膜生物过滤技术净化工业废气中挥发性有机化合物性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的物理、化学方法相比,生物过滤技术对于大流量低浓度的挥发性有机化合物(VOCs)处理有着较大的优势。但是传统的生物过滤技术尚有许多不足,例如:占地面积大、容易堵塞以及对于低溶解度和产酸物质处理效果不佳等,这些都限制了其更为广泛的应用。膜生物膜反应器(MBfR)作为一种新型的生物反应器类型,结合了生物过滤技术以及膜技术的优势,对于VOCs的控制起到了强化作用。
     论文比较了6种膜材料,包括三种平板PVDF/PET复合膜以及PVDF、PS、PP毛细管式微孔膜,筛选出了实验用膜材料。采用孔径为0.03μm的平板PVDF/PET复合膜对于混合二甲苯进行了非生物性传质实验,发现在气/气实验中,当气体停留时间(GR7)为20s时,去除效率达到95%以上;而在气/液实验中,去除效率不佳。在液相驯化阶段末期,出水水质良好。轮虫等原、后生动物的出现表明了污泥较为成熟。平板式MBfR启动挂膜中,不断改变操作条件促使生物膜生长,并直至反应器的降解效率(DE)/去除能力(EC)达到稳定。
     论文比较了不同营养物质对于MBfR性能的影响,发现以NO3-作为氮源比以NH4+作为氮源更能确保MBfR长期运行的稳定性。此外,与传统的生物反应器类似,进气浓度和气体停留时间直接影响了MBfR的性能。混合二甲苯的降解效率随着进气浓度的增加而下降;随着气体停留时间的增加而提升。实验中以平板式MBfR降解混合二甲苯,当GRT在20s时,降解效率极佳;当进气浓度低于938mg·m-3时,出气浓度低于《大气污染物综合排放标准》对于混合二甲苯的最高允许排放浓度
     论文比较了6种污染物在MBfR中的降解效果,其中丙酮的降解效率最佳,其他依次为乙酸乙酯、正丁醇、甲苯、正己烷以及二氯甲烷,这与物质的可生化性和溶解度有着直接的关系。对于以MBfR降解二元体系的结果表明,混合二甲苯对乙酸乙酯的抑制作用较小,甚至可以忽略,而混合二甲苯受到乙酸乙酯极大的抑制;正己烷和混合二甲苯相互抑制,降解效果均变差;由于二氯甲烷的毒性,所以混合二甲苯在不同负荷区间均受到很大的抑制作用,而二氯甲烷在低负荷区间由于共代谢,去除能力有所提升,但在高负荷区间则受到混合二甲苯的抑制作用。MBfR降解混合二甲苯3种同分异构体之间仍然存在一定的抑制作用。邻二甲苯受到的抑制作用大于间、对二甲苯。就降解效果而言,间二甲苯优于对二甲苯和邻二甲苯。
     在气相驯化过程中,在循环营养液中加入低浓度甲醇后,MBfR对于DMS去除效率有了明显的提高。DMS的进气浓度和气体停留时间同样直接影响了MBfR对于DMS的降解效果。DMS降解效率随着进气浓度的增加而下降,随着气体停留时间的增加而提升。未在循环营养液中添加甲醇的MBfR对于DMS的降解效果一般,ECv,max仅为65g·m-3·h-1。但在循环营养液中添加甲醇的MBfR对DMS的降解同时存在促进和抑制作用。当GRT为20s时,最佳配比为1500mg·Nm-3(DMS):1000mg·L-1(甲醇)。
     论文比较了三套平板式MBfR对于混合二甲苯的降解效率过,其膜材质分别为不同孔径的PVDF/PET膜。结果发现使用孔径为0.03μm膜材料的平板式MBfR降解效果最佳。相比平板式MBfR,毛细管式MBfR结构复杂,但提供了更大的气液传质面积,更有利于微生物的挂膜。因此,实验中其启动阶段较平板式MBfR更短,且获得更大的降解效果。同理,中空纤维式MBfR比毛细管式MBfR更有优势。MBfR对于实际工况下的间歇运行和瞬态负荷冲击有着更好的适应能力。对于长期运行条件下,耦合低浓度臭氧不仅可以有效地提高去除能力还可以抑制微生物过度生长所导致膜材料的污染。
     论文通过碳平衡的方法计算了生物质的产量,并与生物能学方法的估算值进行了比较。比较包括推流式一级动力学模型、完全混合式一级动力学模型、推流式Michaelis-Menten动力学模型、完全混合流Michaelis-Menten动力学模型以及Stover-Kincannon模型在内的5种动力学模型,结果表明推流式Michaelis-Menten动力学模型能较好地表达甲苯在平板式MBfR的降解行为。此外,通过CFD的方法初步比较了6种MBfR中气相污染物的流动情况,为今后MBfR的结构优化提供了一定的理论依据。
Compared with traditional physical and chemical methods, biofiltration technique has significant advantages in the treatment of volatile organic compounds (VOCs) with high flow rate and low concentration. However, the traditional biofiltration technique has some drawbacks such as requiring a large area of land, being prone to clogging, and having low efficiency in the removal of less soluble and acid-produced substances, which limit the wider application of biofiltration technique. As a novel type of bioreactor, membrane biofilm reactor (MBfR) combines the advantages of both biofiltration and membrane techniques, which is helpful for enhancment of the removal of VOCs.
     Six kinds of membranes were tested and compared including three different types of flat PVDF/PET compound membranes and three capillary type microporous membranes made of PVDF, PS and PP in this study. The flat compound membrane of PVDF/PET with pore size of0.03μm was used in the non-biological mass transfer experiment of mixed xylene. It was found that in the gas-gas experiment, when gas residence time (GRT) was20s, the removal efficiency was higher than95%; however, the lower removal efficiency was observed when the same membrane was used in the gas-liquid experiment. At the final stage of liquid-phase domestication of microorganisms, the effluent water was in good quality. The protozoa and metazoan such as rotifers were monitored which indicated that the sludge was successful. In order to promote biofilm formation, the operating conditions of flat MBfR in the start-up were modified until the degradation efficiency (DE)/elimination capacity (EC) was stable.
     The influence of different nutrients on the performance of the reactor was studied, and the results showed that NO3ˉwas a more suitable nitrogen source than NH4+to maintain long-term operational stability in the reactor. In addition, similar to the performance of traditional bioreactor, the inlet gas concentration and GRT could directly affect the performance of the MBfR. The DE of mixed xylene decreased with an increase in inlet gas concentration, while it increased with the increasing of GRT. The flat MBfR was used to remove mixed xylene in the experiment. When GRT was20s, the DE attained the highest level. With an inlet gas concentration lower than938mg·m-3, the xylene concentration in the outlet was below the allowable value of the "Integrated emission standard of air pollutants".
     This study compared the degradation effect of six pollutants in MBfR, The DE of acetone was the highest, followed by ethyl acetate, n-butyl alcohol, toluene, n-hexane and dichloromethane. This was directly related to the biodegradability and solubility of the substances. For the degradation of binary system in MBfR, the inhibition effect of mixed xylene on ethyl acetate was negligible, on the contrary, the presence of ethyl acetate significantly inhibited the degradation of mixed xylene. The n-hexane and mixed xylenes could inhibit the degradation mutually, which lead to a lower DE. In addition, the degradation of mixed xylene under most loading conditions were severely inhibited because of the toxicity of dichloromethane; the removal efficiency of dichloromethane was promoted under low loading condition due to the co-metabolism of these substances, while it was still inhibited by mixed xylenes under high loading conditions. For the degradation of the isomers of mixed xylene, inhibition effect was observed. The inhibition effect on o-xylene was more significant than on/w-xylene and p-xylene. In terms of the degradation effect, m-xylene was superior to p-xylene and o-xylene.
     In the gas phase domestication process, the DE of DMS in MBfR was significantly improved when low concentration methanol was added to the circulating nutrient solution. The degradation effect of DMS in MBfR was alse directly impacted by inlet concentration and GRT. The increased inlet concentration resulted in a decrease in the DE of DMS in reactor, while an increased GRT caused an increase in DE. The DE of DMS in the MBfR was not ideal when methanol was not added to the circulating nutrient solution, with anECv,max value of65g·m-3·h-1. The promotion and inhibition were synchronously existed in the DMS degradation in MBfR when methanol was added to the circulating nutrient solution. The best ratio of DMS to methanol was1500mg·Nm-3to1000mg·L-1when GRT was20s.
     The mixed xylene degradation effect of the three flat MBfR with PVDF/PET membranes of different pore sizes were examined in this study. The flat MBfR with0.03μm PVDF/PET membrane exhibited the best degradation effect. Compared with the flat MBfR, the structure of capillary MBfR was more complex, while its larger surface area improved gas-liquid mass transfer and promote the biofilm formation in the reactor. Thus, the start-up time required for capillary MBfR was shorter than flat MBfR, and degradation effect in capillary MBfR was better. Similarly, the hollow fiber MBfR has more advantages over capillary MBfR. MBfR has an excellent adaptability to the intermittent operation and transient loads in actual conditions. For long-term operation, the coupling of ozone with low concentrations could not only effectively improve the EC, but also inhibit the membrane fouling due to the excessive growth of microorganisms.
     The production of biomass was calculated by the carbon balance method, and the result was compared with estimated values from bioenergetics approaches in this study. Five kinetic models, namely the first order kinetics models in plug flow and completely mixed flow, the Michaelis-Menten kinetics models in plug flow and completely mixed flow, and the Stover-Kincannon kinetics model were examined. The results showed that the Michaelis-Menten kinetics model in plug flow could predict the toluene degradation in the flat MBfR accurately. The flow patten of gas pollutants in the above mentioned six types of MBfR were simulated by CFD method, and the results provide fundamental basis for optimizing the structure of the MBfRs.
引文
[1]童志权,陈焕钦.工业废气污染控制与利用[M].北京:化学工业出版社,1989.
    [2]彭晓春,谢武明.清洁生产与循环经济[M].北京:化学工业出版社,2009.
    [3]Seinfeld J H, Pandis S H. Atmospheric chemistry and physics-from air pollution to climate change[M]. New York:John Wily and Sons,1998.
    [4]胡敏,何凌燕,黄晓锋,等.北京大气细粒了和超细粒子理化特征、来源及形成机制[M].北京:科学出版社,2009.
    [5]郝吉明,马广大,王书肖.大气污染控制工程[M].第三版,北京:高等教育出版社,2010.
    [6]陆震维.有机废气的净化技术[M].北京:化学工业出版社,2011.
    [7]World Health Organization. Indoor Air Quality:Organic Pollutants (EURO Reports and Studies 111)[R]. Copenhagen:World Health Organization Regional Office for Europe,1989.
    [8]The European Parliament and the Council of The European Union. Council Directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations [S]. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31999L0013:EN:NO T,1999.
    [9]The European Parliament and the Council of The European Union. Directive 2004/42/ EC of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EQS]. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:3200 4L0042:EN:NOT,2004.
    [10]The European Parliament and the Council of The European Union. Directive 2010/75/ EU of the European Parliament and of the Council on industrial emissions (Industrial Emissions Directive)[S], http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=ELE X:32010L0075:EN:NOT,2010.
    [11]The Australian National Pollutant Inventory. NPI definition for Volatile Organic Compounds, Version 2.7 Department of the Environment, Water, Heritage and the Arts, September 2009[EB/OL]. http://www.npi.gov.au/publications/handbooks/pubs/voc.pdf.
    [12]ISO 4618:2006. Paints and varnishes——Terms and definitions[S].
    [13]DIN 55649-2000. paints and varnishes——Determination of volatile organic compound content in waterthinnable emulsion paints[S].
    [14]北京市环境保护局.炼油与石油化学工业大气污染物排放标准[S],DB 11447-2007,2007.
    [15]United States Environmental Protection Agency. Terms of Environment:Glossary, Abbreviations and Acronyms[EB/OL]. http://www.epa.gov/OCEPAterms/vterms.html, 2006.
    [16]ASTM D 3960-04. Standard Practice for Determining Volatile Organic Compound (VOC) Content of Paints and Related Coatings [S].
    [17]中国香港特别行政区政府环境保护署.香港空气污染物排放清单[EB/OL]. http://sc. epd.gov.hk/gb/www.epd.gov.hk/epd/tc_chi/environmentinhk/air/data/emission_inve.ht ml.
    [18]余宇帆,卢清,郑君瑜,等.珠江三角洲地区重点VOC排放行业的排放清单[J].中国环境科学,2011,31(2):195-201.
    [191王雪松,李金龙.人为源排放VOC对北京地区臭氧生成的贡献[J].中国环境科学,2002,22(6):501-505.
    [20]刘金风,赵静,李湉湉,等.我国人为源挥发性有机物排放清单的建立[J].中国环境科学,2008,28(6):496-500.
    [21]范辞冬,王幸锐,王玉瑶,等.中国人类活动源非甲烷挥发性有机物(NMVOC)排放总量及分布[J].四川环境,2012,31(1):82-87.
    [22]Hunter P, Oyama S T. Control of volatile organic compound emissions:conventional and emerging technologies[M]. New Jersey, Hoboken:Wiley,2002.
    [23]Iranpour R, Cox H H J, Deshusses M A, et al. Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal [J]. Environmental Progress,2005,24(3):254-267.
    [24]Ao C H, Lee S C, Mak C L, et al. Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2 promotion versus inhibition effect of NO[J]. Applied Catalysis B:Environmental,2003,42(8):119-129.
    [25]Little J C, Hodgson A T, Gadgil A J. Modeling emissions of volatile organic compoun-ds from new carpets[J]. Atmospheric Environment,28(2):227-234.
    [26]Meininghaus R, Salthammer T, Knoppel H. Interaction of volatile organic compounds with indoor materials—a small-scale screening method[J]. Atmospheric Environment, 1999,33(15):2395-2401.
    [27]Kim Y M, Harrad S, Harrison R M. Concentrations and sources of VOCs in urban do-mestic and public microenvironments[J]. Environmental Science and Technology,2001, 35(6),997-1004.
    [28]Wang S B, Ang H M, Tade M O. Volatile organic compounds in indoor environment and photocatalytic oxidation:state of the art[J]. Environment International,2007,33(5), 694-705.
    [29]Auvinen J, Wirtanen L. The influence of photocatalytic interior paints on indoor air qu-ality[J]. Atmospheric Environment,2008,42(1):4101-4112.
    [30]Liu W, Zhang J, Zhang L, et al. Estimating contributions of indoor and outdoor sources to indoor carbonyl concentrations in three urban areas of the United States [J]. Atmospheric Environment,2006,40 (12) 2202-2214.
    [31]Ozkaynak H, Palma T, Touma J S, et al. Modeling population exposures to outdoor sources of hazardous air pollutants[J]. Journal of Exposure Science and Environmental Epidemiology,2008,18(1):45-58.
    [32]Bias M, Navazo M, Alons L,et al. Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources[J]. Science of The Total Environment,2012,426(1):327-335.
    [33]Celebi U B, Vardar N. Investigation of VOC emissions from indoor and outdoor painti-ng processes in shipyards[J]. Atmospheric Environment,2008,42(22):5685-5695.
    [34]Edwards R D, Jurvelin J, Koistinen K, et al. VOC identification from personal and residential indoor, outdoor and workspace microenvironment samples in EXPOLIS-Helsinki. [J]. Atmospheric Environment,2001,35(27):4531-4543.
    [35]Weisel C, Zhang J, Turpin B J, et al. Relationships of indoor, outdoor, and personal air (RIOPA), Part I. Collection methods and descriptive analyses, health effect institute[R]. Boston:Health Effects Institute,2005.
    [36]Guieysse B, Hort C, Platel V, et al. Biological treatment of indoor air for VOC removal: potential and challenges [J]. Biotechnology Advances,2008,26(5):398-410.
    [37]Fabietti F, Ambruzzi A, Delise M, et al. Monitoring of the benzene and toluene contents in human milk[J]. Environment International,2004,30(3):397-401.
    [38]Alegretti A P, Thiesen F V, Maciel G P. Analytical method for evaluation of exposure to benzene, toluene, xylene in blood by gas chromatography preceded by solid phase microextraction[J]. Journal of Chromatography B,2004,809(1):183-187.
    [39]Grabski D A. Case reports toluene sniffing producing cerebellar degeneration[J]. The American Journal of Psychiatry,1961,118(5):461-462.
    [40]孙栩,朱冈华,张林瑞,等.苯系物对工人健康的影响[J].现代预防医学,1994,21(2):77-79.
    [41]郭棣华,林福永,童家期.职业接触混苯对神经行为功能的影响[J].中华劳动卫生与职业病杂志,1994,12(2):42-43.
    [42]Kourtidis K, Ziomas I, Zerefos C, et al. Benzene and toluene levels measured with a commerial DOAS system in Thessaloniki, Greece[J]. Atmospheric Environmental, 2000,34(9):1471-1480.
    [43]Ilgen E, Karfich N, Levsen K, et al. Aromatic hydrocarbons in the atmospheric enviro-nment:Part I. Indoor versus outdoor sources, the influence of traffic[J]. Atmospheric Environmental,2001,35(7):1235-1252.
    [44]Skov H, Hansen A B, Lorenzen G, et al. Benzene exposure and the effect of traffic poll-ution in Copenhagen, Denmark[J]. Atmospheric Environmental,2001,35(14):2463-2471.
    [45]陈金茹,钟海盛,赵转地.长期低浓度苯系物接触的早期职业健康损害[J].职业与健康,2010,26(1):24-26.
    [46]唐孝炎,张远航,邵敏.大气环境化学[M].第二版,北京:高等教育出版社,2006.
    [47]Haggen-Smit A J. Chemistry and physiology of Los Angeles Smog[J]. Industrial and Engineering Chemistry,1952,44(6):1342-1346.
    [48]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003.
    [49]Leighton P A. Photochemistry of air pollution[M]. New York:Academic Press,1961.
    [50]Hecht T A, Seinfeld J H. Development and validation of a generalized mechanism for photochemical smog[J]. Environment Science and Technology,1972,6(1):47-57.
    [51]Hecht T A, Seinfeld J H, Dodge M C, Further development of generalized kinetic mechanism for photochemical smog[J]. Environmental Science and Technology,1974, 8(6):327-339.
    [52]Carter W P L, Lloyd A C, Sprung J L, et al. Computer modeling of smog chamber data: progress in validation of a detailed mechanism for the photooxidation of propene and n-butane in photochemical smog[J]. International Journal of Chemical Kinetics,1979, 11(1):45-101.
    [53]Spicer C W. Nitrogen oxide reactions in the urban plume of Boston[J]. Science,1982, 215:1095.
    [54]Leone J A, Seinfeld J H. Analysis of the characteristics of complex chemical reaction mechanisms:Application to photochemical smog chemistry[J]. Environmental Science and Technology,1984,18(4):280-287.
    [55]Atkinson R, Carter W P L. Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions [J]. Chemical Review, 1984,84(5):437-470.
    [56]Zhang Y H, Su H, Zhong L J, et al. Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 cam-paign[J]. Atmospheric Environment,2008,42(25):6203-6218.
    [57]Geng F, Tie X, Xu J, et al. Characterizations of ozone, NOx, and VOCs measured in Shanghai, China[J]. Atmospheric Environment,2008,42(29):6873-6883.
    [58]Molina M, Rowland F S. Stratospheric sink for chlorofluoromethanes:chlorine atom-catalysed destruction of ozone[J]. Nature,1974,249:810-812.
    [59]杨勇.废旧冰箱拆卸和PUR中CFC-11释放及移除研究[D].四川:西南交通大学,2009.
    [60]李岩FLEXPART模式初步反演中国区域HCFC-22和CFC-11排放量[D].甘肃:兰州大学,2010.
    [61]王海林,张国宁,聂磊,等.我国工业VOCs减排控制与管理对策研究[J].环境科学,2011,32(12):3462-3468.
    [62]修光利,张萍,黄雪娟,等.工业气态有机污染物排放标准体系研究[J].化学世界,2009,50(增刊):256-259.
    [63]The European Parliament and the Council of The European Union. Council Directive 96/6I/EC of 24 September 1996 concerning integrated pollution prevention and control [S]. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31996L0061:EN: NOT,1996.
    [64]国家环境保护局.大气污染物综合排放标准[S],GB 16297-1996,1996.
    [65]环境保护部.炼焦炉大气污染物排放标准[S].GB 16171-1996,1996.
    [66]环境保护部.饮食业油烟排放标准[S].GB 18483-2001,2001.
    [67]环境保护部.储油库大气污染物排放标准[S].GB 20950-2007,2007.
    [68]环境保护部.汽油运输大气污染物排放标准[S].GB 20951-2007,2007.
    [69]环境保护部.加油站大气污染物排放标准[S].GB 20952-2007,2007.
    [70]环境保护部.合成革与人造革工业污染物排放标准[S].GB 21902-2008,2008.
    [71]环境保护部.橡胶制品工业污染物排放标准[S].GB 27632-2011,2011.
    [72]国家环境保护局.恶臭污染物排放标准[S].GB 14554-1993,1993.
    [73]北京市环境保护局.大气污染物综合排放标准[S].DB 11/501-2007,2007.
    [74]上海市环境保护局.生物制药行业污染物排放标准[S],DB 373-2006,2006.
    [75]上海市环境保护局.半导体行业污染物排放标准[S],DB 374-2006,2006.
    [76]广东省环境保护厅.家具制造行业挥发性有机化合物排放标准[S].DB 44/814-2010,2010.
    [77]广东省环境保护厅.包装印刷行业挥发性有机污染物排放标准[S].DB 44/815-2010,2010.
    [78]广东省环境保护厅.表面涂装(汽车制造业)挥发性有机化合物排放标准[S].DB44/816-2010,2010.
    [79]广东省环境保护厅.制鞋业挥发性有机化合物排放标准[S].DB 44/817-2010,2010.
    [80]国家环境保护总局.清洁生产标准汽车制造业(涂装)[S].HJ/T 293-2006,2006.
    [81]环境保护部.清洁生产标准化纤行业(涤纶)[S].HJ/T 429-2008,2008.
    [82]国家环境保护总局.清洁生产标准化纤行业(氨纶)[S].HJ/T 359-2007,2007.
    [83]国家环境保护总局.清洁生产标准石油炼制业[S].HJ/T 125-2003,2003.
    [84]环境保护部.清洁生产标准石油炼制业(沥青)[S].HJ/T 443-2008,2008.
    [85]国家环境保护总局.清洁生产标准人造板行业(中密度纤维板)[S].HJ/T 315-2006,2006.
    [86]国家环境保护总局.清洁生产标准炼焦行业[S].HJ/T 126-2003,2003.
    [87]国家环境保护总局.清洁生产标准基本化学原料制造业(环氧乙烷、乙二醇)[S].HJ/T 190-2006,2006.
    [88]Popat S C, Deshusses M A. Reductive dehalogenation of trichloroethene vapors in an anaerobic biotrickling filter[J]. Environmental Science and Technology,2009,43(20): 7856-7861.
    [89]Popat S C, Deshusses M A. Analysis of the rate-limiting step of an anaerobic biotrickl-ing filter removing TCE vapors[J]. Process Biochemistry,2010,45(4):549-555.
    [90]Popat S C, Deshusses M A. Kinetics and inhibition of reductive dechlorination of trich-loroethene, cis-1,2-dichloroethene and vinyl chloride in a continuously fed anaerobic biofilm reactor[J]. Environmental Science and Technology,2011,45(4):1569-1578.
    [91]Popat S C, Zhao K, Deshusses M A. Bioaugmentation of an anaerobic biotrickling filter for enhanced conversion of trichloroethene to ethene[J]. Chemical Engineering Journal,2012183(15):98-103.
    [92]Khan F I, Ghoshal A K. Removal of volatile organic compounds from polluted air[J]. Journal of Loss Prevention in the Process Industries,2000,13(6):527-545.
    [93]童志权.工业废气净化与利用[M].北京:化学工业出版社,2001.
    [94]Kennes C K, Veiga M C. Bioreactors for waste gas treatment[M]. London, Kluwer Academic Publishers,2001.
    [95]汤鸿.活性炭的吸附特性与表面改性研究[D].上海:复旦大学,2000.
    [96]王智慧.活性炭纤维吸附有机废气的活化再生研究[D].广州,华南理工大学,2005.
    [97]李善得.多孔疏水复合材料的研制及其对甲苯吸附的研究[D].广州,中山大学,2010.
    [98]林晓丹.活性炭纤维的制备及其对几种有机蒸汽的吸附研究[D].广州,中山大学,2005.
    [99]蔡河山,黎晓霞,徐颂.挥发性有机化合物的净化处理技术[J].化学工业与工程技术,2008,29(3):13-15
    [100]Vigneron S, Hermia J, Chaouki J. Characterization and control of odours and VOC in the process industries[M]. Amsterdam:Elsevier,1994.
    [101]李守信,宋剑飞,李立清,等.挥发性有机化合物处理技术的研究进展[J].化工环保,2008,28(1):1-4.
    [102]Moretti E C. Reduce VOC and HAP emissions[J]. Chemical engineering progress, 2002,98(6):30-40.
    [103]蒋廉颖,黄立维.挥发性苯类废气净化处理研究进展[J].广西轻工业,2010,26(6):99-100.
    [104]张林,陈欢林,柴红.挥发性有机物废气的膜法处理工艺研究进展[J].化工环保,2002,22(2):75-80.
    [105]蔡韵杰.蒸汽渗透、气体膜分离、膜基吸收3种膜技术用于挥发性有机废弃处理的分析[J].科技资讯,2012,(15):91.
    [106]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electr-ode[J]. Nature,1972,238:37-38.
    [107]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528):269-271.
    [108]Hoffmann M R, Martin S T, Choi W, et al. Environmental Applications of Semiconduc-tor Photocatalysis[J]. Chemical Review,1995,95(1):69-96.
    [109]Fujishima A, Zhang, X. Titanium dioxide photocatalysis:present situation and future approaches[J]. Comptes Rendus Chimie,2006,9(5-6):750-760.
    [110]Peral J, Ollis D F. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification:Acetone,1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation [J]. Journal of Catalysis,1992,136(2):554-565.
    [111]Alberici R M, Jardim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide[J]. Applied Catalysis B:Environmental,1997,14(1-2):55-68.
    [112]Avila P, Bahamonde A, Blanco J, et al. Gas-phase photo-assisted mineralization of volatile organic compounds by monolithic titania catalysts [J]. Applied Catalysis B: Environmental,1998,17(1-2):75-88.
    [113]胡海.泡沫金属负载纳米TiO2的制备、表征及其光催化性能的研究[J].上海:上海交通大学,2007.
    [114]Brown S K, Sim M R, Abramson M J, et al. Concentrations of volatile organic compo-unds in indoor air-a review[J]. Indoor Air,1994,4(2):123-134.
    [115]Ohtani B. Preparing articles on photocatalysis-beyond the illusions, misconceptions, and speculation [J]. Chemistry Letters,2008,37(3):217-229.
    [116]Zhao J, Yang X D. Photocatalytic oxidation for indoor air purification:A literature review[J]. Building and Environment,2003,38(5):645-654.
    [117]Wang S B, Ang H M, Tade M O. Volatile organic compounds in indoor environment and photocatalytic oxidation:State of the art[J]. Environment International,2007,33(5): 694-705.
    [118]Mo J H, Zhang Y P, Xu Q J, et al. Photocatalytic purification of volatile organic comp-ounds in indoor air:A literature review[J]. Atmospheric Environment,2009,43(14): 2229-2246.
    [119]吴祖良,周勇,高翔,等.放电等离子体处理VOCs的研究[J].电站系统工程,2003,19(4):7-9,12.
    [120]Dhali S K, Sardja I. Dielectric-barrier discharge for processing of SO2/NOX[J]. Journal of Applied Physics,1991,69(9):6319-6324.
    [121]Mudliar S, Giri B, Padoley K, et al. Bioreactors for treatment of VOCs and odours-A review[J]. Journal of Environmental Management,2010,91(5):1039-1054.
    [122]Leson G, Winer A M. Biofiltration:An innovative air pollution control technology for VOC emissions[J]. Journal of the Air and Waste Management Association,1991,41(8): 1045-1054.
    [123]Bohn H. Consider biofiltration for decontaminating gases [J]. Chemical Engineering Progress,1992,88(8):34-40.
    [124]Dawson D S. Biological treatment of gaseous emissions[J]. Water Environment Research,1993,65(4):368-371.
    [125]Tonga A P,Singh M. Biological vapor-phase treatment using biofilter and biotrickling filter reactors:practical operating regimes [J]. Environmental Progress,1994,13(2):94-97.
    [126]Dawson D S, Gokare M A. Gaseous emissions from wastewater facilities[J]. Water Environment Research,1994,66(4):375-378.
    [127]Pedersen A R, Arvin E. Removal of toluene in waste gases using a biological trickling filter[J]. Biodegradation,1995,6(2):109-118.
    [128]Dawson D S, Beyerlein-W L. Gaseous emissions from wastewater facilities[J]. Water Environment Research,1996,68(4):510-516.
    [129]Edwards F G, Nirmalakhandan N. Biological treatment of.airstreams contaminate with vocs:An overview[J]. Water Science and Technology,1996,34(3-4):565-571.
    [130]Dawson D S, Beyerlein W L. Gaseous emissions from wastewater facilities[J]. Water Environment Research,1997,69(6):550-554.
    [131]Cox H H J, Deshusses M A. Biomass control in waste air biotrickling filters by protoz-oan predation[J]. Biotechnology and Bioengineering,1999,62(2):216-224.
    [132]Cox H H J, Deshusses M A. Chemical removal of biomass from waste air biotrickling filters:screening of chemicals of potential interest[J]. Water Research,1999,33(10): 2383-2391.
    [133]D'Amato II R M, DeHollander G R. Gaseous emissions from wastewater facilities[J]. Water environment research,1999,71(5):715-720.
    [134]Devinny J S, Deshusses M A. Webster T S. Biofiltration for air pollution control[M]. Boca Raton:Lewis Publishers,1999.
    [135]Deshusses M, Johnson C T, Leson G. Biofiltration of high loads of ethyl acetate in the presence of toluene [J]. Journal of the Air and Waste Management Association,1999, 49(8):973-979.
    [136]Cox H H J, Deshusses M A. Innovative experimental setup for the parallel operation of multiple bench scale biotrickling filters for waste air treatment[J].2000,21(4):427-435.
    [137]Delhomenie M C, Heitz M. Biofiltration of air:A review[J]. Critical Reviews in Biotechnology,2005,25(1-2):53-72.
    [138]Dimitriou-Christidis P, Wilner H T. Gaseous emissions from wastewater facilities[J]. Water Environment Research,2009,81(10):1394-1405.
    [139]王家德,唐翔宇.有机废气的生物处理概述[J].上海环境科学,1998,17(4):21-24.
    [140]李琳,刘俊新.挥发性有机污染物与恶臭的生物处理技术及其工艺选择[J].环境污染治理技术与设备,2001,2(5):41-47.
    [141]孙佩石,杨显万.生物膜填料塔净化有机废气研究.中国环境科学,1996,16(2):92-95.
    [142]黄若华,杨海燕.甲苯废气的生物膜法净化处理研究[J].环境科学,1996,17(3):8-10.
    [143]马肖卫,李国建.生物法净化H2S气体的研究[J].环境工程,1994,12(2):18-21.
    [144]杨显万,黄若华,张玲琪,等.生物法净化废气中低浓度挥发性有机气体的过程机理研究[J].中国环境科学,1997,17(6):545-549.
    [145]孙珮石,黄若华,黄兵等.生物法净化低浓度挥发性有机废气的动力学问题探讨[J].环境科学学报,1999,19(2):153-158.
    [146]Shareefdeen Z, Singh A. Biotechnology for odor and air pollution control[M]. Berlin: Springer,2005.
    [147]Pomeroy R D. Controlling sewage plant odors[J]. Consulting Engeer,1963,20:101.
    [148]徐利行.中空纤维膜生物反应器净化挥发性有机气体的研究[D].上海:华东理工大学,2008.
    [149]张晓峰.中空纤维膜生物反应器净化二甲苯废气[D].上海:华东理工大学,2009.
    [150]Wu G, Dupuy A, Leroux A, et al. Peat based toluene biofiltration:a new approach to the control of nutrients and pH[J]. Environmental Technology,1999,20(4),367-376.
    [151]Bohn H. Considering biofiltration for decontaminating gases[J]. Chemical Engineering Progress,1992,88(4),34-40.
    [152]羌宁.气态挥发性有机化合物生物滴滤净化方法研究[D].上海:同济大学,1999.
    [153]王德民.生物滴滤器系统处理挥发性有机物及其动力学模式研究[D].上海:华东理工大学,2001.
    [154]Van Groenestijn J W, Hesselink P G M. Biotechniques for air pollution control[J]. Biodegradation,1993,4(4):283-301.
    [155]Ottengraf S P P. Biological systems for waste gas elimination[J]. Trends in Biotechnology,1987,5(5),132-136.
    [156]Dragt A J, van Ham J. Biotechniques for air pollution abatement and odor control policies[M]. Amsterdam:Elsevier,1992.
    [157]Hammervold R E, Overcamp T J, Grady Jr C P L, et al. Sorptive slurry bioscrubber for the control of acetone[J]. Journal of Air Waste Management Association,2000,50(6), 954-960.
    [158]Deziel E, Comeau Y, Villemur R. Two-liquid-phase bioreactors for enhanced degrada-tion of hydrophobic/toxic compounds[J]. Biodegradation,1999,10(3):219-233.
    [159]Edwards F G, Nirmalakhandan N. Modeling an airlift bioscrubber for removal of air-phase BTEX[J]. Journal of Environmental Engineering,1999125(11):1062-1070.
    [160]Jianping W, Xiaoqiang C Y J, Dongyan C. Simultaneous removal of ethyl acetate and ethanol in air streams using a gas-liquid-solid three-phase flow airlift loop bioreactor. Journal of Chemical Engineering,2005,106(2):171-175.
    [161]Alonso C, Zhu X, Suidan M T, et al. Parameter estimation in biofilter systems[J]. Environmental Science and Technology,2000,34(11),2318-2323.
    [162]Lu C, Lin M-R, Chu C. Effects of pH, moisture, and flow pattern on tricklebed air biofilter performance for BTEX removal [J]. Advance Environmental Research,2002, 6(2):99-106.
    [163]Thalasso F, Naveau H, Nyns E-J. Effect of dry periods in a "Mist-Foam" bioreactor designed for gaseous substrate [J].1996,17(8):909-913.
    [164]Dolfing J, Wijngaard A J, Janssen D B. Microbiological aspects of the removal of chlo-rinated hydrocarbons from air[J]. Biodegradation,1993,4(4):261-282.
    [165]Peixoto J, Mota M. Volatile organic compounds evaporation chamber for the simulation of gas effluents in laboratory research[J]. Biotechnology Techniques,1997 11(1):1-6.
    [166]Yang C. Rotating drum biofiltration[D]. Cincinnati:university of Cincinnati,2004.
    [167]Yang C, Suidan M, Zhu X, et al. Comparison of single-liyer and multi-layer rotating drum biofdters for VOC removal[J]. Environmental Progress,2003,22(2):87-94.
    [168]Yang C, Suidan M, Zhu X, et al. Removal of a volatile organic compound in a hybrid rotating drum biofilter[J]. Journal of environmental,2004,130(4):282-291.
    [169]Vinage I, Rohr R V. Biological waste gas treatment with a modified rotating biological contactor. I. Control of biofilm growth and long-term performance[J]. Bioprocess and Biosystems Engineering,2003,26(1):69-74.
    [170]Vinage I, Rohr R V. Biological waste gas treatment with a modified rotating biological contactor. II. Effect of operating parameters on process performance and mathematical modeling[J]. Bioprocess and Biosystems Engineering,2003,26(1):75-82.
    [171]Wang J, Wu C, Chen J, et al. Denitrification removal of nitric oxide in a rotating drum biofilter[J]. Chemical Engineering Journal,2006,121 (1):45-49.
    [172]王湛,周翀.膜分离技术基础[M].第二版,北京:化学工业出版社,2006.
    [173]杨座国.膜科学技术过程与原理[M].上海:华东理工大学出版社,2009.
    [1741郑领英.王学松.膜技术[M].北京:化学工业出版社,2000.
    [175]顾国维,何义亮.膜生物反应器——在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    [176]Judd S. The MBR book:Principles and applications of membrane bioreactors in water and wastewater treatment[M].2006, Oxford:Elsevier.
    [177]Bauerle U, Fischer K, Bardtke D. Biologische abluftreinigung mit hilfe eines neuartig-en permeationsreaktors[J]. Staub Reinhaltung der Luft,1986,46(5):233-235.
    [178]Reil M W, de Bont J S M Hartmans S, et al. Membrane bioreactor with a porous hydro-phobic membrane as a gas-liquid contactor for waste gas treatment[J]. Biotechnology and Bioengineering,1995,45(2):107-115.
    [179]Reij M W, Hamann E K, Hartmans S. Biofiltration of air containing low concentrations of propene using a membrane bioreactor [J]. Biotechnology Progress,1997,13(4):380-386.
    [180]周群英,王士芬.环境工程微生物学[M].第三版,北京高等教育出版社,2008.
    [181]孙玉梅.生物过滤法去除气态甲苯和乙酸乙酯的工艺和菌系状态的研究[D].大连:大连理工大学,2002.
    [182]刘永慧.生物过滤法净化高浓度多组分VOCs工艺研究[D].大连:大连理工大学,2002.
    [183]Reij M W, Keurentjes J T F, Hartmans S. Membrane bioreaction for waste gas treat-ment[J]. Journal of biotechnology,1998,59(3):155-167.
    [184]Attaway H, Gooding C H, Schmidt M G. Comparison of microporous and nonporous membrane bioreactor systems for the treatment of BTEX in vapor streams [J]. Journal of Industrial Microbiology and Biotechnology,2002,28(5):245-251.
    [185]Fitch M, Neeman J, England E. Mass transfer and benzene removal from air using latex rubber tubing and a hollow-fiber membrane module[J]. Applied Biochemistry and Biotechnology,2003,104(3):199-214.
    [186]Cox H H J, Sexton T, Shareefdeen Z M, et al. Thermophilic biotrickling filtration of ethanol vapors[J]. Environmental Science and Technology,2001,35(12):2612-2619.
    [187]郭思斯.二甲苯同分异构体三元系固-液相平衡研究[D].上海:同济大学,2008.
    [188]吴俊.二甲苯结晶工艺与粒度分布的研究[D].上海:同济大学,2009.
    [189]林良.脉冲放电等离子体处理二甲苯废气的研究[J].湖北:华中科技大学,2006.
    [190]乌锡康.化学物质环境数据简表(2011)[EB/OL]. http://www.9ele.com.
    [191]葛文锋.硫酸氢钠催化合成乙酸乙酯动力学研究[D].浙江:浙江大学,2009.
    [192]唐琳.吸附及变压吸附分离回收丙酮蒸气的数学模拟[D].湖南:湖南大学,2007
    [193]薛芳.生物滴滤法处理正丁醇废气的研究[D].上海:上海师范大学,2007.
    [194]吴石金.二氯甲烷降解菌的分离鉴定、降解特性及关键酶基因克隆与表达研究[D].浙江:浙江大学,2009.
    [195]杨义谟.二甲基硫醚的合成[J].辽宁化工,1998,27(4):223-225.
    [196]张所信,刘丽荣.二甲基硫醚废气的处理[J].吉林化工学院学报,2002,19(3):33-38.
    [197]De Bo I. Membrane biofiltartion of single-compound waste gas streams[D]. Belgium, Ghent:Universiteit Ghent,2003.
    [198]王丽萍,吴光前,何士龙,等.高效生物滴滤系统净化甲苯废气快速启动研究[J].哈尔滨工业大学学报,2004,36(4):446-449.
    [199]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第四版,北京:中国环境科学出版社.
    [200]席劲瑛.生物过滤塔处理挥发性有机物气体的研究[D].北京:清华大学,2005.
    [201]中华人民共和国水利部.顶空气相色谱法(HS-GC)测定水中芳香族挥发性有机物[P].SL 496-2010,2010.
    [202]汪锰,王湛,李政雄.膜材料及其制备[M].北京:化学工业出版社,2003.
    [203]陈勇,王从厚,吴鸣.气体膜分离技术与应用[J].北京:化学工业出版社,2004.
    [204]安树林.膜科学技术使用教程.北京:化学工业出版社,2005.
    [205]蒋克彬,彭松,刘宏杰,等.膜生物反应器的应用[M].北京:中国石化出版社,2012.
    [206]Van Groenestijn J W, Liu J X. Removal of alpha-pinene from gases using biofilters containing fungi[J]. Atmospheric Environment,2002,36(35):5501-5508.
    [207]Cox H H J, Moerman R E, van Baalen S, et al. Performance of a styrene-degrading bio-filter containing the yeast Exophiala jeanselmei[J].Biotechnology and Bioengineering 1997,53(3):259-266.
    [208]Smet E, Casaya G, Van Langenhove H, et al. The effect of inoculation and type of carri-er material used on the biofiltration of methyl sulfides[J]. Applied Microbiology and Biotechnology,1996,45(1-2):293-298.
    [209]Jacobs P, De Bo I, Demeestere K, et al. Toluene removal from waste air using a flat composite membrane bioreactor[J]. Biotechnology and Bioengineering,2004,85(1): 68-77.
    [210]赵康.地下水中挥发性有机污染物的原位气相生物修复新型技术研究[D].上海:华东理工大学,2011.
    [211]Luvsanjamba M, Kumar A, Van Langenhove H. Removal of dimethyl sulfide in a ther-mophilic membrane bioreactor[J]. Journal of Chemical Technology and Biotechnology, 2008,83(9):1218-1225.
    [212]Dingemansa M, Dewulf J, Braeckmana L, et al. Mass transfer characteristics for VOC permeation through flat sheet porous and composite membranes:the impact of the different membrane layers on the overall membrane resistance[J]. Journal of Membrane Science,2008,322(1):234-242.
    [213]Dingemansa M, Dewulf J, Hecke W V, et al. Determination of ozone solubility in poly-meric materials[J]. Chemical Engineering Journal,2008,138(1-3):172-178.
    [214]De Witte B, Dewulf J, Demeestere K, et al. Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water[J]. Journal of Hazardous Materials,2009, 161 (2-3):701-708.
    [215]Karoor S, Sirkar K K. Gas absorption studies in microporous hollow fiber membrane modules[J]. Industrial Engineering Chemical Research 1993,32(4):674-684.
    [216]Yang M C, Cussler E L. Designing hollow-fiber contactors[J]. AIChE Journal,1986, 32(11):1910-1916.
    [217]Morales M, Revah S, Auria R. Start-up and the effect of gaseous ammonia additions on a biofilter for the elimination of toluene vapors[J]. Biotechnology and Bioengineering, 1998,60(4):483-491.
    [218]Lee E Y, Jun Y S, Cho K S, et al. Degradation characteristics of toluene, benzene, ethylbenzene, and xylene by Stenotrophomonas maltophilia T3-c[J]. Journal of Air and Waste Management Association,2002,52(4):400-406.
    [219]Shareefdeen Z, Baltzis B C. Biofiltration of toluene vapor under steady-state and transient conditions:Theory and experimental results[J]. Chemical Engineering Science,1994,49(24A):4347-4360.
    [220]Weber F J, Hartmans S. Use of activated carbon as a buffer in biofiltration of waste gases with fluctuating concentrations of toluene[J]. Applied Microbiology and Biotechnology,1995,43(2):365-369.
    [221]Tang H M, Hwang S J, Hwang, S C. Dynamics of toluene degradation in biofilters[J]. Hazardous Waste and Hazardous Materials,1995,12(3):207-219.
    [222]Arnold M, Reittu A, von Wright A, et al. Bacterial degradation of styrene in waste gases using a peat filter[J]. Applied Microbiology and Biotechnology,1997,48(6):738-744.
    [223]Jorio H, Kiared K, Brzezinski R, et al. Treatment of air polluted with high concentrati-ons of toluene and xylene in a pilot-scale biofilter[J]. Journal of Chemical Technology and Biotechnology,1998,73(3):183-196.
    [224]Jorio H, Bibeau L, Viel G, et al. Effects of gas flow rate and inlet concentration on xylene vapors biofiltration performance[J]. Chemical Engineering Journal,2000,76(3): 209-221.
    [225]Zilli M, Palazzi E, Sene L, et al. Toluene and styrene removal from air in biofilters[J]. Process Biochemistry,2001,37(4):423-429.
    [226]Elmrini H, Bredin N, Shareefdeen Z, et al. Biofiltration of xylene emissions:bioreactor response to variations in the pollutant inlet concentration and gas flow rate[J]. Chemical Engineering Journal,2004,100(1-3):149-158.
    [227]Dehghanzadeh R, Torkian A, Bina B, et al. Biodegradation of styrene laden waste gas stream using a compost-based biofilter[J]. Chemosphere,2005,60(3):434-439.
    [228]Zilli M, C Guarino, D Daffonchio, et al. Laboratory-scale experiments with a powdered compost biofilter treating benzene-polluted air[J]. Process Biochemistry,2005,40(6): 2035-2043.
    [229]Jeong E, Hirai M, Shoda M. Removal of p-xylene with Pseudomonas sp. NBM21 in biofilter[J]. Journal of Bioscience and Bioengineering,2006,102(4):281-287.
    [230]Wu D, Quan X, Zhao Y, et al. Removal of p-xylene from an air stream in a hybrid biofilter[J]. Journal of Hazardous Materials,2006,136(2):288-295.
    [231]Singh R S, Agnihotri S S, Upadhyay S N. Removal of toluene vapour using agro-waste as biofilter media[J]. Bioresource technology,2006,97(18):2296-2301.
    [232]Mathur A K, Majumder C B, Chatterjee S. Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media[J]. Journal of Hazardous Materials,2007,148(1-2):64-74.
    [233]Alvarez-Hornos F J, Gabaldon C, Martinez-Soria V, et al. Biofiltration of ethylbenzene vapours:Influence of the packing material[J]. Bioresource Technology,2008,99(2): 269-276.
    [234]Jeong E, Hirai M, Shoda M. Removal of o-xylene using biofilter inoculated with Rhodococcus sp. BTO62[J]. Journal of Hazardous Materials,2008,152(1):140-147.
    [235]St-Pierre M C D, Ramirez A A, Heitz M, et al. Biofiltration of air contaminated by styrene vapors on inorganic filtering media:An experimental study[J]. Journal of the Air and Waste Management Association,2009,59(5):568-578.
    [236]Sakuma T, Hattori T, Deshusses M A. Comparison of different packing materials for the biofiltration of air toxics[J]. Journal of the Air and Waste Management Association, 2006,56(11):1567-1575.
    [237]Misiaczek O, Paca J, Halecky M, et al. Start-up and performance characteristics of a trickle bed reactor degrading toluene[J]. Brazilian Archives of Biology and Technology, 2007,50(5):871-877.
    [238]Li G, He Z, An T, et al. Comparative study of the elimination of toluene vapours in twin biotrickling filters using two microorganisms Bacillus cereus S1 and S2[J]. Journal of Chemical Technology and Biotechnology,2008,83(7):1019-1026.
    [239]He Z, Zhou L, Li G, et al. Comparative study of the eliminating of waste gas containing toluene in twin biotrickling filters packed with molecular sieve and polyurethane foam[J]. Journal of Hazardous Materials,2009,167(1-3):275-281.
    [240]Chen J M, Zhu R Y, Yang W B, et al. Treatment of a BTo-X-contaminated gas stream with a biotrickling filter inoculated with microbes bound to a wheat bran/red wood powder/diatomaceous earth carrier[J]. Bioresource Technology,2010,101(21):8067-8073.
    [241]Hassan A A, Sorial G. Sorial. Removal of benzene under acidic conditions in a contro-lled trickle bed air biofilter[J]. Journal of Hazardous Materials,2010,184(1-3):345-349.
    [242]Hwang J W, Choi C Y, Park S, et al. Biodegradation of gaseous styrene by Brevibacillus sp. using a novel agitating biotrickling filter[J]. Biotechnology Letters, 2008,30(7):1207-1212.
    [243]Rene E R, Lopez M E, Veiga M C, et al. Performance of a fungal monolith bioreactor for the removal of styrene from polluted air[J]. Bioresource Technology,2010,101(8): 2608-2615.
    [244]Jun C, Yifeng J, Haolei S, et al. Effect of key parameters on nitric oxide removal by an anaerobic rotating drum biofilter[J]. Environmental technology,2008,29(11):1241-1247.
    [245]Yang C, Chen H, Zeng G, et al. Modeling variations of medium porosity in rotating drum biofilter[J]. Chemosphere,2009,74(2):245-249.
    [246]Arriaga S, Mufioz R, Hernandez S, et al. Gaseous hexane biodegradation by fusarium solani in two liquid phase packed-bed and stirred-tank Bioreactors[J]. Environmental Science and Technology,2006,40(7):2390-2395.
    [247]Aldric J M, Thonart P. Performance evaluation of a water/silicone oil two-phase partitioning bioreactor using Rhodococcus erythropolis T902.1 to remove volatile organic compounds from gaseous effluents [J]. Journal of Chemical Technology and Biotechnology,2008,83(10):1401-1408.
    [248]Quijano G, Hernandez M, Thalasso F, et al. Two-phase partitioning bioreactors in envir-onmental biotechnology[J]. Applied Microbiology and Biotechnology,2009,84(5):829-846.
    [249]Kennes C, Rene E R, Veiga M C. Bioprocesses for air pollution control [J]. Journal of Chemical Technology and Biotechnology,2009,84(10):1419-1436.
    [250]Fouhy K. Cleaning waste gas, naturally[J]. Chemical Engineering,1992,99(12):41-46.
    [251]Koutinas M, Peeva L G, Livingston A G. An attempt to compare the performance of bioscrubbers and biotrickling filters for degradation of ethyl acetate in gas streams[J]. Journal of Chemical Technology and Biotechnology,2005,80(11):1252-1260.
    [252]Diks R M M, Ottengraf S P P. Verification studies of a simplified model for the remov-al of dichloromethane from waste gases using a biological trickling filter[J]. Bioprocess Engineering,1991,6(3):93-99.
    [253]Fitch M W, England E, Zhang B.1-Butanol removal from contaminated air stream under continuous and diurnal loading conditions[J]. Air and Waste Management Association,2002,52(11):1288-1297.
    [254]Alvarez-Hornos F J, Volckaert D, Heynderickx P M, et al. Performance of a composite membrane bioreactor for the removal of ethyl acetate from waste air[J]. Bioresource Technology,2011,102(19):8893-8898.
    [255]Hartmans S, Leenen, F J T M, Voskuilen G T H. Membrane bioreactor with porous hydrophobic membranes for waste gas treatment[J]. Studies in Environmental Science, 1992,51103-106.
    [256]Freitas dos Santos L M, Hommerich U, Livingston A G. Dichloroethaneremoval from gas streams by an extractive membrane bioreactor[J]. Biotechnology Progress,1995, 11(2):194-201.
    [257]Parvatiyar M G, Govind R, Bishop D F. Biodegradation of toluene in a membrane biofilter[J]. Journal of Membrane Science,1996,119(1):17-24.
    [258]Ergas S J, McGrath M S. Membrane bioreactor for control of volatile organic compou-nd emissions[J]. Journal of Environmental Engineering,1997,123(6):593-598.
    [259]Ergas S J, Shumway L, Fitch M W, et al. Membrane process for biological treatment of contaminated gas streams[J]. Biotechnology and Bioengineering,1999,63(4):431-441.
    [260]Kim D J, Kim H. Degradation of toluene vapor in a hydrophobic polyethylene hollow fiber membrane bioreactor with Pseudomonas putida[J].Process Biochemistry,2005, 40(6):2015-2020.
    [261]Kumar A, Luvsanjamba M, Dewulf J, et al. Continuous operation of membrane bioreactor treating toluene vapors by Burkholderia vietnamiensis G4[J]. Chemical Engineering Journal,2008,140(1-3):193-200.
    [262]Kumar A, Dewulf J, Vercruyssen A, et al. Performance of a composite membrane bioreactor treating toluene vapors:Inocula selection, reactor performance and behavior under transient conditions[J]. Bioresource Technology,2009,100(8):2381-2387.
    [263]Parvatiyar M G, Govind R, Bishop D F. Treatment of trichloroethylene (TCE) in a membrane biofilter[J]. Biotechnology and Bioengineering,1996,50(1):57-64.
    [264]Dolasa A R, Ergas S J. Membrane bioreactor for cometabolism of trichloroethene air emissions[J]. Journal of Environmental Engineering,2000,126(10):969-973.
    [265]Pressmann G, Georgiou G, Speitel G E. A hollow-fibre membrane bioreactor for the removal of trichloroethylene from the vapour phase[J]. Biotechnology and Bioengineering,2000,68(5):548-556.
    [266]Reij M W, Hartmans S. Propene removal from synthetic waste gas using a hollow fiber membrane bioreactor[J]. Applied Microbiology and Biotechnology,1996,45(6):730-736.
    [267]Min K N, Ergas S J, Harrison J M. Hollow-fiber membrane bioreactor for nitric oxide removal[J]. Environmental Engineering Science,2002,19(6):575-583.
    [268]Attaway H, Gooding C H, Schmidt M G. Biodegradation of BTEX vapors in a silicone membrane bioreactor system[J]. Journal of Industrial Microbiology and Biotechnology, 2001,26(5):316-325.
    [269]Attaway H, Gooding C H, Schmidt M G. Comparison of microporous and nonporous membrane bioreactor systems for the treatment of BTEX in vapor streams[J]. Journal of Industrial Microbiology and Biotechnology,2002,28(5):245-251.
    [270]Roberts M, England E, Bleckmann C. Cyclohexane removal in a dual-tube membrane [J]. Bioremediation Journal,2006,10(1-2):5-11.
    [271]俞汉青,郑煜铭,顾国维,等.活性污泥对四种非极性有机物的吸附[J].环境科学学报,2003,23(4):546-548.
    [272]夏北成.环境污染物生物降解[M].北京:化学工业出版社,2002.
    [273]Hwang S C J, Lee C M, Lee H C, et al. Biofiltration of waste gases containing both ethyl acetate and toluene using different combinations of bacterial cultures [J]. Journal of Biotechnology,2003,105(1-2):83-94.
    [274]Alvarez-Hornos F J, Volckaert D, Heynderickx P M, et al. Removal of ethyl acetate, n-hexane and toluene from waste air in a membrane bioreactor under continuous and intermittent feeding conditions[J]. Journal of Chemical Technology and Biotechnology, 2012,87(6):739-745.
    [275]杨然.平板膜生物反应器处理二甲苯和二氯甲烷复合气体[D].上海:华东理工大学,2013.
    [276]De Bo I, Van Langenhove H, Heyman J, et al. Dimethyl sulfide removal from synthetic waste gas using a flat poly(dimethylsiloxane)-coated composite membrane bioreactor [J]. Environmenal Science and Technology,2003,37(18):4228-4234.
    [277]Smet E, Van Langenhove H, Verstraete W. Long-term stability of a biofilter treating dimethyl sulphide[J]. Applied Microbiology and Biotechnology,1996,46(2):191 196.
    [278]Kumar A, Dewulf J, Van Langenhove H. Membrane-based biological waste gas treat-ment[J]. Chemical Engineering Journal,2008,136(2-3):82-91.
    [279]Kumar A, Chilongo T, Dewulf J, et al. Gaseous dimethyl sulphide removal in a membrane biofilm reactor:Effect of methanol on reactor performance[J]. Bioresource Technology,2010,101(23):8955-8959.
    [280]Hirai M, Ohtake M, Shoda M. Removal kinetics of hydrogen sulfide, methanethiol and methyl sulfide by peat biofilters[J]. Journal of Fermentation and Bioengineering,1990, 70(5):334-339.
    [281]Cho K S, Hirai M, Shoda M. Degradation characteristics of hydrogen sulfide, methane-tiole, dimethyl sulfide by Thiobacillus thioparus DW44 isolated from peat biofilter[J]. Journal of Fermentation and Bioengineering,1991,71,384-389.
    [282]Zhang L, Hirai M, Shoda M. Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hyphomicrobium sp.155 isolated from peat biofilter[J]. Journal of Fermentation and Bioengineering,1991,72(5):392-396.
    [283]Zhang Y, Liss N S, Allen D G. The effects of methanol on the biofiltration of dimethyl sulphide in inorganic biofilters[J]. Biotechnology and Bioengineering,2006,95(4):734-743.
    [284]Tanji Y, Kanagawa T, Mikami E. Removal of dimethyl sulfide, methyl mercaptan, and hydrogen sulfide by immobilized Thiobacillus thioparus Tk-M[J]. Journal of Fermentation and Bioengineering,1989,67(4):280-285.
    [285]Pol A, Op den Camp H J M, Mees S G M, et al. Isolation of a dimethylsulfide-utilizing Hyphomicrobium species and its application in biofiltration of polluted air[J]. Biodegradation,1994,5(2):105-112.
    [286]Ruokojarvi A, Aatamila M, Hartikainen T, et al. Removal of dimethyl sulfide from off-gas mixtures containing hydrogen sulfide and methanethiol by a biotrickling filter [J]. Environmental Technology,2000,21(10):1173-1180.
    [287]Ruokojarvi A, Ruuskanen J, Martikainen P J, et al. Oxidation of gas mixtures containi-ng dimethyl sulfide, hydrogen sulfide, and methanethiol using a two-stage biotrickling filter[J]. Journal of the Air and Waste Management Association,2001,51(1):11-16.
    [288]Sercu B, Nunez D, Aroca G, et al. Inoculation and start-up of a biotrickling filter removing dimethyl sulfide[J]. Chemical Engineering Journal,2005,113(2-3):127-134.
    [289]De Bo I, Van Langenhove H, Heyman J. Removal of dimethyl sulphide from waste air in a membrane bioreactor[J]. Desalination,2002,148(1-3):281-287.
    [290]Mohseni M, Allen D G. Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds[J]. Chemical Engineering Science,2000,55(9):1545-1558.
    [291]Deshusses M A, Hamer G, Dunn I J. Behavior of biofilters for waste air biotreatment.2. experimental evaluation of a dynamic model [J]. Environmental Science and Technology,1995,29 (4):1059-1068.
    [292]Smet E, Van Langenhove H, Verstraete W. Isobutyraldehyde as a competitor of the dimethyl sulfide degrading activity in biofilters [J]. Biodegradation,1997,8(1):53-59.
    [293]Moussavi G, Mohseni M. Using UV pretreatment to enhance biofiltration of mixtures of aromatic VOCs[J]. Journal of Hazardous Materials,2007,144(1-2):59-66.
    [294]Wang C, Xi J Y, Hu H Y. A novel integrated UV-biofilter system to treat high concentr-ation of gaseous chlorobenzene[J]. Chinese Science Bulletin,2008,53(17):2712-2716.
    [295]刘金英.膜生物反应器处理有机废气研究[D].大连:大连理工大学,2007.
    [296]赵阳.膜生物反应器处理挥发性有机废气研究[D].大连:大连理工大学,2010.
    [297]Wang C, Xi J Y, Hu H Y, et al. Effects of UV pretreatment on microbial community structure and metabolic characteristics in a subsequent biofilter treating gaseous chlorobenzene[J]. Bioresource Technology,2009,100(23):5581-5587.
    [298]Wang C, Xi J Y, Hu H Y, et al. Modeling of a combined ultraviolet-biofilter system to treat gaseous chlorobenzene Ⅰ:model development and parametric sensitivity [J]. Journal of the Air and Waste Management Association,2011,61(3):295-301.
    [299]Wang C, Xi J Y, Hu H Y, et al. Stimulative effects of ozone on a biofilter treating gase-ous chlorobenzene [J]. Environmental Science and Technology,2009,43(24):9407-9412.
    [300]Dytczak M A, Londry K, Siegrist H, et al. Extracellular polymers in partly ozonated return activated sludge:Impact on flocculation and dewaterability[J]. Water Science and Technology,2006,54(9):155-164.
    [301]Alvarez-Hornos F J, Izquierdo M, Martinez-Soria V, et al. Influence of ground tire rubber on the transient loading response of a peat biofilter[J]. Journal of Environmental Management,2011,92(8):1978-1985.
    [302]Moe W M, Qi B. Performance of a fungal biofilter treating gas-phase solvent mixtures during intermittent loading[J]. Water Research,2004,38(9):2259-2268.
    [303]McCarty P L. "Energetics and Bacterial Growth." in S.D. Faust and J.V. Hunter (eds) organic Compounds in Aquatic Environments[M]. New York:Marcel Dekker,1971.
    [304]McCarty P L. Stoichiometry of biological reactions[J]. Progress in Water Technology, 1975,7:157-172.
    [305]Sawyer C N, McCarty P L, Parkin G F. Chemistry for environmental engineering[M]. 4th ed, New York:McGrawHill,1994.
    [306]Rittman B E, McCarty P L. Environmental biotechnology:Principles and applications [M]. New York:McGrawHill,2001.
    [307]Melse R W, van der Werf A W. Biofiltration for mitigation of methane emission from animal husbandry[J]. Environmental Science and Technology,2005,39(14):5460-5468.
    [308]Liu D, Hansen M J, Guldberg L B, et al. Kinetic evaluation of removal of odorous contaminants in a three-stage biological air filter[J]. Environmental Science and Technology,2012,46(15):8261-8269.
    [309]Kwon S H, Cho D. A comparative, kinetic study on cork and activated carbon biofilters for VOC degradation[J]. Journal of Industrial and Engineering Chemistry,2009,15(1): 129-135.
    [310]Ramirez M, Gomez J M, Aroca G, et al. Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam[J]. Bioresource Technology,2009,100(21):4989-4995.
    [311]Yu H, Wilson F, Tay J H. Kinetic analysis of an anaerobic filter treating soybean waste-water[J]. Water Research[J].1998,32(11):3341-3352.
    [312]Borghei S M, Sharbatmaleki M, Pourrezaie P. Kinetics of organic removal in fixed-bed aerobic biological reactor[J]. Bioresource Technology,2008,99(5):1118-1124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700