光照条件变化对果蝇睡眠—觉醒节律的影响及刺五加的干预
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     以果蝇为模式生物,探讨光照条件变化和刺五加干预对果蝇睡眠时间和睡眠—觉醒节律的影响。
     方法:
     1、光照条件变化对2-7日龄野生型CS品系黑腹果蝇睡眠时间和睡眠—觉醒节律的影响:选择2日龄、3日龄、4日龄、5日龄、6日龄、7日龄果蝇作为观察对象,雌雄分组,每组32只。以果蝇睡眠时间和睡眠—觉醒节律为考察指标,利用果蝇活动监测系统(DAMS)进行连续7天24h监测,分别考察不同日龄果蝇在相同光照强度下不同光照环境(12/12h明暗交替环境、24h持续光照环境、24h持续黑暗环境和12/12h明暗颠倒环境)里的睡眠时间和睡眠—觉醒节律的变化;
     2、刺五加对光照条件变化所致7日龄野生型CS品系黑腹果蝇睡眠时间和睡眠—觉醒节律的干预作用研究:选择7日龄果蝇作为观察对象,分为空白组、模型组、模型给药组,模型给药组分别给予浓度为0.25%、1%、4%的刺五加,连续给药4天,以果蝇睡眠时间和睡眠—觉醒节律为考察指标,利用果蝇活动监测系统(DAMS)对7日龄果蝇进行24h连续监测,分别考察不同光照环境下(12/12h明暗交替环境、24h持续光照环境、24h持续黑暗环境和12/12h明暗颠倒环境)刺五加对果蝇睡眠时间影响的量效关系以及对果蝇睡眠—觉醒节律的影响;
     3、24h持续黑暗环境对7日龄野生型CS品系黑腹雌果蝇不同时间点的脑部5-HT和DA变化的影响:选择7日龄雌果蝇作为观察对象,以5-HT和DA为考察指标,考察12/12h明暗交替和24h持续黑暗环境下,7日龄雌果蝇在不同时间点(16:00、19:00、22:00、1:00、4:00和7:00)脑部5-HT和DA的含量变化;
     4、刺五加对24h持续黑暗环境下7日龄野生型CS品系黑腹雌果蝇19:00脑部5-HT和DA含量的影响:选择7日龄雌果蝇作为观察对象,以5-HT和DA为考察指标,考察给予刺五加后7日龄雌果蝇19:00脑部5-HT和DA的含量变化;
     5、刺五加干预对24h持续黑暗环境下7日龄野生型CS品系黑腹雌果蝇脑部睡眠相关基因表达的影响:选择7日龄雌果蝇作为观察对象,运用RT-PCR技术,以果蝇脑部per、tim、Obp99a、Sug、Hsc70-3基因为考察指标,考察给予刺五加前后24h持续黑暗环境下7日龄雌果蝇19:00脑部睡眠相关基因相对表达量的变化。
     6、刺五加对12/12h明暗交替环境下7日龄FBst0025859品系cry基因敲除型雌果蝇睡眠时间和睡眠—觉醒节律的影响:选择7日龄cry基因敲除型雌果蝇和7日龄野生型Canton S品系黑腹雌果蝇作为观察对象,利用果蝇活动监测系统(DAMS),考察cry基因敲除型雌果蝇在12/12h明暗交替环境和给予刺五加后其睡眠时间和睡眠—觉醒节律的变化。
     结果:
     1、光照条件变化对2-7日龄果蝇睡眠时间和睡眠—觉醒节律的影响:
     1.1与处于12/12h明暗交替环境下同日龄同性别果蝇比较:
     ①处于12/12h明暗颠倒环境的雌雄果蝇,2-7日龄白天睡眠时间均延长、有极显著性差异(**p<0.01),夜晚睡眠时间均缩短、有极显著性差异(**p<0.01),24h总睡眠时间均无显著差异(p>0.05)。
     ②处于24h持续光照环境下,雌果蝇2-7日龄白天睡眠时间均延长、有极显著性差异(**p<0.01),夜晚睡眠时间均缩短、有极显著性差异(**p<0.01),2日龄24h总睡眠时间延长、有显著性差异(*p<0.05),4-6日龄24h总睡眠时间均缩短、有极显著性差异(**P<0.01);雄果蝇2-7日龄白天睡眠时间均无显著差异(p>0.05),夜晚睡眠时间均缩短、有极显著性差异(**p<0.01),2、3日龄24h总睡眠时间均缩短、有显著性差异(*p<0.05),5-7日龄24h总睡眠时间均缩短、有极显著性差异(**p<0.01)。
     ③处于24h持续黑暗环境下,雌果蝇2-5日龄白天睡眠时间均延长、有极显著性差异(**p<0.01),夜晚睡眠时间均缩短、有显著性差异(*p<0.05),2、3日龄24h总睡眠时间均延长、有显著性差异(*p<0.05),4日龄24h总睡眠时间延长、有极显著性差异(**p<0.01),5-7日龄24h总睡眠时间均无著性差异(p>0.05);雄果蝇2、3日龄表现为白天睡眠时间延长,具有极显著差异(*p<0.05,**p<0.01),夜晚睡眠时间缩短,具有极显著差异(**p<0.01),4-7日龄白天睡眠时间缩短具有极显著差异(*p<0.05,**p<0.01),夜晚睡眠时间无显著性差异(p>0.05),6、7日龄24h总睡眠时间缩短,具有显著性差异(*p<0.05,**p<0.01)。
     1.2与处于相同光照环境下同性别果蝇的前一日龄组比较:
     ①处于12/12h明暗交替环境下,雌果蝇2-7日龄24h总睡眠时间均无显著性差异(p>0.05);雄果蝇3、4日龄24h总睡眠时间均缩短、有显著性差异((?)p<0.05),6日龄24h总睡眠时间延长有显著性差异((?)p<0.05)。
     ②处于12/12h明暗颠倒环境下,雌果蝇2-7日龄24h总睡眠时间均无显著性差异(p>0.05);雄果蝇3日龄24h总睡眠时间缩短、有极显著性差异(##p<0.01),其余日龄24h总睡眠时间均无显著性差异(p>0.05)。
     ③处于24h持续光照环境下,雌果蝇3、4日龄24h总睡眠时间均缩短,有显著性差异(#p<0.05,##p<0.01),7日龄24h总睡眠时间延长,有极显著性差异(##p<0.01);雄果蝇3日龄24h总睡眠时间缩短,有显著性差异(#p<0.05),7日龄24h总睡眠时间延长,有显著性差异(#p<0.05)。
     ④处于24h持续黑暗环境下的雌雄果蝇3、4日龄24h总睡眠时间均缩短,有显著性差异(#p<0.05,##p<0.01),5-7日龄24h总睡眠时间无著性差异(p>0.05)。
     1.3处于12/12h明暗交替环境下雌雄果蝇的睡眠—觉醒节律均呈周期性变化,即6:00—14:00和17:00—20:00活动明显增加,14:00—17:00和20:00—次日6:00睡眠明显增加,在7:00和19:00前后均出现活动高峰。与处于12/12h明暗交替环境下的果蝇比较:
     ①处于12/12h明暗颠倒环境下雌雄果蝇的睡眠—觉醒节律均呈现与比较组相反的周期性变化,即8:00—19:00和21:00—24:00睡眠明显增加,19:00—21:00和24:00—次日8:00活动明显增加,但在7:00和19:00前后同样出现活动高峰;
     ②处于24h持续光照环境下雌雄果蝇的睡眠—觉醒节律周期性基本消失,即7:00—次日7:00睡眠和活动交替且杂乱分布,随日龄的增加活动次数逐渐增加,同时7:00和19:00前后的活动高峰消失;
     ③处于24h持续黑暗环境下雌雄果蝇的睡眠—觉醒节律呈周期性变化,其变化与比较组的周期变化类似,在4:00—18:00活动明显增加,18:00—次日4:00睡眠明显增加,同样在7:00前后出现活动高峰,但19:00前后的活动高峰消失。
     同时,处于以上三种光照环境下的果蝇的睡眠—觉醒节律均从4日龄开始显现,7日龄趋于稳定。
     2、刺五加对光照条件变化所致7日龄果蝇睡眠时间和睡眠—觉醒节律的干预作用研究:
     2.1与同一光照环境下7日龄同性别果蝇比较:
     ①0.25%、1%、4%的刺五加给药4天后,处于12/12h明暗颠倒环境的雌雄果蝇睡眠时间均无显著性差异(p>0.05)。
     ②给予24h持续光照环境下果蝇不同浓度刺五加后,1%、4%的刺五加均能缩短雌果蝇24h总睡眠时间、有显著性差异(*p<0.05),1%的刺五加能缩短夜晚雌果蝇睡眠时间、有显著性差异(*p<0.05),4%的刺五加均能缩短雌果蝇白天和夜晚睡眠时间、有显著性差异(*p<0.05);4%的刺五加能缩短雄果蝇24h总睡眠时间、有显著性差异(*p<0.05);
     ③给予24h持续黑暗环境下果蝇不同浓度刺五加后,0.25%、1%、4%的刺五加均能减少雌果蝇24h总睡眠时间、白天睡眠时间和夜晚睡眠时间、均有极显著性差异(**p<0.01),1%的刺五加均可缩短雄果蝇24h总睡眠时间和夜晚睡眠时间、有显著性差异(*p<0.05),4%的刺五加均可缩短雄果蝇24h总睡眠时间和夜晚睡眠时间、有极显著性差异(**p<0.01)。
     2.2经分析果蝇昼夜活动节律图与睡眠-觉醒图知,刺五加能部分增加12/12h明暗颠倒环境下雌雄果蝇的24h活动次数,但对活动节律和睡眠-觉醒节律影响不明显。刺五加能增加24h持续光照环境下雌雄果蝇24h活动次数和连续活动时间,减少果蝇片段化睡眠,影响睡眠时间,浓度为4%的刺五加时作用明显,但此浓度药对果蝇的睡眠-觉醒节律影响不明显。对于处于24h持续黑暗环境下的果蝇,刺五加通过增加雌果蝇白天活动次数和连续活动时间,减少其白天片段化睡眠,影响其睡眠-觉醒节律,其中0.25%的刺五加对此作用明显;刺五加通过增加雄果蝇24h活动次数和连续活动时间,减少其片段化睡眠,影响果蝇的睡眠-觉醒节律,1%的刺五加对此作用明显。
     3、24h持续黑暗环境对不同时间点的7日龄雌果蝇脑部5-HT和DA变化的影响:随着睡眠的深入,处于12/12h明暗交替环境下雌果蝇脑部5-HT和DA含量均呈现先降低、后升高、再降低的趋势;处于24h持续黑暗环境下的雌果蝇脑部5-HT含量呈现先升高,后降低的趋势,且在16:005-HT含量较处于同时间点12/12h明暗交替环境下的雌果蝇脑部5-HT含量降低,有显著性差异(*P<0.05);DA含量呈现逐渐升高的趋势,16:00、19:00、22:00的雌果蝇脑部DA含量比同时间点的处于12/12h明暗交替环境下的雌果蝇脑部DA含量降低,有显著性差异(*p<0.05),但二者间的含量差距随时间变化逐渐降低,1:00时二者含量相比较,无显著性差异(p>0.05),4:00、7:00时处于24h持续黑暗环境下雌果蝇脑部DA含量逐渐比处于12/12h明暗交替环境下雌果蝇脑部DA含量增高,有显著性差异(*p<0.05)。
     4、刺五加对24h持续黑暗环境下7日龄雌果蝇19:00脑部5-HT和DA含量的影响:0.25%的刺五加给药4天对处于24h持续黑暗环境下7日龄雌果蝇19:00脑部5-HT含量的增加无显著性影响(p>0.05),但能显著增加DA的含量(*P<0.05)。
     5、刺五加干预对24h持续黑暗环境下7日龄雌果蝇脑部睡眠相关基因表达的影响:与处于12/12h明暗交替环境下7日龄雌果蝇19:00脑部各基因的表达量比较,处于24h持续黑暗环境7日龄雌果蝇19:00脑部基因per是其7.32倍,tim是其3.99倍,Hsc70-3是其4倍,Obp99a是其3.81倍,Sug是其16倍。给予0.25%的刺五加4天后,24h持续黑暗环境下7日龄雌果蝇在19:00脑部各基因相对表达量较处于12/12h明暗交替环境7日龄雌果蝇19:00脑部各基因相对表达量均出现不同程度的降低,per降至2.2倍,tim降至0.29倍,Hsc70-3降至0.35倍,Obp99a降至0.96倍,Sug降至0.54倍。
     6、刺五加对12/12h明暗交替环境下7日龄FBst0025859品系cry基因敲除型雌果蝇睡眠时间和睡眠—觉醒节律的影响:
     ①处于12/12h明暗交替环境下7日龄cry雌果蝇,与处于24h持续黑暗环境下7日龄CS雌果蝇比较,白天睡眠时间延长,有显著性差异(**p<0.01);与处于12/12h明暗交替环境下7日龄CS雌果蝇相比较,白天睡眠时间延长,有显著性差异((?)p<0.01);0.25%刺五加给药4天后,7日龄cry基因敲除型雌果蝇白天睡眠时间减少,有显著性差异(**p<0.01)。
     ②处于12/12h明暗交替环境下的7日龄cry基因敲除型雌果蝇的睡眠—觉醒节律呈周期性变化,其变化情况在处于12/12h明暗交替环境和处于24h持续黑暗环境下的7日龄CS雌果蝇的睡眠—觉醒节律之间,表现为4:00—19:00活动与睡眠交替进行,19:00—次日4:00睡眠明显增加,且7:00和19:00前后均出现活动高峰。
     ③给予0.25%刺五加4天后,处于12/12h明暗交替环境下7日龄cry基因敲除型雌果蝇的白天活动次数和连续活动时间增加,片段化睡眠减少,睡眠—觉醒节律部分恢复到12/12h明暗交替环境下7日龄cs雌果蝇的睡眠—觉醒节律。
     结论:
     1、同等光照强度下不同光照环境对果蝇的睡眠时间和睡眠—觉醒节律影响不同。
     2、刺五加改善24h持续黑暗环境下7日龄CS雌雄果蝇睡眠时间和睡眠—觉醒节律的最佳给药剂量分别为0.25%刺五加给药4天和1%刺五加给药4天。但对12/12h明暗颠倒环境和24h持续光照环境下7日龄果蝇,刺五加改善其睡眠时间和睡眠—觉醒节律作用不明显。
     3、处于12/12h明暗交替环境和24h持续黑暗环境下7日龄CS品系雌果蝇脑部5-HT和DA含量随时间的变化而变化。
     4、刺五加改善果蝇睡眠—觉醒节律的机制可能与果蝇脑部神经递质5-HT和DA以及per、tim、Obp99a等基因变化有关。
     5、刺五加能部分恢复12/12h明暗交替环境下7日龄FBst0025859品系cry基因敲除雌果蝇的睡眠—觉醒节律。
Objective:
     Using drosophila as model organism, the dissertation studies the effect of different light conditions and the intervention of CWJ on the sleep duration and sleep-wake rhythm of drosophila.
     Methods:
     1. Study the effect of different light conditions on the sleep duration and sleep-wake rhythm of2to7-day-old wild-type Canton-S strain of D. melanogaster. Drosophilas ranging in days from two to seven are chosen as research objects and are divided into groups sexually with32samples in each. DAMS (Drosophila Activity Monitor System) is made use of during the24hours to record the change of sleep duration and sleep-wake rhythm of drosophila of differen days under different light conditions (12/12h alternating light and dark environment,24h constant light environment,24h constant darkness environment and12/12h light and dark upside down environment) in the same light intensity.
     2. Study the effect of CWJ on the sleep duration and sleep-wake rhythm of7-day-old wild-type Canton-S strain of D. melanogaster under different light conditions.7-day-old drosophilas are picked out and divided into blank control group, model group and medication administration group with three doses in each. Medication administration group are given concentration of0.25,1and4percent of CWJ, which lasts for four days. DAMS is adopted to explore the dose-effect relationship of CWJ on the sleep duration and sleep-wake rhythm under different light conditions (12/12h alternating light and dark environment,24h constant light environment,24h constant darkness environment and12/12h light and dark upside down environment)after24h continuous monitoring in the same light intensity.
     3. Study the effect of24h constant darkness environment on the content change of5-HT and DA in7-day-old female wild-type Canton-S strain of D. melanogaster's brain. Choosing7-day-old female drosophila as the object of observation, the dissertation observes the content change of5-HT and DA in drosophila's brain in different time(16:00,19:00,22:00,1:00,4:00and7:00) in12/12h alternating light and dark and24h constant darkness environment and investigates its effect.
     4. Study the effect of CWJ on the content of5-HT and DA in7-day-old female wild-type Canton-S strain of D. melanogaster's brain.7-day-old female drosophilas are chosen to investigate the CWJ intervention on the content change of5-HT and DA in24h constant darkness environment from19:00on..
     5. Study the effect of24h constant darkness environment and CWJ intervention on the7-day-old female wild-type Canton-S strain of D. melanogaster's sleep behavior related gene expression. With the support of RT-PCR technique,7-day-old female drosophilas are chosen to explore the impact of24h constant darkness environment and CWJ intervention on their sleep behavior related gene expression from19:00on.
     6. Study the effect of CWJ on the sleep duration and sleep-wake rhythm of7-old-day female FBst0025859strain cry gene knockout drosophilas in24h constant darkness environment. With the7-old-day cry gene knockout drosophila and Canton S Drosophila as the object of observation, the changes of sleep duration and sleep-wake rhythm of7-old-day cry gene knockout drosophilas are recorded by DAMS after the intervention of CWJ in12/12h light and dark environment.
     Consequence:
     1. The effect of different light conditions on the sleep duration and sleep-wake rhythm of2to7-day-old drosophila.
     1.1Compared with the drosophilas of the same day and same sex in12/12h alternating light and dark environment.
     ①There was a remarkably significant difference to male and female drosophilas that is2to7days old in12/12h light and dark upside down environment. Their sleep duration during the day is extended (**p<0.01) while night sleep time is shortened.(**p<0.01)But there was no significant difference in24h total sleep time.(p>0.05)
     ②There is a remarkably significant difference to female2-7-day-old drosophila,whose sleep time during the day is extended(**p<0.01)while night sleep time is shortened(**p<0.01)in24h constant light environment. There is a difference (*p<0.05)to2-day-old female drosophila whose24h total sleep time prolongs.(*p<0.05),while there is a remarkably significant difference to4-6-day-old drosophila whose24hours total sleep time is shortened.(**p<0.01) To male2-7-day-old drosophila there is no marked difference in its sleep time during the day,but its sleep time at night is shortened,which differs greatly.(**p<0.01) There is difference to2-3-day-old drosophila whose24h total sleep time is shortened (*p<0.05) while there is remarkably significant difference to5-7-day-old whose total sleep time is also shortened.(**p<0.01)
     ③In24h constant darkness environment female2-5-day-old drosophila's sleep time during the day prolongs(**p<0.01),while its sleep time at night is shortened,which differs significantly.(*p<0.05) There is a difference to2-3-day-old drosophila whose total sleep time is extended (*p<0.05)while it differ remarkably to4-day-old drosophila whose total sleep time is extended (**p<0.01).There is no difference to5-70day-old drosophila's total sleep time(p>0.05).To male2-3-day-old drosophila there is a remarkably significant difference whose sleep time during the day is extended(*p<0.05,**p<0.01),while its sleep time at night is shortened,which differs significantly(**p<0.01).Male4-7-day-old drosophila's sleep time during the day is shortened (*p<0.05,**p<0.01),which differs greatly;but its sleep time at night is no significant difference(p>0.05).Male6-7-day-old drosophila's24h total sleep time is shortened,which differs greatly (*p<0.05,**p<0.01)
     1.2Compared with the previous-day-old drosophila of the same sex in the same light condition:
     ①There is no difference to2-7-day-old female drosophila in its total sleep time in12/12h alternating light and dark environment. But there is a significant difference to male3-4-day-old drosophila whose24h total sleep time is shortened while6-day-old drosophila's total sleep time is extended.
     ②In12/12h light and dark upside down environment, there is no difference to female2-7-day-old drosophila in its total sleep time. But it differs greatly to male3-day-old drosophila because its total sleep time is shortened while there is no difference to drosophila of other days in its total sleep time.
     ③Female3-4-day-old drosophila's24h total sleep time is shortened in24h constant light environment, which makes difference (#p<0.05,##p<0.01), while7-day-old drosophila's24h total sleep time is extended, which makes greater difference.(#p<0.05,##p<0.01,##p<0.01). There is a significant difference to male3-day-old drosophila whose24h total sleep time is shortened (#p<0.05) while7-day-old drosophila's24h total sleep time is extended (#p<0.05)
     ④It differs greatly when the male and female3-4-day-old drosophila's24h total sleep time is shortened in24h constant darkness environment (#p<0.05,##p<0.01),but there is no different to5-7-day-old drosophila.
     1.3The male and female drosophila's sleep-wake rhythm shows cyclical changes in12/12h alternating light and dark environment. That is they move about between6:00-14:00and17:00-20:00and sleep between14:00and17:00,20:00and6:00the next day. And they move most frequently (Peak Activity) at about7:00and19:00.Compared with the drosophila in12/12h alternating light and dark environment:
     ①Compared with sample group, the sleep-wake rhythm of male and female drosophila in12/12h light and dark upside down environment shows an opposite cyclical change. They sleep between8:00and19:00,21:00and24:00and fly between19:00and21:00,24:00and8:00the next day. But there is same peak activity at7:00and19:00.
     ②Compared with sample group, the cyclical changes of male and female drosophila's sleep-wake rhythm in24h constant light environment almost disappear. Sleep and activity alternates chaotically between7:00and7:00the next day. With the increase of age, the number of activity also increases. At the same time the peak activity at7:00and19:00disappears.
     ③Compared with sample group, the sleep-wake rhythm of male and female drosophila in24h constant darkness environment shows similar cyclical changes. They fly between4:00and18:00and sleep between18:00and4:00the next day. Similarly there is peak activity at7o'clock, but it disappears at19:00.
     Meantime, drosophila's sleep-wake rhythm in the above metioned three light environment begin to show on the four-day-old drosophila and become stable on the7-day-old drosophila.
     2. The effect of CWJ on the7-day-old drosophila's sleep time and sleep-wake rhythm under different light conditions.
     2.1Compared with the7-day-old drosophila of the same sex under the same light conditions:
     ①There is no difference to the male and female drosophila's sleep time in12/12h light and dark upside down environment after0.25,1and4percent of CWJ is given to drosophila.
     ②There is a significnat difference to drosophilas who are given differnet concentrations of CWJ in24h constant light conditions.1and4pecent of CWJ will shorten female drosophila's24h total sleep time (*p<0.05);1percent of CWJ will shorten female drosophila's sleep time at night (*p<0.05);4percent of CWJ will shorten female drosophila's sleep time both during the day and at night (*p<0.05);4percent of CWJ will shorten male drosophila's24h total sleep time (*p<0.05)
     ③There is a remarkably significnat difference to drosophilas who are given differnet concentrations of CWJ in24h constant darkness conditions. 0.25,1and4percent of CWJ will largely reduce female drosophila's24h total sleep time, sleep time during the day and night sleep time (**p<0.01).1percent of CWJ will reduce male drosophila's24h total sleep time and night sleep time;4percent of CWJ will largely reduce male drosophila's24h total sleep time and night sleep time.
     2.2CWJ will partly increase the number of male and female drosophila's activity within24hours in12/12h light and dark upside down environment through the analysis of drosophila's sleep-wake activity and sleep-wake chart, but it has no significant effect on the rhythm of drosophila's sleep-wake activity and sleep-wake. CWJ can increase the number and the time of male and female drosophila's activity within24hours in24h constant light environment, reduce the fragments of drosophila's sleep and affect the sleep time, especially when4percent of CWJ is given. However, it will not influence the rhythm of drosophila's activity. To the drosophila in24h constant darkness environment,0.25percent of CWJ has such effect and1percent of CWJ affect male drosophila greatly.
     3. The effect of24h constant darkness environment on the content of5-HT and DA in7-day-old female drosophila's brain. With the deepening of sleep, the content of5-HT and DA in7-day-old female drosophila's brain first decreases, then increases and decreases again in12/12h alternating light and dark environment. While the content of5-HT and DA in female drosophila's brain firstly increases and then decreases in24h constant darkness environment, and the content of5-HT decreases significantly at16:00in12/12h alternating light and dark environment (*p<0.05). The content of DA increases gradually and the content of DA in female drosophila's brain at16:00,19:00,22:00greatly decreases compared with it in the12/12h alternating light and dark environment at the same time (*p<0.05). However, the gap between them shortens gradually. After1o'clock, the content of female drosophila's DA in24h constant darkness environment increases more than it in12/12h alternating light and dark environment (*p<0.05)
     4. The effect of CWJ on the content of7-day-old female drosophila's5-HT and DA in24h constant darness environment.0.25percent of CWJ is given to female drosophila for4days at19:00in24h constant darkness environment. It makes no difference to the content of female drosophila's5-HT, but it can greatly increase the content of DA (*p<0.05)
     5. The effect of24h constant darkness environment and the intervention of CWJ on the7-day-old female drosophila's sleep behaviour related gene expression. In contrast with of7-day-old female drosophila's gene expression quantity at19:00in12/12h alternating light and dark environment, the gene per of7-day-old female drosophila at19:00in24h constant darkness environment is7.32times, tim is3.99times, Hsc70-3is4times and Obp99a is3.81times, and Sug is16times. After given0.25percent of CWJ for4days, the gene expreesion quantity of both groups both decrease to varying degrees, such as per decreases2.2times, tim decreases0.29times, Hsc70-3decreases0.35times, Obp99a is0.96times, and Sug is0.54times.
     6. The effect of CWJ on the7-day-old female cry gene knockout drosophilas's sleep time and sleep-wake rhythm in12/12h alternating light and dark environment:
     ①Compared with the7-day-old CS female drosophila in24h constant darkness environment, the7-day-old cry knockout female drosophila's sleep time in12/12h alternating light and dark environment is longer. Compared with the7-day-old CS female drosophila in12/12h alternating light and dark environment, its sleep time is longer (▲▲p<0.01). It makes great difference when0.25percent of CWJ was given to7-day-old cry knockout female drosophila as a result of the reduction of its sleep time (**p<0.01)
     ②There is a cyclical sleep-wake rhythm change of7-day-old CS female drosophila in12/12h alternating light and dark environment. The changes are just between the12/12h alternating light and dark environment and24h constant darkness environment of7-day-old CS female drosophila. cry knockout female drosophila's sleep and activity alternates chaotically between4:00and19:00. They usually sleep from19:00to4:00the next day and peak activity appears at about7:00and19:00.
     ③The frequence and time of7-day-old cry knockout female drosophila's activity in12/12h alternating light and dark environment increases after they are given0.25percent of CWJ. At the same time, fragmental sleep also decreases and sleep-wake rhythm partly resumes to that of7-day-old CS female drosophila in12/12h alternating light and dark environment.
     Conclusion:
     1. Different light conditions have different effect on the drosophila's sleep duration and sleep-wake rhythm in the same light intensity.
     2. The best dose of CWJ to improve the7-day-old CS female drosophila's sleep duration and sleep-wake rhythm in24h constant darkness environment is the concentration of0.25percent of CWJ (lasting for4days) and the concentration of1percent of CWJ (lasting for4days). But it is not obvious for CWJ to improve its sleep duration and sleep-wake rhythm in12/12h alternating light and dark environment and24h constant light environment.
     3. The content of7-day-old CS female drosophila's5-HT and DA will change as time changes in12/12h alternating light and dark environment and24h constant light environment.
     4.5-HT, DA and the change of gene per, tim, Obp99a in drosophila may have some relationship with the mechanism of CWJ's improvement of sleep-wake rhythm.
     5. CWJ can recover in part the sleep-wake rhythm of7-day-old cry knockout female drosophila in12/12h alternating light and dark environment.
引文
[1]D. Nichols. Drosophila melanogaster neurobiology, neuro-pharmacology, and how the fly can inform central nervous system drug discovery[J]. Pharmacology & Therapeutics,2006,112(5):677-700.
    [2]Hendricks JC, Sehgal A and Pack AI. The need for a simple animal model to understand sleep[J]. Progress in Neurobiology,2000,61(4):339 - 351.
    [3]Tao W, Zhang S, Turenchalk, et al. Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity[J]. Nat Genet,1999, 21(1):77-81.
    [4]Brumby A M, Richardson H E. Using Drosophila melanogaster to map human cancer pathways[J]. Nat Rev Cancer,2005,5(8):626-639.
    [5]万永奇,谢维.生命科学于人类疾病研究的重要模型-果蝇[J].生物科学,2006,18(5):426.
    [6]Levine, M, Rubin, GM, and Tjian. Human DNA sequences homologous to a protein coding region conserved between homeotic genes of Drosophila[J]. Cell,1984, 38(6):67-73.
    [7]刘小平.利用果蝇模型研究帕金森病相关基因α- synuclein, PINK1和LRRK2的作用机制[D].2007年中南大学博士论文
    [8]Hendricks JC, Finn SM, Panckeri KA, et al. Rest in Drosophila is a sleep-like state[J]. Neuron,2000,25:129-138.
    [9]Hendricks JC. Shaking up sleep research[J]. Nature Neuroscience,2005,8:703-705.
    [10]关世玲,崔岩松.刺五加注射液治疗失眠32例[J].中国中医药信息杂志,1998,5(2):43.
    [11]张远凤,蒋晓江,许志强,等.刺五加与甲氯芬酯对失眠症患者睡眠质量的影响[J].重庆医学,2007,36(1):65—66.
    [12]曾仲意,曲敬来,冯军.刺五加注射液治疗失眠症的临床观察[J].黑龙江中医药,2001,(2):10—11.
    [13]张远凤,蒋晓江,严家川,等.刺五加改善原发性睡眠障碍患者的睡眠质量:随机对照观察[J].中国临床康复杂志,2004,8(7):1312—1312.
    [14]寇文丽,钟瑞亨,赵志琴.刺五加注射液治疗心脏神经官能症的疗效观察[J].内蒙古医学杂志,2001,33(2):130-131.
    [15]许光辉.基于基因芯片技术的刺五加改善果蝇睡眠作用的机制研究[D].2010黑龙江中医药大学博士论文
    [16]谢朝晖,佘秋生,邵宝平.哺乳动物生物钟昼夜节律同步机制的研究进展[J].西北农林科技大学学报(自然科学版),2005,33(9).
    [17]杜玉珍,童建.生物昼夜节律分子机制的研究进展[J],国外医学(遗传学分册),2002,25(3):132—135.
    [18]Takahashi JS. Current Opinion in Genetics and Development[J],1993,3:301 -309.
    [19]Siwicki KK, Eastman C, Petersen G, et al. Antibodies to the period gene product of Drosophila reveal diverse tissiue distyibution [J]. Neumn,1988, (1):5378 -5385.
    [20]Liu X, Lorenz L, Yu Q, et al. Spatial and temporal expression of the period gene in Drosophila melangaster[J]. Genes,1988, (2):228 - 238.
    [21]James A A, Ewer J, Reddy P, et al. Embryonic expression of the period clock gene in the central nervous system of Drosophila melanogaster[J]. EMBO J,1986, (5): 2313-2320.
    [22]Yan L, Takekida S, Shigeyoshi Y, Okamura H. Perl and Per2 gene expression in the rat suprachiasmatic nucleus:circadian profile and the compartment - specific response to light[J]. Neuroscience,1999,94:141 - 150.
    [23]Zheng B, Larkin DW, Albrecht U, et al. The mPer2 gene encodes a functional component of the mammalian circadian clock[J]. Nature,1999,400:169-173.
    [24]Reppert, S. M., Weaver, D. R. Forward genetic approach strikes gold:cloning of a mammalian clock gene[J]. Cell,1997,89:487-490.
    [25]Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, TakahashiJS, Bradfield CA. Mop3 is an essential component of the master circadian pacemaker in mammals[J]. Cell,2000,103(7):1009-1017.
    [26]Gekakis N, Stakins D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. Role of the clock protein in the mammalian circadian mechanism[J]. Science,1998,280(5369):1564-1569.
    [27]倪银华,吴涛,王露等.肾上腺糖皮质激素与生物钟基因表达调控的相关研究进展[J].遗传,2008,30(2):135—139.
    [28]Darlington TK, Wage-Smith K, Ceriani MF, et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim[J]. Science,1998, 280(5369):1599-603.
    [29]袁春燕,杨旭科,郭爱克.果蝇昼夜节律的分子机制研究进展[J].生物化学与生物物理进展,2005,32(01):3—8.
    [30]Xiaowei Jin, Lauren P. Shearman, et al. A Molecular Mechanism Regulating Rhythmic Output from the Suprachiasmatic Circadian Clock[J]. Cell,1999,96(1): 57-68.
    [31]Ripperger JA, Shearman LP, et al. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP[J]. Genes Development,2000,14:679-683.
    [32]李洋,陈芳,胡志安.与学习记忆相关的睡眠新功能-突触稳态[J].生物化学与生物物理进展,2009,36(3):36—42
    [33]Borbely, A. A.& Tobler, I. Brain Mechanisms of Sleep (eds McGinty, D. J. et al.)35-44(Raven, New York,1985).
    [34]Achermann, P.& Borbely, A. A. Mathematical models of sleep regulation. Front. Biosci.8, S683-S693 (2003).
    [35]Jin, X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock[J]. Cell,1999,96:1 - 20.
    [36]Moore, R. Y. & Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat[J]. Brain Res,1972,42:201 - 206.
    [37]Johnson, R. F, Moore, R. Y. & Morin, L. P. Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract[J]. Brain Res,1988, 460:297-313.
    [38]Cassone, V. M., Chesworth, M. J. & Armstrong, S. M. Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei[J]. Physiol. Behav,1986,36:1111-1121.
    [39]Gooley, J. J., Lu, J., Fischer, D. & Saper, C. B. A broad role for melanopsin in nonvisual photoreception[J]. Neurosci,2003,23:7093-7106.
    [40]Vladyslav V Vyazovskiy, Chiara Cirelli, Martha Pfister-Genskow, Ugo Faraguna & Giulio Tononi. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep Nature Neuroscience. Published online:20 January 2008;| doi:10.1038/nn2035
    [41]Sherin JE, Shiromani PJ, McCarley RW, et al. Activation of ventrolateral preoptic neurons during sleep[J]. Science,1996,271(5246):216 - 219.
    [42]JouvetM. Indolamines and sleep - inducing factors[J]. Exp Brain Res,1984, 54(Supp 1):S81-94.
    [43]Portas CM, Bjorvan B, Fagerland S, et al. Online detection of ex2 tracellar levels of serotonin in dorsalraphe nucleus and frontalcor2 tex over the sleep2wake cycle in the freelymoving rat[J]. Neuroscience,1998,83(4):807 - 814.
    [44]Oades RD, Halliday GM. Ventral tegmental (A 10) system, neurobiology, anatomy and connectivity[J]. Brain Res,12:117-165.
    [45]刘彬,臧佩林.保神开郁冲剂影响失眠鼠中枢递质的实验研究[J].辽宁中医杂志,2000,27(2):92—94.
    [46]张文慧,钱朝霞,汪海宏,等.大鼠中脑腹侧被盖区在睡眠-觉醒调节中的作用[J].生理学报,1995,47(2):195—200.
    [47]EIMansariM, Sakai K, JouvetM. Unitary charactetistic of presumptive cholinergic tegmental neurous during the sleep - waking cycle of freelymoving rats[J]. Exp Brain Res,1989,76:519.
    [48]赵忠新.临床睡眠障碍学[M].上海:第二军医大出版社,2003,39—41.
    [49]张瑾,李春华,钟明奎,等.海马CA1区微量注射去甲肾上腺素对慢波睡眠的影响[J].安徽医科大学学报,2006,41(1):7—9.
    [50]王升旭,李求实.睡眠剥夺对大鼠脑组织氨基酸类神经递质含量的影响[J].第一军医大学学报,2002,22(10):888—890.
    [51]钟明奎,赵乐章,张瑾,等.海马微量注射乙酰胆碱和阿托品对大鼠睡眠的影响[J].中国中医基础医学杂志,2002,8(1):9-10.
    [52]刘彤,徐淑梅.睡眠剥夺对大鼠学习能力和海马乙酰胆碱含量的影响[J].临床 和实验医学杂志,2007,6(3):12-13.
    [53]桂丽,章功良,张景行,等.兴奋和损毁外侧缰核对大鼠睡眠觉醒周期的影响[J].安徽医科大学学报,2006,41(5):511-512.
    [54]McEwen, B. S. & Stellar, E. Stress and the individual Mechanisms leading to disease. Arch Intern. Med.153,2093-2101(1993).
    [55]Yoshida, K., McCormack, S., Espana, R. A., Crocker, A. D. & Scammell, T. E. Afferents to the orexin neurons. J. Comp. Neurol. (in the press).
    [56]Krout, K. E., Kawano, J., Mettenleiter, T. C. & Loewy, A. D. CNS inputs to the suprachiasmatic nucleus of the rat. Neuroscience 110,73-92 (2002).
    [57]Elmquist, J. K., Elias, C. F. & Saper, C. B. From lesions to leptin:hypothalamic control of food intake and body weight. Neuron 22,221-232(1999).
    [58]Elmquist, J. K., Ahima, R. S., Elias, C. F., Flier, J. S. & Saper, C. B. Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei. Proc. Natl Acad. Sci. USA 95,741-746(1998).
    [59]Saper, C. B. in The Rat Nervous System (ed. Paxinos, G.) 761-796 (Elsevier Academic, San Diego,2004).
    [60]Schachter, S. C. & Saper, C. B. Vagus nerve stimulation. Epilepsia 39,677-686 (1998).
    [61]Yamanaka, A. et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38,701-713 (2003).
    [62]Nofzinger, E. A. et al. Functional neuroimaging evidence for hyperarousal in insomnia[J]. Psychiatry 161,2126 - 2128(2004).
    [63]王凯.生命科学研究中常用模式生物[J].生命科学研究,2010,14(2):156-165.
    [64]Peng H, Ruan Z, Long F, Simpson JH, Myers EW. V3D enables real-time 3D visualization and quantitative analysis of large - scale biological image data sets[J]. Nat Biotechnol,2010,28(4):348-53.
    [65]卞宏生.基于果蝇模式生物的五味子醇甲改善睡眠作用及作用机制的研究[D].2011黑龙江中医药大学硕士论文
    [66]Emery P, So W V, Kaneko M, et al. CRY, a Drosophila clock and light - regulated cryptochrome is a major contribute to circadian rhythm resetting and photosensitivity[J]. Cell,1998,95(5):669-679
    [67]Stanewsky R, Kaneko M, Emery P, et al. The cryb mutanion identifies cyptochromes photoreceptor in Drosophila[J]. Cell,1998,95(5):681 - 692
    [68]Emery P, Stanewsky R, Helfrich - Forster C, et al. Drosophila CRY is a deep brain circadian photoreceptor[J]. Neuron,2000,26(2):493-504.
    [69]Qiu J, Hardin P E. per - mRNA cycling is locked to lights2off under photoperiodic conditions that support circadian feedback loop function [J]. Mol Cell Biol,1996, 16(8):4182-4188.
    [70]Price J L, Dembinska M E, Young M W, et al. Suppression of PER IOD protein abundance and circadian cycling by the Drosophila clock mutation timeless[J]. EMBOJ,1995,14(16):4044-4049.
    [71]周先举.果蝇群体嗅觉行为的昼夜节律以及阻断嗅觉传入和听觉缺陷对果蝇活动昼夜节律的影响[D].上海:中国科学院上海生命科学研究院神经科学研究所2005:3-118.
    [72]王又红.基因敲除技术的应用现状与发展前景[J].国外医学1999 26—5.
    [73]陈其军,肖玉梅,等.植物功能组研究中的基因敲除技术[J].植物生理学通讯,2004,40:121—126.
    [74]U. Klinner*, B. Schafer Genetic aspects of targeted insertion mutagenesis in yeasts FEMS Microbiology Reviews 28 (2004) 201-223.
    [75]夏琼,邓云,邓志伟,等.建立果蝇心脏发育候选基因CG3295的基因敲除系[J].湖南师范大学自然科学学报,2009,32(3):74—77
    [76]谢昌传,汪雪坤,李立胜等.利用P因子不精确剪切获得Tis11基因敲除果蝇[J].厦门大学学报(自然科学版),2007,46(6):857—862
    [77]金敏.刺五加药理作用研究进展[J].内蒙古中医药,2007,7:53—54.
    [78]陈剑峰,张烽.刺五加皂苷对体外培养大鼠脊髓运动神经元缺氧损伤的保护作用[J].第二军医大学学报,2006,27(2):173-177.
    [79]刁波,文哗,杨李,等.刺五加多糖对氧化应激损伤的海马神经元iNOSmRNA表达的影响[J].华南国防医学杂志,2008,22(4):15—17.
    [80]刁波,唐瑛,王晓昆,等.刺五加多糖的抗氧化损伤作用研究[J].实用医学杂志,2008,24(7):1102-1104.
    [81]潘永进,顾永健,顾小苏.刺五加皂甙对培养神经元拟衰老反应的观察[J].中国现代医学杂志,2002,12(21):42—44.
    [82]邸雅南,叶红军,王陆,藜李蒙.刺五加皂甙对肝癌细胞捌亡的影响[J].临床肝胆病杂志2000,16(2):173-177.
    [83]丰俊东,林代华,刘希琴等.刺五加皂苷对人肝癌细胞株血管内皮生长因子表达的抑制作用[J].中药新药与临床药理,2007,18(5):339—341.
    [84]睢大员,曲绍春,于小风,等.刺五加叶皂苷对大鼠心肌缺血再灌注损伤的保护作用[J].中国中药杂志,2004,29(1):71—74.
    [85]Hendricks JC, Sehgal A and Pack AI. The need for a simple animal model to understand sleep[J]. Pro Neurobiol,2000,61(4):339-51.
    [86]黄莉莉,李廷利,郭冷秋,孙春雨.五味子对自由活动大鼠睡眠时相的影响[J].中药药理与临床,2007,5(23):126-127.
    [87]陈宗礼,延志莲.果蝇培养基的选择研究[J].生物学杂志,1994,(3):31-33.
    [88]张会宜.果蝇饲料玉米粉培养基配方的改进[J].唐山师范学院学报,2005,27(5):46-48.
    [89]刘祖洞,江绍慧.遗传学实验[M].北京:高等教育出版社,1992.32.
    [90]Pendleton RG, Rasheed A, Sardina T, Tully T, Hillman R. Effects of tyrosine hydroxylase mutants on locomotor activity in Drosophila:a study in functional genomics[J]. Behav Genet,2002,32(2):89-94.
    [91]崔北超.果蝇的采集和饲养管理[J].生物学通报,2004,39(7):32.
    [92]Andretic R, Shaw PJ. Essentials of sleep recordings in Drosophila:moving beyond sleep time[J]. Methods Enzymol,2005,393:759-772.
    [93]Yuan Q, Joiner WJ, Sehgal A. A Sleep - Promoting Role for the Drosophila Serotonin Receptor 1A[J]. Current Biology,2006,16(11):1051-1062.
    [94]董梅,李廷利.刺五加化学成分及药理作用研究进展[J].中医药学报,2011,39(3):73—77.
    [95]韩春霞,李廷利,郭冷秋.刺五加根水提液对大鼠睡眠时相的影响[J].中药药理与临床,2007,23(5):173-177.
    [96]韩春霞,李廷利,郭冷秋.刺五加水煎剂改善睡眠作用研究[J].中华中医药学刊,2007,25(10):13-17.
    [97]王雪.光照条件的变化对果蝇睡眠时间及睡眠觉醒节律的影响[D].2011年黑龙江中医药大学硕士论文.
    [98]李玉萍.以果蝇为模式生物的四逆散改善睡眠作用及作用机制研究[D].2009年黑龙江中医药大学博士论文
    [99]李廷利,许光辉,徐瑞鑫.影响野生型Canton S果蝇睡眠时间的相关生理因素研究[J].中国实验动物学报,2010,18(2):105-108.
    [100]Allada R. Circadian clocks:a tale of two feedback loops[J]. Cell,2003,112(3): 284-286.
    [101]Cirelli C. Sleep disruption, oxidative stress, and aging:new insights from fruit flies [J]. Proc Natl Acad Sci U S A,2006,103(38):13901-2.
    [102]Kim EY, Bae K, Ng FS, Glossop NR, Hardin PE and Edery I. Drosophila CLOCK protein is under posttranscriptional control and influences light - induced activity[J]. Neuron,2002,34(1):69-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700