大跨扁平连拱隧道施工时空效应与二次衬砌最佳支护时机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着公路交通量的日益增大,六车道连拱隧道开始大量修建,而六车道连拱隧道一方面在设计上具有开挖跨度大和断面扁平的特点,为大跨扁平连拱隧道;另一方面,在施工过程中,由于其施工工序较多和左右洞施工的相互影响,围岩将受到多次扰动,衬砌结构也将受施工的多次影响,因此,其受力和变形极为复杂,施工时空效应和二次衬砌支护时机与四车道连拱隧道或分离式隧道存在较大的差异,这导致隧道在施工过程中容易发生围岩坍塌、衬砌开裂等质量安全事故。论文结合广东省交通科技计划资助项目“大断面连拱隧道设计施工关键技术研究”(200700021),以广(州)贺(州)高速公路六车道连拱隧道为依托,通过现场监控测试、相似模型试验、三维数值模拟、室内试验、理论分析等多种手段,对大跨扁平连拱隧道施工时空效应与二次衬砌最佳支护时机进行了系统深入的研究,主要研究内容包括:
     1、对依托工程施工过程中的位移-时间关系、位移-空间关系、支护结构应力-时空关系等进行了现场测试和统计、回归分析,并进行了基于APDL参数的优化反分析,得到了依托工程围岩变形、支护结构应力时空效应的实际发展规律,指导了依托工程的设计与施工,同时得到了围岩主要力学参数,为模型试验和数值模拟提供了依据。
     2、利用“公路隧道结构与围岩综合实验系统”,对大跨扁平连拱隧道在不同围岩级别与不同开挖方案条件下的施工全过程进行了相似模拟试验,成功地模拟了隧道开挖前掌子面围岩体内部发生的先期位移和开挖瞬间围岩体释放的弹塑性位移以及开挖后围岩体的蠕变变形,揭示了隧道围岩三阶段变形的全过程,并对施工全过程中的位移、应力随开挖步、空间的发生、发展规律进行了分析。对于开挖前的先期位移释放率和开挖前的应力释放率,两者基本相当,其中Ⅳ级围岩约为15~20%,Ⅴ级围岩约为20~25%。
     3、对大跨扁平连拱隧道IV级、V级围岩开挖时空效应以及IV级围岩复合式曲中墙动态施工过程进行了三维有限元数值模拟,分析了围岩位移、围岩与支护结构应力、屈服接近度等随时间和空间的变化规律,以及复合式曲中墙的动态施工力学行为,得到了各级围岩条件下开挖当前步位移与开挖前掌子面先期位移释放率。
     4、在最佳支护时机理论分析的基础上,提出了以“支护抗力最小”为原则,基于支护抗力现场测试的二次衬砌支护时机确定方法。同时,根据依托工程实测研究,对于大跨扁平连拱隧道Ⅴ级围岩,得出了“位移释放比87%,变形速率0.11mm/d”的支护时机确定准则。
     5、对于大跨扁平连拱隧道Ⅴ级围岩,分别利用支护抗力、变形速率、极限位移、粘弹塑性有限元等四种方法进行了最佳支护时机的计算分析,综合各方法计算结果,对于依托工程Ⅴ级围岩段,二次衬砌最佳支护时机建议取20~25d,距掌子面距离建议取35~45m。
With the increasing road traffic, six-lane multi-arch tunnel are builded in large quantities. for the six-lane multi-arch tunnel, on the one hand, it has the characteristics of excavation large span and section flat, it is large span and flat multi-arch tunnel, on the other hand, due to the interaction of its more construction process and left-right hole construction during the construction process, surrounding rock will be repeatedly disturbed and lining structure will also impact many times by the construction. Therefore, its stress and deformation is extremely complex, there is difference form the four-lane multi-arch tunnel or separated tunnel on construction space-time effect and secondary lining supporting time and, at the same time, it will bring on surrounding rock collapse or lining cracking and other quality and safety incidents during the tunnel construction process. The paper combine the transportation science & technology GuangDong province project“Research on Design and Construction Key Technique of Large Section Multi-arch Tunnel”(200700021), rely on the six traffic lanes multi-arch tunnel of Guanghe freeway, through theoretical analysis, indoor experiments, three-dimensional numerical simulation, similar model test, field monitoring test and other means, has systematic in-depth study on construction space-time effect and optimal supporting time for the large span and flat multi-arch tunnel, include the following study content:
     1. Rely on the support engineering, through the site monitoring, statistics and the regression analysis, the displacement-time effect and supporting structure stress-time effect be studied, and carry through the optimization anti-analysis based on APDL parameters, get the actual development rule of the support engineering surrounding rock deformation and supporting structure stress space-time effect, supervise the design and construction of the support engineering, and get surrounding rock main mechanical parameters for the model test and numerical simulation.
     2.Through the“CTSSSRH”, large-scale Model testing for simulate the whole construction process of different surrounding rock and different excavation condition of large span and flat multi-arch tunnel is experimented, the testing successfully simulate preexisting displacement of internal tunnel face surrounding rock before tunnel excavation and elastic-plastic displacement of excavation instantaneous and creeping deformation after the excavation, reveal the whole process of surrounding rock three stages deformation, and analysis the development rule of displacement and stress. For the preexisting displacement before excavation and the stress release ratio is approximate equality,Ⅳclass surrounding rock is about 15~20%,Ⅴclass surrounding rock is about 20~25%.
     3.The three-dimensional finite element numerical simulation be performed, simulateⅤclass andⅣclass excavation space-time effect, and the middle wall dynamics construction mechanics ofⅣclass surrounding rock, analysis the space-time variation rule of surrounding rock displacement, surrounding rock and support structure stress, yield level coefficient and other, and dynamics mechanical behavior of composite curved middle wall, find the displacement release ratio of excavation current step and before excavation step under all class surrounding rock conditions.
     4. Base on the theory analysis of optimal supporting time, put forward the secondary lining supporting time determination method that according to“the support resistance minimum”principle, and found on the site monitoring of supporting resistance. And base on measurement of relying engineering, put forward the supporting time determination criteria of“displacement release ratio 87%, deformation rate 0.11mm/d”for large span and flat multi-arch tunnelⅤclass surrounding rock.
     5. For large span and flat multi-arch tunnelⅤclass surrounding rock, respectively calculation and analysis the supporting time through the follow four methods: resistance of support, deformation ratio, ultimate displacement, visco elastic plastic FEM, and comprehensive calculate the results of various methods, secondary lining optimal supporting time suggest take 20~25d, distance from the tunnel face suggest to take 35~45m.
引文
[1]重庆交通科研设计院.公路隧道设计规范(JTG D70-2004)[S].北京:人民交通出版社, 2004.
    [2]隋修志,滕文彦.大跨连拱隧道初期支护与二次衬砌相互作用分析[J].石家庄铁道学院学报,2003,16(增刊):8-11.
    [3]朱有元,蒲春平.浅埋大跨双连拱隧道的施工[J].湖南交通科技,2001,27(3):72-74.
    [4]肖红渠.五龙岭大跨连拱隧道施工监测及变形特性分析[J].隧道建设,2001,21(1):1-6.
    [5] M.Vafacian. Analysis of Soil Behavior during Exacvation of shallow Tunnel[J]. Geotechnical Engineering, 1991, 20(2):257-262.
    [6]岩土工程手册[M].北京:中国建筑工业出版社,1994.
    [7] L.V.Rabcewicz. The New Austrian Tunnelling Method[J]. Water Power, 1965, 1: 19-24.
    [8] D.J.Curtis. Visco-elastic Tunnel Analysis[J]. Tunnels & Tunnelling, 1974, 6(6): 38-43.
    [9]孙钧,候学渊.地下结构[M].北京:科学出版社,1987
    [10]日本土木学会,关宝树译.日本山岭隧道技术规范及解释[M].北京:人民交通出版社,1980.
    [11]广东省公路学会隧道工程分会.公路隧道论文集[M].北京:人民交通出版社,2000.
    [12]黄栋成.公路隧道结构设计方法的研究[D].上海:同济大学硕士学位论文, 2002.
    [13]林刚.连拱公路隧道的合理施工方法研究[D].成都:西南交通大学硕士学位论文, 2002.
    [14]唐颖,陈晓钜.浅论连拱隧道设计[C]. 2001年全国公路隧道学术会议论文集[C].北京:人民交通出版社,1990:34-39.
    [15]袁勇,王胜辉,杜国平等.双连拱隧道支护体系现场监测试验研究[J].岩石力学与工程学报,2005,24(3):480-484.
    [16]刘新荣,孙辉,陈晓江等.黄土连拱隧道二次衬砌的结构分析与监测研究[J].岩土工程学报,2005,27(6):695-697.
    [17]王军,夏才初,朱合华等.不对称连拱隧道现场监测与分析研究[J].岩石力学与工程学报,2004,23(2):267-271.
    [18]王文通.象山大跨四联拱隧道施工监测及分析[J].西部探矿工程,2000,(1):57-60.
    [19]郑凯,刘保国.复杂地质条件下大跨度双连拱隧道监控量测技术的运用[J].隧道建设,2006,26(2):53-56.
    [20]郝行舟,马海君.大跨度连拱隧道围岩监控量测在施工中的应用[J].交通科技,2006,(1):25-27.
    [21]赵玉光,张焕新,林志远等.高速公路双连拱隧道施工信息化管理技术[J].岩石力学与工程学报,2004,23(增2):5104-5110.
    [22]周玉宏,赵燕明,程崇国.偏压连拱隧道施工过程的优化研究[J].岩石力学与工程学报, 2002. 21(5): 679-683.
    [23]申玉生.软弱围岩双连拱隧道设计施工关键技术研究[D].成都.西南交通大学, 2005.
    [24] WU C S, LI J X, CHEN X, et al. Blasting in Twin Tunnels with Small Spacing and it Vibration Control. Tunnelling and Underground Space Technology[J]. 2004, 19: 518-523.
    [25]刘招伟,何满潮,肖红渠.浅埋大跨连拱隧道施工中变形的监测与控制措施[J].岩土工程学报,2003,25(3):339-342
    [26]肖红渠.五龙岭大跨连拱隧道施工监测及变形特性分析[J].隧道建设,2001,21(1):1-6.
    [27]夏才初,刘金磊.相思岭连拱隧道中墙应力研究[J].岩石力学与工程学报,2000,19(增):1115-1119.
    [28]李德宏.连拱隧道施工监测与分析[J].现代隧道技术,2003,40(1):59-64.
    [29] Katushi Miuraa,Hiroshi Yagib,Hiromichi Shiromac等. Study on design and construction method for the New Tomei–Meishin expressway tunnels[J]. Tunnelling and Underground Space Technology,2003,(18):271-281.
    [30] Kirsten H A D. Determination of rock mass elastic moduli by back analysis of deformation measurement[J]. In:Proc Symp on Expliration for Rock Eng. Johannesburg,1976:1154-1160.
    [31] Maiar G,Jurina Podolak K. On model identification problems In rock mechanics[J]. In:Proc Symp on the Geotechnics Structurally Complex fFormations:Capri,1977:257-261.
    [32] Sakurai S,takeuchi K. Back analysis of measured displacement of tunnel. Rock Mech and Rock Eng,1983,16(3):173-180.
    [33] Arai R. An inverse problems approach to the prediction of Multi-dimension consolidation behavial[J]. Soil and foundation,1984,24(1):95-108.
    [34]杨志法,刘竹华.位移反分析在地下工程设计中的初步应用[J].地下工程,1981,(2):20-24.
    [35]杨志法等.有限元图谱[M].北京:科学出版社,1988:15-42.
    [36]杨林德等.初始地应力位移反分析的有限单元法[J].同济大学学报,1985,(4):15-20.
    [37]郑颖人,张德微,高效伟.弹塑性问题反演计算的边界元法[C].中国土木工程学会第三届年会论文集,上海:同济大学出版社,1986:377-386.
    [38] Li Yunpeng,Wang Zhiyin,Liu huaiheng. Three dimensional back analysis of visoelastic creep displacements[J]. In:Proc 3rd Int. conf. On Underground Space and Earth Sheltered buildings. Shanghai:Tongji University Press,1988:383-387.
    [39]杨林德,朱合华.地层三维粘弹性反演分析[J].岩土工程学报,1991,(6):18-26.
    [40]黄宏伟.岩土工程中位移量测的随机逆反分析[J].岩土工程学报,1995,17(2):36-41.
    [41]朱永全,景诗庭,张清.隧道支护结构荷载作用的随机反演[J].岩土力学,1996,17(2):57-63.
    [42]林育梁,樱井春辅.应用模糊有限元法的一种反分析形式[J].岩土工程学报,1995,17(5):48-56.
    [43]蒋树屏.扩张卡尔曼滤波器有限元法耦合算法及其隧道工程应用[J].岩土工程学报,1996,18(4):11-19.
    [44]蒋树屏,赵阳.复杂地质条件下公路隧道围岩监控量测与非确定性反分析研究[J].岩石力学与工程学报,2004,23(20):3460-3464.
    [45]冯建龙,张孟喜. BP网络在双连拱隧道围岩参数反分析中的应用[J].上海大学学报(自然科学版),2005,11(3):293-297.
    [46]易小明,陈卫忠,李术才等. BP神经网络在分岔隧道位移反分析中的应用[J].岩石力学与工程学报,2006,25(增2):3927-3932.
    [47]姜玉松,刘海燕.双连拱隧道施工中隔墙的稳定性分析[J].安徽理工大学学报(自然科学版), 2005, 25(4):38-40.
    [48]申玉生,赵玉光.高速公路双连拱隧道的中墙力学特性分析[J].地下空间与工程学报.2005, 1(2):200-205.
    [49]彭定超,章勇武.开挖施工方式对连拱隧道中墙影响的空间分析[J].现代隧道技术.2002, 39(1):47-53.
    [50]陈贵红,李玉文,赵玉光.连拱隧道中墙受力研究[J].中国铁道科学.2005, 26(1):20-24.
    [51]李强,王明年,李玉文.双跨连拱隧道两种中墙的空间力学效应分析[J].岩土力学.2006, 27(4):667-672.
    [52]刘新荣,孙辉,陈晓江等.黄土连拱隧道中墙结构的数值模拟研究[J].地下空间与工程学报.2005, 1(6):837-840.
    [53]时亚听,王明年,李强.浅埋连拱隧道中墙的合理选用[J].地下空间与工程学报.2005, 1(6):948-951.
    [54]张志强,何川.连拱隧道中隔墙设计与施工力学行为研究[J].岩石力学与工程学报.2006, 25(8):1632-1638.
    [55]陈少华,李勇.联拱隧道的结构分析[J].中国公路学报.2000, 13(1):48-51.
    [56]夏才初,刘金磊.相思岭连拱隧道中墙应力研究[J].岩石力学与工程学报, 2000(增刊):1115-1119.
    [57]何川,李永林,林刚.连拱隧道施工全过程三维有限元分析[J].中国铁道科学.2005, 26(2) .34-38.
    [58]胡庆安,夏永旭,王文止.双连拱隧道施工过程的三维数值模拟[J].长安大学学报(自然科学版).2005, 25(1):48-51.
    [59]刘辉,沈明荣,陈剑峰.偏压连拱隧道围岩稳定性数值仿真[J].地下空间与工程学报.2006, 2(8):1418-1451.
    [60]丁文其,王晓形,李志刚等.龙山浅埋大跨度拱隧道施工方案优化分析[J].岩石力学与工程学报.2005, 24(22):4042-4047.
    [61]刘元雪,蒋树屏,赵尚毅.浅埋黄土连拱隧道施工方案优化研究[J].地下空间与工程学报.2005, 1(6):944-947.
    [62]刘伟纲.双连拱隧道有限元分析[J].中南公路工程.2006, 31(1):47-49.
    [63]卢耀宗,杨文武.莲花山大跨度连拱隧道施工方法研究[J].中国公路学报.2001, 11(2):75-77.
    [64]邓少军,阳军生,张学民等.浅埋偏压连拱隧道施工数值模拟及方案比选[J].地下空间与工程学报.2005, 1(6):940-943.
    [65]吴俊强,刘永华,李围.浅埋偏压连拱公路隧道施工数值模拟分析[J].公路交通技术.2005, (4):137-141.
    [66]翁其能,袁勇,杜国平等.双连拱隧道开挖整体性态三维数值仿真分析[J].地下空间与工程学报.2006, 2(1).96-100.
    [67]陈秋南,赵明,张永兴等.偏压双连拱隧道信息化施工与仿真分析[J].岩石力学与工程学报.2006, 25(8):1723-1727.
    [68] H.Yoshimura, T Yuki, Y.Yamada, N.Kokubun. Analysis and monitoring of the Miyana railway tunnel constructed using the New Austrian Tunnelling Method. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts[J]. 1986, 23(4):67-75.
    [69] N.Barton.Some new Q-value correlations to assist in site characterization and tunnel design[J]. lnt.J. Rock Mechanics and Mining Sciences. 2002, (39):185-216.
    [70] K. M. Lee and R. K. Rowe.Finite element modelling of the three-dimensional ground deformations due to tunnelling in soft cohesive soils: Part I一Method of analysis.Computers and Geotechnics[J]. 1990, 10(2):87-109.
    [71] K. M. Lee and R.K Rowe.Finite element modelling of the three-dimensional ground deformations due to tunnelling in soft cohesive soils:Part 2一results.Computers and Geotechnics[J]. 1990, 10(2):111-138.
    [72] Kielbassa, S; Duddeck, H.Stress-strain fields at the tunnelling face-three-dimensional analysis for two-dimensional approach[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 1992, 29(1):115-132.
    [73] J.Salem,M.Panet. A.Guenot Closure analysis in deep tunnels[J]. Int. J. Rock Mech. Mi Sci. & Geomech,1987,24(3):145-154.
    [74]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999:532-535.
    [75]朱合华.隧洞掘进面时空效应的研究进展—兼论边界单元法的工程应用[C].首届全国岩土工程博士学术讨论会论文集,1990:283-288.
    [76]朱合华,杨林德.天荒坪抽水蓄能电站地下厂房试验洞掘进面空间效应分析[J].工程勘察,1994,(3):1-6.
    [77] Pelli F,Kaiser P K,Morgernstern N R. Three-dimensional simulation of rock liner interaction near tunnel face[C]//Proceedings of the 2nd Intemational Symposium on Numerieal Models in Geomechanics. Ghent:[s. n.],1986:359-368.
    [78] Swoboda G,Mertz W,Schmid A. Three-dimensional numerical model to simulate tunnel exeavation[C] // Proceedings of the 3rd Intemational Conference on Numerical Models in Geomechanics. Niagara Falls:[s. n.],1989:536-548.
    [79]于学馥,郑颖人等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1980.
    [80]朱维申等.考虑时空效应的地下洞室变形观测及反分析[J].岩石力学与工程学报,1989,8(4):346-353.
    [81]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1996.
    [82]吴祥松.连拱隧道施工过程中的时空效应分析及预测[J].西部探矿工程,2007,(6):138-142.
    [83] Meshcherskii I V. Dynamics of a Particle of Variable Mass[D]. PhD Thesis,St Petersburg. 1897
    [84] Brown C B,Goodman L E. Gravitation stresses in accreted bodies[J]. Proc Royal Soc of London,1963,276 (1):568-572.
    [85] Kharlat V D,Linear theory of creep for a growing body[J]. Proc Leiaingrall,1966,49:90-98
    [86] Arutyunyan N Kh. Boundary value problem of the theory of creep for a body with accretion [J]. J Appi Math and Mech,1977,41(5):800-811.
    [87] Arutyunyan N Kh,Metlov V V. Some problems in the theory of creep in bodies with variable boundaries[J]. Mech of Solids,1982,17(5):92-99.
    [88] Arutyunyan N Kh,Namov V E. The theory of viscoelastic plasticity of a growing body[J]. J Appl Math and Mech,1984,48(1):1-15.
    [89]曹志远,邹贵平.施工力学分析的时变力学基础.现代力学与科技进步[M].北京:清华大学出版,1997.
    [90]曹志远,邹贵平,唐寿高.时变动力学的Legendre级数解[J].固体力学学报,2000,21(2):102-108.
    [91]曹志远.时变固体力学的黏弹性解[J].力学学报,2000,32(4):497-500.
    [92]王华宁,曹志远.岩体施工过程损伤演化预测的时变力学分析[J].应用力学学报,2002,19(4):134-138.
    [93]王华宁,曹志远.地下开采过程损伤场演化与地表变形的时变分析[J].计算力学学报,2004,21(5):601-608.
    [94]梁岗.自重作用下矩形平面向上增长的粘弹性时变力学解[J].上海海运学院学报,2000,21(4):73-79.
    [95] Shalabi F I. FE analysis of time-dependent behavior of tunneling in squeezing ground use two different creep models[J]. Tunnel Underground Space Technology,2005,20(3):271-279.
    [96] Swoboda G,ABU-Krisha A. Three-dimensional numerieal modeling for TBM tunneling inconsolidated clay[J]. Tunnel Underground Space Tcehnology,1999,14(3):327-333.
    [97] Galli G,Grimaldi A,Leonardi A. Three-dimensional modeling of tunnel excavation and lining[J]. Computers and Geotechnics,2004,31(3):171-183.
    [98]刘建航,刘国彬,范益群.软土基坑工程中时空效应理论与实线(上)[J].地下工程与隧道,1999,(3):7-12.
    [99]刘建航,刘国彬,范益群.软土基坑工程中时空效应理论与实线(下)[J].地下工程与隧道,1999,(4):10-14.
    [100]杨林德,颜建平等.围岩变形的时效特征与预测的研究[J].岩石力学与工程学报,2005,24(2):212-216.
    [101]金丰年,钱七虎.隧洞开挖的二维有限元计算[J].岩石力学与工程学报,1996,15(3)193-200.
    [102]周德培.圆形隧道衬砌围岩变形压力的时间效应[J].地下空间,1993,13(1):18-25.
    [103]刘建华,朱维申,李术才.小浪底水利枢纽地下厂房岩体流变与稳定性FLAC3D数值分析[J].岩石力学与工程学报,2005,24(14)2454-2459.
    [104]赵旭峰,王春苗,孔祥利.深部软岩隧道施工性态时空效应分析[J].岩石力学与工程学报,2007,26(2):404-409.
    [105]吴波,刘维宁,高波.城市浅埋隧道施工性态的时空效应分析[J].岩土工程学报,2004,26(3):340-343.
    [106]王桂芳.圆形隧道的粘弹性应力分析[J].工程力学,1990,7(1):106-127.
    [107]王明年,关宝树.隧道仰拱作用的时空效应研究[J].工程力学,1995,12(增刊):1500-1505.
    [108]孙钧,侯学渊.地下结构(上、下)[M].北京:科学出版社,1991.
    [109]陈玉萍,张生华.软岩巷道二次支护最佳时间的研究[J].矿山压力与顶板管理,2003,(2):56-58.
    [110]谢锋,蒋树屏,李建军.蠕变围岩隧道二次衬砌支护时间的研究[J].地下空间与工程学报,2006,2(5):805–808.
    [111]郑晓慧.软岩洞室喷锚支护合理时机研究[D].西安理工大学硕士学位论文,2006.
    [112]李俊鹏.开挖过程中隧洞围岩应力释放规律及软岩支护时机研究[D].西安理工大学硕士学位论文,2007.
    [113]王祥秋,杨林德,高文华.软弱围岩蠕变损伤机理及合理支护时间的反演分析[J].岩石力学与工程学报,2004,23(5):793-796.
    [114]王祥秋,陈秋南等.软岩巷道流变破坏机理与合理支护时间的确定[J].有色金属,2000,52(4):14~17.
    [115]朱浮声,郑雨天.软岩巷道围岩流变与支护相互作用[J].矿山压力与顶板管理,1996,(1):6-8.
    [116]王小平.软岩巷道合理支护时间模拟研究[J].采矿与安全工程学报,2006, 23(1):103~106.
    [117]刘志春,李文江,朱永全等.软岩大变形隧道二次衬砌施做时机探讨[J].岩石力学与工程学报,2008,27(3):580-588.
    [118]王中文,方建勤,夏才初等.考虑围岩蠕变特性的隧道二衬合理支护时机确定方法[J].岩石力学与工程学报,2010,29(增1):3241-3246.
    [119]杨红军,夏才初,彭裕闻等.时空效应下隧道的收敛变形预测及二衬合理支护时机[J].公路,2010,(4):218-223.
    [120] SULEM J,PANET M,GUENOT A.An analytical solution for time dependent displacement in a circular tunnel[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1987, 24(3):155-164.
    [121] F Pelli, P K Kaiser , N R Morgenstern. Effects of Rock Mass Anisotropy and Non-Linearity on the Near Face Stresses in Deep Tunnels [J]. Rock Engineering, 1995, 28 (2): 125-132.
    [122]杨志法,王思敬等.岩土工程反分析原理及应用[M].北京:地震出版社,2002.
    [123]李晓红,卢义玉,康勇,等.岩石力学实验模拟技术[M].北京:科学出版社, 2007.
    [124]龚召熊,陈进.岩石力学模型试验及其在三峡工程中的应用与发展[M].北京:中国水利水电出版社, 1996.
    [125]李之光.相似与模化[M].北京:国防工业出版社, 1982.
    [126]江守一朗等著,郭廷玮,李安定译.模型实验的理论和应用[M].北京:科学出版社,1984.
    [127]徐挺.相似方法及其应用[M].北京:机械工业出版社, 1995.
    [128]蒋树屏,黄伦海,宋从军.利用相似模拟方法研究公路隧道施工力学形态[J].岩石力学与工程学报, 2002, 21(5): 662-666 .
    [129]徐干成、白洪才、郑颖人等,地下工程支护结构[M].北京:中国水利水电出版社,2002.
    [130]陈贵红,于炳言.连拱隧道中墙型式受力比选[J].铁道建筑技术, 2004, (6): 29-32.
    [131] BIN YE, HE HUA ZHU, CAI CHU XIA,et al. Comparison of different excavation sequences of large-span unsymmetrical arcade tunnel[J]. Tunnelling and Underground Space Technology, 2004, (19): 415-420.
    [132] J.H. wang, M. Kikumoto, K. Kishida. Dynamic stability of multi-arch culvert tunnel using3-D FEM[J]. Tunnelling and Underground Space Technology, 2006, (21): 384-389.
    [133]周维恒.高等岩石力学[M].北京:北京科技出版社,1993.
    [134]王毅才.隧道工程[M].北京:人民交通出版社,1987.
    [135]中交第一公路工程局有限公司.公路隧道施工技术规范(JTG F60-2009)[S].北京:人民交通出版社,2009.
    [136]原国家冶金工业局.锚杆喷射混凝土支护技术规范(GB 50086-2001)[S].北京:中国计划出版社,2001.
    [137] P.P. Oreste. Analysis of structural interaction in tunnels using the convergence confinement approach. Tunneling and Underground Space Technology,2003,(18):347–363.
    [138]王梦恕.大瑶山隧道—20世纪隧道修建新技术[M].广州:广东科技出版社,1994.
    [139] Unlut,Gercek. Effect of Poisson’s ratio on the normalized radial displacements occurring around the face of a circular tunnel[J].Tunnelling and Underground Space Technology, 2003, 18(4):547-553.
    [140] Carranza-Torres C, Fairhurst C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J].Tunneling and Underground Space Technology,2000,15(2):187-213.
    [141]王建宇.对隧道工程中监控量测问题的讨论[J].现代隧道技术, 2008, (增刊): 7-14.
    [142] Stefan Heusermann, Olaf Rolfs and Uwe Schmidt, Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model[J]. Co mputers and Structures. 2003, (81): 629-638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700