,2004,27(5):96-99.
    13.贺俊林,裘祖荣.新型气压式精密排种器的试验研究[J].农业工程学报,2001,17(2):80-83.
    14.韩豹,吴文福,王宏业.水稻机摆钵育苗气吸滚筒式自动清堵排种器[J].农业工程学报,2009,25(9):96-99.
    15.胡建平,李宣秋,左志宁.磁吸滚筒式精密排种器试验及参数优化[J].农业工程学报,2007,23(9):115-117.
    16.胡建平,王奇瑞,邵秀平.永磁体磁吸式排种器充种性能仿真与试验[J].农业 工程学报,2010,41(12):35-38.
    17.胡建平,郑赛男,刘文东.磁吸滚筒式精密排种器设计与试验[J].农业机械学报,2009,40(3):60-63.
    18.姜楠,衣淑娟,张延河.钉齿式轴流装置脱粒过程高速摄像分析[J].农业机械学报,2011,42(Z1):52-56.
    19.金汉学.基于高速摄像技术的水稻芽播精密排种器研究[D].长春:吉林大学.2004.
    20.刘雪美,张晓辉,侯存良.喷杆喷雾机风助风筒流场分析与结构优化[J].农业机械学报,2011,42(4):70-75.
    21.刘雪美,张晓辉,刘丰乐等.喷杆喷雾机风助风筒相关向量机多目标优化设计[J].农业机械学报,2010,41(6):75-80.
    22.刘俊峰,杨欣,冯晓静.2BF—8型小麦精播机播种均匀性影响因素分析[J].农业工程学报,2001,17(6):64-68.
    23.刘宏新,王福林,杨广林.新型立式复合圆盘大豆精密排种器研究[J].农业工程学报,2007,23(10):112—116.
    24.李成华,高玉芝,张本华.气吹式倾斜圆盘排种器排种性能试验[J].农业机械学报,2008,39(10):90-94.
    25.刘彩玲,宋建农,张广智等.气吸式水稻钵盘精量播种装置的设计与试验研究[J].农业机械学报,2005,36(2):43-46.
    26.刘文忠,赵满全,王文明等.气吸式排种装置排种性能理论分析与试验[J].农业工程学报,2010,26(9):133-138.
    27.刘宏新,王福林.立式圆盘排种器工作过程的高速影像分析[J].农业机械学报,2008,39(4):60-64.
    28.廖庆喜,高焕文,臧英. 玉米水平圆盘精密排种器型孔的研究[J].农业工程学报,2003,19(4):109—113.
    29.廖庆喜,高焕文. 玉米水平圆盘精密排种器排种性能试验研究[J].农业工程学报,2003,19(1):99-102.
    30.廖庆喜,高焕文.玉米水平圆盘精密排种器种子破损试验[J].农业机械学报,2003,34(4):57-59.
    31.廖庆喜,黄吉星,刘光等.油菜播种机槽孔轮式精量排种器设计与试验[J].农业机械学报,2011,42(2):63-66.
    32.廖庆喜,张猛,余佳佳等.气力集排式油菜精量排种器[J].农业机械学报,2011,42(8):30-34.
    33.廖庆喜,吴福通,阳波平等.一种正负气压组合式油菜籽精量排种器[P].中国专利:CN201001269,2008-01-09.
    34.廖庆喜,李继波,覃国良.气力式油菜精量排种器气流场仿真分析[J].农业机械学报,2009,40(7):78-82.
    35.廖庆喜,李继波,覃国良.气力式油菜精量排种器试验[J].农业机械学报,2009,40(8):44-48.
    36.廖庆喜,邓在京,黄海东.高速摄影在精密排种器性能检测中的应用[J].华中农业大学学报,2004,23(5):570~573.
    37.李成华,高玉芝.倾斜圆盘气吹式播种器设计及试验研究[J].沈阳农业大学学报,2007,38(6):830-836.
    38.李永伟,刁培松,张士新.气动射种装置的研发[J].农机化研究,2008(2):123-132.
    39.李耀明,赵湛,陈进等.气吸振动式排种器吸种性能数值模拟与试验[J].农业机械学报,2008,39(10):95-99.
    40.李旭.气力式油菜精量排种器工作机理与试验研究[D].武汉:华中农业大学,2012.
    41.梁嘉.爆破过程的高速摄像分析[D].哈尔滨:东北大学,2009.
    42.邱秀丽,徐明,陈佳琦等.“一器4行”针孔气力式蔬菜排种器的设计与试验.农机化研究,2006.8:160-162.
    43.宋建农,王继承等.机械式排种器同步柔性皮带护种器的设计[J].农业工程学报,2009,25(10):107-111.
    44.沈卫强,杨军,洪英等.一种新型苜蓿排种器的研制与实验[J].新疆农机化,2003,4:55-56.
    45.孙裕晶,马成林,王海.气力轮式精密排种器大豆充种过程试验研究[J].农机化研究,2006,10:147-150.
    46.孙裕晶,马成林,李萌.加压条件下气力轮式精密排种器性能分析[J].农业机械学报,2009,40(7):72-77.
    47.汤楚宙,向卫兵,谢方平.气吹式杂交水稻精播排种器型孔型式的试验研究[J].农业工程学报,1999,15(1):241-243.
    48.舒彩霞,廖庆喜,田波平等.一种气力式油菜籽少耕精量联合直播机[P].中国专利:CN201319739,2009-10-07.
    49.杨松,廖庆喜,陈立等.2BFQ-6型油菜精量联合直播机播种油菜的田间植株分布规律[J].农业工程学报,2011,27(11):23-28.
    50.田波平,廖庆喜,黄海东等.2BFQ—6型油菜精量联合直播机的设计[J].农业机械学报,2008,39(10):211-213.
    51.陶桂香,衣淑娟.组合式轴流装置稻谷运动仿真及高速摄像验证[J].农业机械学报,2009,40(2):84-86.
    52.王吉奎,郭康权,吕新民等.央持式棉花精密穴播轮作业振动对取种的影响[J].农业工程学报,2010,26(6):114-118.
    53.王吉奎,郭康权,吕新民等. 夹持式棉花精密穴播轮改进设计与试验[J].农业机械学报,2011,42(4):43-47.
    54.王吉奎,郭康权,土鲁洪等.夹持自锁式棉花精量穴播轮的研究[J].农业工程学报,2008,24(6):125-128.
    55.王吉奎,郭康权,吕新民等.改进型夹持式棉花穴播轮排种过程高速摄像分析[J].农业机械学报,2011.10:74-78.
    56.王吉奎,郭康权,吕新民等.穴播轮中种子运动高速摄像分析[J].江苏大学学报,2012,33(1):11-15.
    57.王吉奎,郭康权,吕新民等.改进型夹持式穴播轮工作过程的分析[J].石河子大学学报,2011,29(5):637-640.
    58.王树才,许绮川.气吹式排种器气流推种的研究与试验[J].农业机械学报,1998,29:55-57.
    59.王瑞雪,仪垂杰,林海波等.基于均匀设计的小麦气吸式精密排种器的试验研究[J].农机化研究,2009,2:141—143.
    60.王静,廖庆喜,田波平等.高速摄像技术在我国农业机械领域的应用[J].农机化研究,2007,1:184-186.
    61.王德忠,黄震,童澄教等.应用高速摄像技术研究柴油机的喷雾过程[J].上海交通大学学报,2000,34(4):453-457.
    62.王金峰,王金武,何剑南.深施型液态施肥装置施肥过程高速摄像分析[J].农业机械学报,2012,43(4):55-59.
    63.吴明亮,官春云,汤楚宙等.2BF—6型稻茬田油菜免耕联合播种机的研究[J].农业工程学报,2005,21(3):103-106.
    64.吴明亮,官春云,高晓燕等.偏心轮型孔轮式排种器排种油菜极限转速试验[J].农业工程学报,2010,26(6):119-123.
    65.吴福通.正负气压组合式油菜精量直播排种器的研究[D].华中农业大学图书馆,华中农业大学,2007.
    66.吴福通,廖庆喜,罔波平.新型气力式油菜精量排种器的设计研究[C].2006中国科协年会农业分会场论文专集,2006:35~38.
    67.王在满,罗锡文,黄世醒等.型孔式水稻排种轮充种过程的高速摄像分析[J].农业机械学报,2009,40(12):56-61.
    68.向卫兵,谢方平,刘桂明等.杂交水稻气吹式精播试验装置的研制[J].湖南农业大学学报,2001,27(1):67-69.
    59.谢宇峰,陈立东,许剑平.单盘双条气吸式排种器的设计[J].衣机化研究,2008,12:71-74.
    70.夏红梅,李志伟,甄文斌.气力板式蔬菜排种器设计与试验[J].农业机械学报,2010,41(6):56-60.
    71.许剑平,谢宇峰,陈宝昌.国外气力式精密播种机技术现状及发展趋势[J].农机化研究,2008,12:203-206.
    72.夏红梅,李志伟,汪刘一.气力板式蔬菜排种器吸排种动力学模型研究[J].华南农业大学学报,2011,32(1):112-116.
    73.于建群,申燕芳,牛序堂等.组合内窝孔精密排种器清种过程的离散元法仿真分析[J].农业工程学报,2008,24(5):105-109.
    74.于建群,马成林,左春柽.组合内窝孔玉米精密排种器清种过程分析[J].农业机械学报,2000,31(5):35-37.
    75.于建群,马成林,左春柽. 组合内窝孔玉米精密排种器清种过程分析[J].农业机械学报,2000,31(5):35-37.
    76.杨松华,孙裕晶,马成林等.气力轮式精密排种器参数优化[J].农业工程报,2008,24(2):116-120.
    77.袁文胜,吴崇友,金诚谦.异形孔窝眼轮式油菜排种器设计与试验[J].农业机械学报,2009,40(5):72-75.
    78.袁月明,马旭,金汉学等.气吸式水稻芽排种器气室流场研究[J].农业机械学报,2005,36(6):42-45.
    79.袁月明,马旭,朱艳华等.基于高速摄像技术的气吸式排种器投种过程的分析[J].吉林农业大学学报,2008,30(4):617-620.
    80.衣淑娟,蒋恩臣.轴流脱粒与分离装置脱粒过程的高速摄像分析[J].农业机械学报,2008,39(5):52-55.
    81.赵月霞,蹇兴东.机械式精密排种器清种过程分析[J].农业机械学报,2006,37(11):193-194.
    82.赵湛,李耀明,陈进等.种群空间分布状态对排种器吸种性能的影响[J].江苏大学学报,2009,30(6):559-562.
    83.张晓慧,宋建农.针吸滚筒式水稻排种器设计[J].农业机械学报,2009,40(3):69-71.
    84.张石平,陈进,李耀明.气吸振动式精播装置吸种气流场分析及其改进[J].农机化研究,2008,3:61-65.
    85.张石平,陈进,李耀明.振动气吸式穴盘精量播种装置种子群“沸腾”运动分析[J].农业工程学报,2008,24(7):20-24.
    86.张宇文.机械式多功能精密排种器的设计Ⅲ.农业机械学报,2005,36(3):51-53.
    87.张宇文,张文超,李冬肖.中心传动强推式精密排种器设计[J].农业机械学报,2010,41(2):78-81.
    88.赵湛,李耀明,陈进等.气吸滚筒式排种器吸种过程的动力学分析[J].农业工程学报,2011,27(7):112—116.
    89.张敏,陈进.ANSYS在气吸滚筒式精量排种器流场中的应用[J].农机化研究,2006,5:89-93.
    90.张德文,李林,王惠民.精密播种机械[M].北京:农业出版社,1982.
    91.左彦军,马旭,玉大略等.水稻芽种窝眼窄缝式气吸滚筒排种器流场模拟与试验[J].农业机械学报,2011,42(2):58-62.
    92. Arzu Yazgi, Adnan Degirmencioglu, Emine Bayram. Optimization of the Seed Spacing Uniformity Performance of a Precision Seeder Using Spherical Materials and Response Surface Methodology [M].2010 AS ABE Annual International Meeting, Pittsburgh, Pennsylvania,2010.
    93. Arzu Yazgi, Adnan Degirmencioglu. Optimization of the Performance of a Precision Planter Metering Cotton Seed Using Response Surface Methodology [M].2006ASABE Annual International Meeting, Portland, Oregon,2006.
    94. C. D. McLeod, G. C. Misener, G. C. C Tai etc. A Precision seding device for true potato seed [J]. American potato journal,1992:255-264.
    95. D. Karayel; Z. B. Barut; A.. OOzmerzil. Mathematical Modelling of Vacuum Pressure on a Precision Seeder[J]. Biosystems Engineering,2004,87(4):437-444.
    96. D. Karayel, A. O"zmerzi. Comparison of vertical and lateral seed distribution of furrow openers using a new criterion[J]. Soil & Tillage Research.2007,95:69-75.
    97. D. Karayel, M. Wiesehoff, A. ozmerzi,J. Miiller. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system[J], Computers and Electronics in Agriculture,2006,50:89-96.
    98. Fallak S. Sial, Sverker P. E. Persson. Vacuum Nozzle Design for Seed Metering[J]. Transactions of the AS AE,1984,34 (3):688-695.
    99. G. V. Prasanna Kumara, Brijesh Srivastavaa, D. S. Nageshb. Modeling and optimization of parameters of flow rate of paddy rice grains through the horizontal rotating cylindrical drum of drum seeder[J]. computers and electronics in agriculture, 2009,65:26-35.
    100. H Raheman, U Singh. A Manual Drawn Multi—crop Drum Seeder for Dry Land[J].2004.85.
    101. I. H. Ryu, K. U. Kim. Design of Roller Type Metering Device for Precision Planting[J]. Transactions of the AS ABE,1998,41(4):923-930.
    102. J. Lungkapin; V. M. Salokhe; R. Kalsirisilp, H. Nakashima. Design and Development of a Cassave Plantier[J]. Transactions of the AS ABE,2009,52(2): 393-399.
    103. J. P. Molin, L. L. Bashford, K. Von Bargen, L. I. Leviticus. Design and Evaluation of a Punch Planter for No-till Systems [J]. Transactions of the AS AE, 1998,41 (2):307-314.
    104. K. H. Ryu, G. Kim, H. J. Hwang. Low-cost Metering Device for Automatic Mixing of Nutrient Solution[J]. Applied Engineering in Agriculture,2000,16(2): 197-201.
    105. M. Kara, A. K. Bayhan, I. Ozsert, Y. Yildirim. Performanceof Fluted Roll Metering Devices in Seed Drills with Ammonium Sulphate and Diammonium Phoshate[J]. Applied Engineering in Agriculture,2010,26 (2):197-201.
    106. M. Anantachara, Prasanna G. V. Kumarb, T. Guruswamya. Neural network prediction of performance parameters of an inclined plate seed metering device and its reverse mapping for the determination of optimum design and operational parameters[J]. Computers and Electronics in Agriculture,2010,72:87-98.
    107. M. Damsohn, H.-M. Prasser. Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution [J]. Nuclear Engineering and Design,2011,241:2494-2499.
    108. Ozmerzi; D. Karayel; M. Topakci. Effect of Sowing Depth on Precision Seeder Uniformity[J]. Biosystems Engineering,2002,82(2):227-230
    109. Qirui Wang, Jianping Hu, Qi Liu etc. Seeding Element Polarity Arrangement on Drum—Type Magnetic Precision Seeder. International Federation for Information Processing 2010,2010:455-460.
    110. Robert J. Orth, Scott R. Marion, Steven Granger, Michael Traber. Evaluation of a mechanical seed planter for transplanting Zostera marina (eelgrass) seeds [J]. Aquatic Botany,2009,90:204-208.
    111. R. C. Singh, G. Singh, D. C. Saraswat. Optimisation of Design and Operational Parameters of a Pneumatic Seed Metering Device for Planting Cottonseeds [J]. Biosystems Engineering,2005,92(4),429-438.
    112. R. C. Singh, G. Singh, D. C. Saraswat-Optimisation of Design and Operational Parameters of a Pneumatic Seed Metering Device for Planting Cottonseeds [J]. Biosystems Engineering,2005,92(4),429^38.
    113. S. A. Shearer, R. G. Holmes. Precision Seed Metering with a Submerged Turbulent Air—Jet[J]. Transactions of the AS AE,1991,34 (3):781-785.
    114. Tatsuaki Furumoto, Mohd Rizal Alkahari, Takashi Ueda et al. Monitoring of laser consolidation process of metal powder with high speed video camera[J]. Physics Procedia 2012,39:760-766.
    115. Xiaoyan Deng, Xu Li, Caixia Shu etc. Mathematical model and optimization of structure and operating parameters of pneumatic precision metering device for rapeseed[J]. Journal of Food, Agriculture & Environment,2010,8 (3&4):318-322.
    116. Xu Li, Qingxi Liao, Jiajia Yu etc. Dynamic analysis and simulation on sucking process of pneumatic precision metering device for rapeseed[J]. Journal of Food, Agriculture & Environment,2012,10 (1):450-454.
    117. Zhao Zhan, Li Yaoming, Chen Jin et al. Numerical analysis and laboratory testing of seed spacing uniformity performance for vacuum-cylinder precision seeder [J]. Biosystems Engineering,2010,1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700