簇毛麦染色体分子核型及染色体结构变异体库的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
簇毛麦(Haynaldia villosa L.)是小麦的一个野生近缘种,抗白粉病、锈病、全蚀病、眼斑病及黄花叶病等多种病害,同时还兼有抗寒耐旱、分蘖力强、密穗多花、籽粒蛋白质含量高等特性,是小麦遗传改良的优良基因源。为了定位、转移和利用簇毛麦的有益基因,本研究以硬粒小麦-簇毛麦双倍体花粉辐射的回交自交后代为材料,首先利用基因组原位杂交筛选小麦背景中只存在一种形式的簇毛麦染色体结构变异体,而后利用簇毛麦各条染色体的特异分子标记对这些结构变异体的身份进行鉴定,以此构建“普通小麦-簇毛麦染色体结构变异体库”
     第一部分:普通小麦-簇毛麦二体异附加系的选育与鉴定
     目前国际上有2套完整的簇毛麦二体异附加系,其簇毛麦来源与本研究所用的簇毛麦不同,农艺性状或优异特性也具有一定的差异。本研究在(中国春/硬粒小麦-簇毛麦双倍体(60Co-γ射线照射花粉)//中国春)的杂交回交后代中,应用基因组原位杂交和分子标记分析技术,从BCiF2和BC4F2代中选育并鉴定出分别涉及簇毛麦7条染色体的纯合二体附加系,花粉母细胞减数分裂中期Ⅰ染色体构型观察表明添加的一对簇毛麦染色体配对成环状或棒状二价体。利用选育鉴定的一套普通小麦-簇毛麦二体异附加系可以定位簇毛麦的优异基因。
     第二部分:簇毛麦染色体分子核型的建立
     对导入普通小麦背景中的簇毛麦染色体或染色体片段的准确鉴定是利用簇毛麦优异基因的前提。本研究旨在利用2个重复序列(pSc119.2、pAs1)和2个rDNA多基因家族(45S rDNA、5S rDNA)作为探针建立二倍体簇毛麦(VV,2n=14)染色体的分子核型,以用于鉴定小麦背景中的簇毛麦染色体或染色体片段。荧光原位杂交结果显示45S rDNA和5S rDNA分别只在簇毛麦1VS和5VS上有杂交信号,可分别作为1VS和5VS的细胞学标记;pSc119.2在簇毛麦7条染色体上都有杂交信号,信号分布于染色体的末端或亚末端,但有2对染色体只在短臂上有杂交信号,其信号的分布可区分簇毛麦全部7条染色体;pAs1在簇毛麦7条染色体上也都有杂交信号,信号较为丰富,分布于染色体的末端、亚末端、中部和着丝粒区域。利用2个重复序列pSc119.2、pAs1和2个rDNA多基因家族45S rDNA、5S rDNA对一套簇毛麦二体附加系进行荧光原位杂交分析,建立了由4种重复序列作探针的簇毛麦染色体分子核型。
     第三部分:簇毛麦染色体结构变异体库的构建
     别同德和曹亚萍先后利用60Co-γ射线照射硬粒小麦-簇毛麦双倍体即将成熟的花粉,然后授给已去雄的普通小麦中国春,在M1代即用基因组原位杂交检测到大量的簇毛麦染色体结构变异,并且大多数结构变异体能在后代中稳定传递。为获得尽可能多的结构变异体,我们首先利用基因组原位杂交筛选在小麦背景中只含有一种类型簇毛麦染色体结构变异的变异体,目前已筛选到140份结构变异体,其中小片段易位41份、大片段易位32份、整臂易位44份、缺失18份和簇毛麦插入型易位5份;随后在这些结构变异体的自交后代中,鉴定出了30份纯合体,包括小片段易位7份、大片段易位9份、整臂易位10份、缺失2份及簇毛麦插入型易位2份。
     为了更有效地鉴定这些簇毛麦染色体结构变异体,我们对簇毛麦的特异标记进行了加密,在选取的1576对引物中,共筛选到89个簇毛麦染色体特异标记,其中1V特异标记有2个、2V特异标记有14个、3V特异标记有8个、4V特异标记有8个、5V特异标记有41个、6V特异标记有2个及7V特异标记有14个。由于本实验室缺少涉及3V和7V的端体或整臂易位材料,我们利用pSc119.2和pAs1对2个端体和2个整臂易位材料进行双色荧光原位杂交分析,再与标准的簇毛麦染色体分子核型比较,结果表明单株TV60-1-8-27和TV60-1-8-18分别是3V的短臂和长臂的端体,单株TV54-5-5-22和TV54-5-5-21分别是7V短臂和长臂的整臂易位,利用这几个非整倍体材料我们将3V和7V染色体的特异标记定位到相应的染色体臂上,其中8个标记被定位到3VS上、1个标记被定位到3VL上;另外11个标记被定位到7VS上、7个标记被定位到7VL上。
     最后利用现有的分布于簇毛麦各条染色体上的124个特异标记,对这些结构变异体所涉及的簇毛麦的身份及变异区段进行了鉴定。目前,我们明确了67个结构变异体所涉及的簇毛麦染色体身份及变异区段,其中涉及1V的有8个、2V的有11个、3V的有5个、4V的有10个、5V的有9个、6V的有13个及7V的有11个,这些结构变异体涉及了簇毛麦不同的染色体区段,在此基础上初步构建了“普通小麦-簇毛麦染色体结构变异体库”。另外我们还将簇毛麦的特异标记定位到染色体的不同区段上;利用该库中涉及2VS的结构变异体结合表型观察,我们将簇毛麦的控制颖脊刚毛基因定位于2VS FL:0.00-0.33处。
Haynaldia villosa (L.) Schur (syn. Dasypyrum villosum (L.) Candargy) is a wild relative of common wheat(Triticum aestivum L.). It possesses many important agronomic traits, such as resistance to powdery mildew, leaf and stem rusts, take-all, eyespot, and wheat streak mosaic virus, as well as vigorous tillering ability, more spikelets, high grain protein content, and drought and frost tolerance. Therefore, it is a potential gene resource for wheat genetic improvement. To localize, transfer and utilize interested genes of H. villosa, Firstly, we screened common wheat lines carrying structurally changed chromosomes containing single segments of H. villosa by genomic in situ hybridization. Secondly, the specific molecular markers of individual chromosomes of H. villosa were used to identify these structurally changed chromosomes and construct "Triticum aestivum-Haynaldia villosa structural aberrance library"
     Section I Development and identification of T. aestivum-H. villosa disomic addition lines
     Now two sets of T. aestivum-H. villosa disomic addition lines were developed in the world, where from is different with H. villosa of our institute, and difference in agronomic or unique useful traits. Genomic in situ hybridization combined with molecular marker analysis were applied to detect chromosome of H. villosa in backcrossed and selfcrossed generations derived from (Chinese Spring/T. durum-H. villosa amphiploid (irradiated by60Co-γ rays)//Chinese Spring) in this study. A set of disomic addition lines involved in seven H. villosa chromosomes have been identified in BC3F2and BC4F2. The chromosome pairing behavior of H. villosa chromosomes at metaphase I (MI) of pollen mother cells (PMCs) were analyzed through using genomic in situ hybridization, one pair of H. villosa chromosomes paired ring or rod bivalent. Development and identification a set of T. aestivum-H. villosa disomic addition lines were used to localized useful genes of H, villosa.
     Section II Construction of molecular karyotyping of H, villosa chromosomes
     Identification the chromosomes or chromosome segments of H. villosa in common wheat background is first step to use the interested genes. The aim of the present work was to use two repetitive DNA sequences pSc119.2and pAs1, and two multigene families45S rDNA and5S rDNA as probes to construct molecular karyotyping of diploid H. villosa chromosomes (VV,2n=14), and identified the chromosomes or chromosome segments of H. villosa in wheat background. The results of fluorescence in situ hybridization showed the hybridization sites of the45S rDNA and5S rDNA were localized on1VS and5VS, respectively, and were cytogenetic marker for1VS and5VS. The pSc119.2as probe had a simpler distribution, whose signals were hybridized mainly on terminal or subterminal positions of both arms with the exception of the hybridization point on the short arm of two pair chromosomes. The signals generated by the pScl19.2probe were different on position and signals intensity. Meanwhile, they were uniquely identified. Furthermore, we used the pScl19.2in combination with pAsl as probes labeled with different fluorochromes to hybridize for H. villosa chromosomes. As a result, the pAsl as probe was more widely dispersed than pSc119.2over the H. villosa genome. We found pAs1hybridization sites on all of the chromosomes of H. villosa and practically on all of the chromosome arms. These hybridization points appear in terminal, subterminal, interstitial, and occasionally centromeric positions. The individual chromosomes which exhibited the fluorescence in situ hybridization signals were identified when using the pSc119.2and45S rDNA as probes to a set of T. aestivum-H. villosa disomic addition lines. Combining the genomic in situ hybridization and fluorescence in situ hybridization techniques allowed for all seven chromosomes of H. villosa for identification and constructed molecular karyotyping of H. villosa chromosomes.
     Section Ⅲ Construction of aberrance library of H. villosa chromosomes
     To induce as many as T. aestivum-H. villosa intergeneric translocation chromosomes involved in different chromosomes and chromosome segments of H. villosa, T. durum-H. villosa amphiploid was irradiated with60Co-γ rays, and pollens collected from the spikes after irradiation was pollinated to emasculated common wheat cv. Chinese Spring by Bie Tongde and Cao Yaping. Mass of H. villosa chromosomal aberrances were detected using genomic in situ hybridization technique in the M1and many of them could transmit to offspring. Firstly, we screened common wheat lines carrying structurally changed chromosomes containing single segment of H. villosa by genomic in situ hybridization. Up to date,140chromosomal structural changes were screened,41of small alien segment translocation,32of large alien segment translocation,44of whole arm translocation,18of chromosomal deletion and5of intercalary translocation of H. villosa, respectively.30homozygous plants were screened in these chromosomal structural changes,7of small alien segment translocation,9of large alien segment translocation,10of whole arm translocation,2of chromosomal deletion and2of intercalary of H, villosa, respectively.
     In order to better identify these structural chromosomal changes, we screened1576primer pairs and89of them could be used for tracing individual chromosomes of H. villosa,2for1V,14for2V,8for3V,8for4V,41for5V,2for6V and14for7V, respectively. These90specific molecular markers add to the existing markers earlier screened and developed in H. villosa. The telosomic chromosome or whole arm translocation of chromosome3V and7V were absent in our laboratory. Two telosomic chromosomes and two whole arm translocations were hybridized with pSc119.2and pAsl as probes. The results showed that the plant of TV60-1-8-27and TV60-1-8-18was telosomic chromosome of3VS and3VL, respectively. Meanwhile, the plant of TV54-5-5-22and TV54-5-5-21was7VS·W and W-7VL, respectively. Furthermore, the specific molecular markers of chromosome3V and7V were localized on corresponding chromosomal arm by using these aneuploid,8on3VS,1on3VL,11on7VS and7on7VL, respectively.
     Finally, these structural changes involving different chromosome and region of H. villosa were identified with124specific markers to individual chromosome. Now,67chromosomal structural changes were identified,8involving1V,11involving2V,5involving3V,10involving4V,9involving5V,13involving6V and11involving7V, respectively, and these aberrances involved different chromosomal region of H, villosa. We constructed "T. aestivum-H. villosa chromosomal aberrance library" based on above studies and the specific markers of H. villosa were localized on different chromosomal regions. The gene controlling bristles on the glume ridges was further located on2VS (FL:0.00-0.33) through observed the phenotype of involving chromosomal structural changes of2VS.
引文
]. 曹亚萍,曹爱忠,王秀娥,陈佩度.基于EST-PCR的簇毛麦染色体特异分子标记筛选及应用.作物学报,2009,35(1):1-10.
    2. 陈佩度,刘大钧,Gill BS.染色体分带和非整倍体技术在小麦细胞遗传中的综合运用.南京农业大学学报,1986,9(4):1-8.
    3. 陈佩度,齐莉莉,周波,刘大钧.抗白粉病普通小麦-簇毛麦易位系选育及分子细胞学分析.植物遗传理论与应用研讨会文集,1994:pp 350-355.
    4. 陈全战,亓增军,冯祎高,王苏玲,陈佩度.利用离果山羊草3C染色体诱导簇毛麦2V染色体结构变异.遗传学报,2002,9(4):355-358.
    5. 陈全战,王官锋,陈华锋,陈佩度.普通小麦-簇毛麦易位系T4VS·4VL-4AL的选育与鉴定.作物学报,2007,33(6):871-877.
    6. 陈全战,曹爱忠,亓增军,张伟,陈佩度.利用离果山羊草3C染色体诱导簇毛麦2V染色体结构变异.中国农业科学,2008, 41(2):362-369.
    7. 陈升位,陈佩度,王秀娥.利用电离辐射处理整臂易位系成熟雌配子诱导外源染色体小片段易位.中国科学C辑:生命科学,2008,38(3):215-220.
    8. 陈孝,徐惠君,杜丽璞,尚立民,韩彬,施爱农,肖世和.利用组织培养技术向普通小麦导入簇毛麦抗白粉病基因的研究.中国农业科学,1996,29(5):2-8.
    9. 董凤高,陈佩度,刘大钧.簇毛麦染色体的改良C-分带.遗传学报,1991,18(6):525-528.
    10.董玉琛.小麦的基因源.麦类作物学报,2000,20(3):78-81.
    11.贾继增.小麦分子标记研究进展.生物技术通报,1997,2:1-5.
    12.李桂萍,陈佩度,张瑞奇,王春梅,曹爱忠,张守忠.小麦-簇毛麦6VS/6AL易位染色体在不同小麦背景中的遗传稳定性及其在配子中的传递.麦类作物学报,2007,27(2):183-187.
    13.李集临,徐香玲,徐萍,郭长虹.利用中国春-山羊草2C二体附加系与中国春-偃麦草5E二体附加系杂交诱发染色体易位与缺失.遗传学报,2003,30(4):345-349.
    14.李懋学,张赞平.作物染色体及其研究技术.北京:中国农业出版社,1996.
    15.李淑梅,徐川梅,周波,陈佩度.普通小麦-簇毛麦2V染色体端体异附加系的选育与鉴定.南京农业大学学报,2009,32(1):1-5.
    16.刘大钧.外源基因在小麦育种中的利用.作物杂志,1994a,6:1-7.
    17.刘金元,陶文静,刘大钧,陈佩度,李万隆,向齐军,段霞瑜.小麦-簇毛麦易位系6VS/6AL中6VS的遗传传递及其所携带Pmm21基因的遗传稳定性分析.植物学报,1999,41(10):1058-1060.
    18.刘守斌,唐朝晖,尤明山,李保云,宋建民,刘广田.簇毛麦1V染色体SSR标记的筛选.作物学报,2004,30(2):138-142.
    19.马渐新,周荣华,贾激增,董玉琛.小麦背景中簇毛麦6V染色体的遗传稳定性及其在配子中的传递.遗传学报,1999,26(4):384-390.
    20.任晓琴,孙文献,陈佩度,刘大钧.普通小麦-大赖草6N二体异附加系的选育与鉴定.南京农业大学学报,1996,19(3):1-5.
    21.孙仲平,王占斌,徐香玲,李集临.利用杀配子染色体2C诱导中国春-黑麦二体附加系染色体畸变的研究.遗传学报,2004,31(11):1268-1274.
    22.王春梅,别同德,陈全战,曹爱忠,陈佩度.簇毛麦6V染色体短臂特异分子标记的开发和应用.作物学报,2007a,33(10):1595-1600.
    23.王春梅,冯祎高,庄丽芳,曹亚萍,亓增军,别同德,曹爱忠,陈佩度.普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选.作物学报,2007b,33(11):1741-1747.
    24.鄢慧民,宋运淳,李立家,李霞,付彬英.水稻Xa21基因在水稻和玉米中的比较物理定位.植物学报,1999,41(3):249-253.
    25.张自立,董广元.簇毛麦的染色体组型和带型.遗传,1984,6(1):19-20.
    26. Adams M D, Kelley J M, Jeannine D, Gocayne B, Dubnick M, et al. Complementary DNA sequencing expressed sequence tags and human genome project. Science,1991,252:1651-1656.
    27. Ambros P F, Matzke M A, Matzke A J M. Detection of a 17kb unique sequence (T-DNA) in plant chromosomes by in situ hybridization. Chromosoma,1986,94:11-18.
    28. Anamthawat-Jonsson K, Schwarzacher T, Leitch A R, Bennett M D, Heslop-Harrison J S. Discrimination between closely related Triticeae speciese using genomic DNA as a probe. Theor Appl Genet,1990,79:721-728.
    29. Ashida T, Nasuda S, Sato K, Endo T R. Dissection of barley chromosome 5H in common wheat. Genes Genet Syst,2007,82:123-133.
    30. Banks P M, Larkin P J, Bariana H S, Lagudah E S, Appels R. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome,1995,38:395-405.
    31. Barro F, Martin A, Cabrera A. Transgene integration and chromosome alterations in two transgenic lines of tritordeum. Chromosome Res,2003,11:565-572.
    32. Bedbrook J R, Jones J, O'Dell M, Thompson R D, Flavell R B. A molecular description of telomeric heterochromatin in Secale species. Cell,1980,19:545-560.
    33. Bennett S T, Kenton A Y, Bennett M D. Genomic in situ hybridiztion reveals the alloployploid nature of Milium montianum (Gramineae). Chromosoma,1992,101:420-424.
    34. Bie T D, Cao Y P, Chen P D. Mass production of intergeneric chromosomal translocatons through pollen irradiation of Triticum durum-Haynaldia villosa amphiploid. J Integr Plant Biol,2007,49: 1619-1626.
    35. Blanco A, Simeone R, Tanzarella O A. Morphology and chromosome pairing of a hybrid between Triticum durum Desf. and Haynaldia villosa (L.) Schur. Theor Appl Genet,1983,64:333-337.
    36. Blanco A, Orecchia C, Simeone R. Cytology, morphology and fertility of the amphiploid Triticum durum Desf. x Haynaldia villosa (L.) Schur. In:Sakamoto S. (eds). Proc 6th Int Wheat Genet Symp. Kyoto University, Kyoto,1984, pp 205-211.
    37. Blanco A, Simeone R, Resta P. The addition of Dasypyrum villosum (L.) Candargy Chromosomes to durum wheat (Triticum durum Desf.). Theor Appl Genet,1987,74:328-333.
    38. Blanco A, Resta P. Simeone R, Parmar S, Shewry P R, Sabelli P, Lafiandra D. Chromosomal location of seed storage protein genes in the genome of Dasypyrum villosum (L.) Candargy. Theor Appl Genet,1991,82:358-362.
    39. Bothmer R von, Claesson L. Production and meiotic pairing of intergeneric hybrids of Triticum x Dasypyrum species. Euphytica,1990,51:109-117.
    40. Bothmer R von, Claesson L. The hybrid Triticum turgidum ssp. dicoccum x Dasypyrum villosum and the cross and backcrosses to bread wheat, T. aestivum. Hereditas,1998,128:47-52.
    41. Brettel R I S, Banks P M, Cauderon Y, Chen X, Cheng Z M, Larkin P J, Waterhouse P M. A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Ann Appl Biol,1988,113:599-603.
    42. Brown S E, Stephens J L, Lapitan N L V, Knudson D L. FISH landmarkers for barley chromosomes (Hordeum vulgare L.). Genome,1999,42:274-281.
    43. Cai X W, Liu D J. Identification of a 1B/1R wheat rye translocation. Theor Appl Genet,1989,77: 81-83.
    44. Cao A Z, Wang X E, Chen Y P, Zou X W, Chen P D. A sequence-specific PCR marker linked with Pm21 distinguishes chromosome 6AS,6BS,6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breeding,2006,125:201-205.
    45. Cao Y P, Bie T D, Wang X E, Chen P D. Induction and transmission of wheat-Haynaldia villosa chromosomal translocations. J Genet Genomics,2009,36:313-320.
    46. Ceoloni C, Del Signore G, Pasquini M, Testa A. Transfer of mildew resistance from Aegilops longissimun into wheat by ph1 induced homoeologous recombination. In:Miller T E, Koebner R M D. (eds). Proc.7th Int. Wheat Genet. Symp. Cambridge, U.K.1988, pp 221-226.
    47. Ceoloni C, Del Signore G, Ercoli L, Donini E. Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistance transfer. Hereditas,1992,116:239-245.
    48. Chen P D, Liu D J. Cytogenetical studies of hybrid progenies between Triticum aestivum and Haynaldia villosa. Nanjing Agri Coll,1982,4:1-16.
    49. Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet,1995,91:1125-1128.
    50. Chen P D, Zhou B, Qi L L, Liu D J. Identification of wheat-Haynaldia villosa amphiploid, addition, substitution and translocation lines by in situ hybridization using biotin-labelled genomic DNA as a probe. Acta Genetica Sinica,1995b,22 (5):380-386.
    51. Chen Q, Conner R L, Laroche A. Molecular characterization of Haynaldia villosa chromatin in wheat lines carrying resistance to wheat curl mite colonization. Theor Appl Genet,1996,93: 679-684.
    52. Chen Y P, Wang H Z, Cao A Z, Wang C M, Chen P D. Cloning of a resistance gene analog from wheat and development of a co-domninant PCR marker for Pm21. J Integr plant Biol,2006,48 (6): 715-721.
    53. Cheng Z K, Stupar R M, Gu M H, Jiang J M. A tandemly repeated DNA sequence is associated with both knob-like heterochromatin and a highly decondensed structure in the meiotic pachytene chromosomes of rice. Chromosoma,2001a,110:24-31.
    54. Cheng Z K, Presting G G, Buell C R, Wing R A, Jiang J M. High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics, 2001b,157:1749-1757.
    55. Cheng Z K, Buell C R, Wing R A, Jiang J M. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res,2002,10:379-387.
    56. Choi H W, Lemaux P G, Cho M J. Use of fluorescence in situ hybridization for gross mapping of transgenes and screening for homozygous plants in transgenic barley (Hordeum vulgare L.) Theor Appl Genet,2002,106:92-100.
    57. de Jong J H, Fransz P, Zabel P. High resolution FISH in plants-techniques and applications. Trends Plant Sci,1999,4:258-263.
    58. De Pace C, Paolini R, Scarascia Mugnozza G T, Qualset C O, Delre V. Evaluation and utilization of Dasypyrum villosum as genetic resource for wheat improvement. In:Srivastava J P, Damania A B. (eds). Wheat genetic resource:Meeting diverse needs. New York.1990, pp 279-291.
    59. Devos K M, Gale M D. Comparative genetics in the grasses. Plant Mol Biol,1997,35:3-15.
    60. Dong F G, Song J, Naess S K, Helgeson J P, Gebhardt C, Jiang J M. Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet,2000,101: 1001-1007.
    61. Dong Y C. The genetic resource of wheat in China. Beijing:China Agriculture Press,2000, pp 34.
    62. Dore C, Cauderon Y, Chueca M C. Inflorescence culture of Triticum aestivum × Secale cereale hybrids:production, characterization and cytogenetic analysis of regenerated plants. Genome,1988, 30:511-518.
    63. Durnam D M, Gelinas R, Myerson D. Detection of species specific chromosomes in somatic cell hybrids. Somatic Cell Mol. Genet,1985,11:571-577.
    64. Endo T R. On the Aegilops chromosomes having gametocidal action on common wheat. Proc 5th Int Wheat Genet Symp. New Delhi,1978, pp 306-314.
    65. Endo T R. Selective gametocidal action of a chromosome of Aegilops cylindrical in a cultivar of common wheat. Wheat Inf Serv,1979,50:24-28.
    66. Endo T R. Gametocidal chromosomes of three Aegilops species in common wheat. Can J Genet Cytol,1981,24:201-206.
    67. Endo T R. An Aegilops longissima chromosome causing chromosome aberrations in common wheat. Wheat Inf Serv.1985a,60:29-29.
    68. Endo T R. Two types of gametocidal chromosome of Aegilops sharonensis and Ae. longissima. Jpn J Genet,1985b,60:125-135.
    69. Endo T R. Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica in common wheat. J Hered,1988a,79:366-370.
    70. Endo T R. Chromosome mutation induced by gametocidal chromosomes in common wheat. In: Miller T E and Koebner R M D. (eds). Proc 7th Int Wheat Genet Symp. Cambridge England,1988b, pp 259-265.
    71. Endo T R. Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jap J Genet,1990,65:135-152.
    72. Endo T R, Gill B S. The deletion stocks of common wheat. J Hered,1996,87:295-307.
    73. Fan Y S, Davis L M, Shows T B. Mapping small DNA sequences by fluorescence in situ hybridization directly on banded metaphase chromosomes. Proc Natl Acad Sci USA,1990,87: 6223-6227.
    74. Flavell R B. Repeated sequences and chromosome evolution in plants. Trans R Soc Lond B,1986, 312:227-242.
    75. Fransz P F, Alonso-Blanco C, Liharska T B, Peeters A J M, Zabel P, De Jong J H. High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibers. Plant J,1996,9 (3):421-430.
    76. Fransz P F, Armstrong S, Alonso-Blanco C, Fischer T C, Torres-Ruiz R A, Jones G. Cytogenetics for the model system Arabidopsis thaliana. Plant J,1998,13:867-876.
    77. Friebe B, Cermeno M C, Zeller F I. C-banding ploymorphism and the analysis of nucleolar activity in Dasypyrum villosum (L.) Candargy, its added chromosomes to hexaploid wheat and the amphiploid Triticum dicoccum-D. villosum. Theor Appl Genet,1987,73:337-342.
    78. Friebe B, Larter E N. Identification of a complete set of isogenic wheat-rye D-genome substitution lines by means of Giemsa C-banding. Theor Appl Genet,1988,76:473-479.
    79. Friebe B, Hatchett J H, Sears R G, Gill B S. Transfer of Hessian fly resistance from 'Chaupon' rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor Appl Genet,1990, 79:385-389.
    80. Friebe B. Identification of alien chromatin specifiying resistance to wheat steak mosaic virus and greenbug in wheat germplasm by C-banding and in situ hybridization. Theor Appl Genet,1991a,81: 381-389.
    81. Friebe B, Mukai Y, Gill B S, Cauderon Y. C-banding and in situ hybridization analyses of Agropyron intermedium, a partial wheat x Ag.intermedium amphiploid, and six derived chromosome addition lines. Theor Appl Genet,1992b,84:899-905.
    82. Friebe B, Jiang J M, Gill B S, Dyck P L. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translations conferring resistance to leaf rust. Theor Appl Genet, 1993b,86:141-149.
    83. Friebe B, Gill B S. Chromosome banding and genome analysis in diploid and cultivated polyploid wheats, In:Jauhar P P. (eds). Methods of genome analysis in plants. CRC press, Boca Raton, Florida,1996, pp 39-60.
    84. Friebe B, Jiang J M, Raupp W J, McIntosh R A, Gill B S. Characterization of wheat-alien translocations conferring resistance to diseases and pests:current status. Euphytica,1996b,91: 59-87.
    85. Friebe B, Zhang P, Line G, Gill B S. Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet Genome Res,2005,109:1-3.
    86. Fu J, Chen S Y, Zhang A J. Research on synthesis, fertility and cytogenetics of Triticum aestivum and Haynaldia villosa amphiploid (AABBDDW). Acta Genetica Sinica,1989,16 (5):348-356.
    87. Fukui K, Ohmido N, Khush G S. Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor Appl Genet,1994,87:893-899.
    88. Gale M D, Miller T E. The introduction of alien genetic variation into wheat. In:Lupton F G H. (eds). Wheat breeding-Its scientific basis.1987:pp 173-210.
    89. Gall J G, Pardue M L. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA,1969,63:378-383.
    90. Gill B S, Kimber G. Giemsa C-banding and the evolution of wheat. Proc Natl Acad Sci USA,1974b, 71:4086-4090.
    91. Gill B S, Friebe B, Endo T R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberration in wheat. Genome,1991,34:830-834.
    92. Gill B S, Friebe B. Plant cytogenetics at the dawn of the 21st century. Curr Opin Plant Biol,1996,1: 109-115.
    93. Gonzalez A I, Pelaez M I, Ruiz M L. Cytogenetic variation in somatic tissue cultures and regenerated plants of barley (Hordeum vulgare L.). Euphytica,1996,91:37-43.
    94. Gupta P K, Fedeak G, Molnar S J. Distribution of a Secale cereal DNA repeat sequence among 25 Hordeum species. Genome,1989,32:383-388.
    95. Hart G E. Genetics and evolution of multilocus isozymes in hexaploid wheat. In:Isozymes-Current Topics in Biological and Medical Reasearch. Alan, R. Liss, Inc., New York,1983,10:365-380.
    96. Hart G E. Molecular genetic maps of the group 6 chromosome of hexapod wheat(Triticum aestivum L. em Thell.). Genome,1996,39:359-366.
    97. Heng H Q H, Spyropoulos B, Moens P B. FISH technology in chromosome and genome research. Genes and genomes,1997,19 (1):75-84.
    98. Hsiao C, Chatterton N J, Asay K H, Jensen K B. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome,1995,38 (2):211-223.
    99. Hyde B B. Addition of the genome of Haynaldia villosa to Triticum aestivum. Amer J Botany, 1953a,40:168-174.
    100. Hyde B B. Addition of individual Haynaldia villosa chromosomes to hexaploid wheat. Amer Jour Botany,1953b,40:174-182.
    101. Jackson S A, Wang M L, Goodman H M, Jiang J M. Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome,1998,41:566-572.
    102. Jackson S A, Dong F G, Jiang J M. Digital mapping of bacterial artificial chromosome by fluorescence in situ hybridization. Plant J,1999,17 (5):581-587.
    103. Jackson S A, Cheng Z K, Wang M L, Goodman H M, Jiang J M. Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rape genome. Genetics,2000,156:833-838.
    104. Jackson S A, Zhang P, Chen W P, Phillips R L, Friebe B, Muthukrishnan S, et al. High-resolution structural analysis of biolistic transgene integration into the nuclear genome of wheat. Theor Appl Genet,2001,103:56-62.
    105. Jan C C, De Pace C, McGuire P E, Qualset C O. Hybrids and amphiploids of Triticum aestivum L. and T. turgidum L., with Dasypyrum villosum (L.) Candargy. Z. Pflanzenzuchtg,1986,96:97-106.
    106. Jia J Z, Devos K M, Chao K S, Miller T E, Reader S M, Gale M D. RFLP-based maps of the homoeologous group 6 chromosomes of wheat and their application in the tagging of Pml2, a powdery mildew resistance gene transferred from Aegilops speltoids to wheat. Theor Appl Genet, 1996,92:559-565.
    107. Jiang J M, Gill B S. Sequential chromosome banding and in situ hybridization analysis. Genome, 1993a,36:792-795.
    108. Jiang J M, Friebe B, Dhaliwal H S, Martin T J, Gill B S. Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theor Appl Genet,1993b,86:41-48.
    109. Jiang J M, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat. Euphytica,1994a, 73:199-212.
    110. Jiang J M, Gill B S, Wang G L, Ronald P C, Ward D C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA,1995,92:4487-4491.
    111. Jiang J M, Gill B S. Current status and the future of fluorescence in situ hybridization (FISH) in plants genome research.Genome,2006,9 (49):1057-1068.
    112. Johnson S S, Phillips R L, Rines H W. Meiotic behavior in progeny of tissue culture regenerated oat plants (Avena sativa L.) carrying near-telocentric chromosomes. Genome,1987a,29:431-438.
    113. Johnson S S, Phillips R L, Rines H W. Possible role of heterochromatin in chromosome breakage induced by tissue culture in oats (Avena sativa L.). Genome,1987b,29:439-446.
    114. Jones J D G, Flavell R B. The mapping of highly-repeated DNA families and their relationship to C-bands in chromosomes of Secale cereale. Chromosoma,1982,86:595-612.
    115. Karp A, Maddock S E. Chromosome variation in wheat plants regenerated from cultured immature embryos. Theor Appl Genet,1984,67:249-255.
    116. Kerber E R, Dyck P L. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seeding stem rust resistance from an amphiploid of Aegilops spettoides × Triticum monococcum. Genome,1990,33:530-537.
    117. Kim J S, Childs K L, Faridi M N, Menz M A, Klein R R, Klein P E, et al. Intergrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome,2002,45:402-412.
    118. Kim J S, Klein P E, Klein R R, Price H J, Mullet J E, Stelly D M. Chromosome identification and nomenclature of Sorghum bicolor. Genetics,2005,169:1169-1173.
    119. Kim N S, Armstrong K, Knott D R. Molecular detection of Lophopyrum chromatin in wheat-Lophopyrum recombinants and their use in the physical mapping of chromosome 7D. Theor Appl Genet,1993,85:561-567.
    120. Kimber G, Athwal B S. A reassessment of the course of evolution of wheat. Proc Natl Acad Sci USA,1972,69:912-915.
    121. Knott D R, Dvorak J, Nanda J S. The transfer to wheat and homology of an Agropyron elongatum chromosome carrying a resistance gene to stem rest. Can J Genet Cytol,1977,19:75-79.
    122. Koebner R M D, Shepherd K W. Induction of recombination between rye chromosome 1RL and wheat chromosomes. Theor Appl Genet,1985,71:208-215.
    123. Koebner R M D, Shepherd K W, Appels R. Controlled introgression to wheat of genes from rye chromosome arm IRS by induction of allosyndesis. Theor Appl Genet,1986,73:209-217.
    124. Koo D H, Plaha P, Lim Y P, Hur Y, Bang J W. A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor Appl Genet,2004,109:1346-1352.
    125. Kostoff D. Chromosome behavior in Tritinum hybrids and allied genera. Ⅲ. Triticum-Ⅱaynaldia Hybrids. Zeitschr Zucht A,1937,21:380-382.
    126. Langer-Safer P R, Levine M, Ward D C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA,1982 79:4381-4385.
    127. Lapitan N L V, Sears R G, Gill B S. Translocation and other karyotypic structural changes in wheat × rye hybrids regenerated from tissue culture. Theor Appl Genet,1984,68:547-554.
    128. Larkin P J, Scowcroft W R. Somaclonal variation a novel source of variability from cell cultures for plant improvement. Theor Appl Genet,1981,60:197-214.
    129. LaRota M, Sorrells M E. Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between wheat and rice. Funct Integr Genomics,2004,4: 34-46.
    130. Lawrence J B, Singer R H, McNeil J A. Chromosomal location of genes controlling seed protein in species related to wheat. Theor Appl Genet,1981,59:25-31.
    131. Lawrence J B, Singer R H, McNeil J A. Interphase and metaphase resolution of different distance within the human dystrophia gene. Science,1990,249:928-932.
    132. Le H T, Armstrong K C, Miki B. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep,1989,7:150-158.
    133. Leitch A R, Mosgoller W, Schwarzacher T, Bennett M D, Heslop-Harrison J S. Genomic in situ hybridization to sectioned nuclei shows chromosome domains in grass hybrids. J Cell Sci,1990,95: 335-341.
    134. Leitch J J, Leitch A R, Heslop-Harrison J S. Physical mapping of plant DNA sequences by simultaneous in situ hybridization of two differently labelled fluorescent probes. Genome,1991a, 34:329-333.
    135. Leitch J J, Heslop-Harrison J S. Physical mapping for four sites of 5S rDNA sequences and one side of the alpha-amylase gene in barley(Hordeum vulgare). Genome,1993,36:517-523.
    136. Li H, Chen X, Xin Z Y, Ma Y Z, Xu H J. Development and identification of wheat-Haynaldia villosa 6DL/6VS translocation lines with powdery mildew resistance. Sci Agric Sin,1999,32:9-15.
    137. Li H, Chen X, Xin Z Y, Ma Y Z, Xu H J, Chen X Y, Jia X. Development and identification of wheat-Haynaldia villosa T6DL-6VS chromosome translocation lines conferring resistance to powdery mildew. Plant Breeding,2005,124:203-205.
    138. Li H F, Gill B S, Wang X E, Chen P D. A Tal-Ph1 wheat genetic stock facilitates efficient alien introgression. Genet Resour Crop Evol, Online FirstTM,5 October,2010.
    139. Li H J, Guo B H, Li Y W, Du L Q, Jia X, Chu C C. Molecular cytogenetic analysis of intergeneric chromosomal translocations between wheat (Triticum aestivum L.) and Dasypyrum villosum arising from tissue culture. Genome,2000a,43:756-762.
    140. Li H J, Guo B H, Zhang Y M, Li Y W, Du L Q, Li Y X, Jia X, Zhu Z Q. High efficient intergeneric chromosomal translocations between wheat (Triticum aestivum L.) and Dasypyrum villosum arising from tissue culture and irradiation. Acta Genetica Sinica,2000b,27 (6):511-519.
    141. Li H J, Conner R L, Chen Q, Jia X, Li H, Graf R J, Laroche A, Kuzyk A D. Different reactions to the wheat curl mite and wheat streak mosaic virus in various wheat-Haynaldia villosa 6V and 6VS lines. Plant Dis,2002,86:423-428.
    142. Li W L, Chen P D, Qi L L, Liu D J. Isolation, characterization and application of a species-specific repeated sequence from Haynaldia villosa. Theor Appl Genet,1995,90:526-533.
    143. Lichter P, Tang C C, Call K, Hermanson G, Evans G A, Housman D, Ward D C. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science (Washington, D. C.),1990,247:64-69.
    144. Lilienfeld F, Kihara H. Genomanalyse bei Triticum timopheevi, Zhuk. Cytologia,1934,6:87-122.
    145. Linde-Laursen I, Jensen H P, Jorgensen J H. Resistance of Trilicale, Aegilops and Haynaldia species to the take-all fungus, Gaeumannomyces graminis. Z. Pflanzenzuchtung,1973,70: 200-213.
    146. Liu D J, Chen P D. N-banding in Haynaldia villosa and Triticum durum-H.villosa amphiploid. Acta Genet Sin,1984,11 (2):106-108.
    147. Liu D J, Chen P D, Wu P L, Wang Y N, Qiu B X, Wang S L. Triticum durum-Haynaldia villosa amphiploid. Acta Agronomica Sinica,1986,12(3):149-162.
    148. Liu D J, Chen P D, Pei G Z, Wang X N, Qiu B X, Wang S L. Transfer of Haynaldia villosa chromosomes into Triticum aestivum. In:Miller T E, Koebner R M D. (eds). Proc 7th Int Wheat Genet Symp, Cambridge, U.K.1988:pp 355-361.
    149. Liu D J, Chen P D, Raupp W J. In:Xin Z Y (eds). Proc 8th Int Wheat Genet Symp, China Agricultural Scientech Press, Beijing, China,1993, pp 181-185.
    150. Mann S S. Exclusive preferential transmission of an alien chromosome in common wheat. Crop Sci, 1975,15:287-292.
    151. Mann S S. Alien chromosome controlling sporophytic sterility in common wheat. Crop Sci,1976, 16:580-583.
    152. Masoudi-Nejad A, Nasuda S, Marie-Therese B, et al. An alternative to radiation hybrid mapping for large-scale genome analysis in barley. Mol Gen Genomics,2005,274:589-594.
    153. McFadden E S, Sears E R. The genome approach in radical wheat breeding. Jour Amer Soci Agron, 1947,39:1011-1026.
    154. McIntosh R A. Cytogenetical studies in wheat. XVI. Chromosome location of a gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica.1995,82:141-147.
    155. McIntyre C, Pereira S, Moran L B, Appels R. New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome,1990,33:635-640.
    156. Mesbah M, Eden J W, de Jong J H, de Bock T S M, Lange W. FISH to mitotic chromosomes and extended DNA fibres of beta procumbens in a series of monosomic addition to beet. Chromosome Res,2000,8:285-293.
    157. Miller T E. Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat. Theor Appl Genet,1982,61:27-33.
    158. Molnar S J, Wheatcroft R, Fedak G. RFLP analysis of Hordeum species relationships. Hereditas, 1992,116:87-91.
    159. Molnar-Lang M, Galiba G, Kovacs. Changes in the fertility and meiotic behavior of barley (Hordeum vulgare)× wheat (Triticum aestivum) hybrids regenerated from tissue cultures. Genome, 1990,34:261-266.
    160. Monte J V, Mclintyre C L, Gustafson JP. Analysis of phylogenetic relationships in the Triticeae tribe using RFLPs. Theor Appl Genet,1993,86:649-665.
    161. Montebove L, De Pace C, Jan C C, Scarascia Mugnozza G T, Qualset C 0. Chromosomal location of isozyme and seed storage protein genes in Dasypyrum villosum (L.) Candargy. Theor Appl Genet, 1987,73:836-845.
    162. Moscone E A, Matzke M A, Matzke A J M. The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma,1996,105:231-236.
    163. Mukai Y, Endo T R, Gill B S. Physical mapping of the 5S rRNA multigene family in common wheat. J Hered,1990,81:290-295.
    164. Mukai Y, Gill B S. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome,1991a,34:448-452.
    165. Mukai Y, Endo T R, Gill B S. Physical mapping of the 18S-26S rRNA multigene family in common wheat:Identification of a new locus. Chromosoma,1991b,100:71-78.
    166. Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome,1993a,36:489-494.
    167. Murata M, Heslop-Harrison J S, Motoyoshi F. Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones. Plant J, 1997,12:31-37.
    168. Murray T D, De La Pena R C, Yildirim A, Jones S S. A new source of resistance to Pseudocereasporella herpotricoides, cause of eye spot disease of wheat, located on chromosome 4V of Dasypyrum villosum. Plant Breeding,1994,113:281-286.
    169. Nasuda S, Kikkawa Y, Ashida T, Rafiqul Islam A K M, Sato K, Endo T R. Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet Syst,2005,80:357-366.
    170. Ohmido N, Kijima K, Akiyama Y, De Jong J H, Fukui K. Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet,2000,263:388-394.
    171. Okamoto M. Asynaptic effect of chromosome V. Wheat Inf Serv,1957,5:6.
    172. Papp I, Iglesias V A, Moscone E A. Structural instability of a transgene locus in tobacco is associated with aneuploidy. Plant J,1996,10:469-478.
    173. Payne P I, Corfield K G, Blackman J A. Identification of a high-molecular-weight subunit of glutenin whose presence correlates with bread-making quality in wheat of related pedigree. Theor Appl Genet,1979,55:153-159.
    174. Payne P I, Law C N, Mudd E E. Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet, 1980,58:113-120.
    175. Pedersen C, Linde-Laursen I. Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res,1994,2:67-71.
    176. Pedersen C, Rasmussen, Linde-Laursen I. Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome,1996,39:93-104.
    177. Pedersen C, Langridge P. Identification of the entire chromosome complement of bread wheat by two-color FISH. Genome,1997,40:589-593.
    178. Pickering R A. Plant regeneration and variants from calli derived from immature embryos of diploid barley (Hordeum vulgare L.) and H. vulgare L. x H. bulbosum L. crosses. Theor Appl Genet, 1998,78:105-112.
    179. Pinkel D, Straume T, Gray J W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA,1986,83:2934-2938.
    180. Prem P, Jauhar, Terrance S, Peterson R, et al. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome,2009, 52:467-483.
    181. Qi L L, Chen P D, Liu D J, Zhou B, Zhang S Z. Development of translocation lines of Triticum aestivum with powdery mildew resistance introduced form Haynaldia villosa. In Proc.8th Inter. Wheat Genet. Symp. Beijing, China,1993, pp 333-337.
    182. Qi L L, Chen P D, Liu D J. The gene Pm21-a new source of resistance to wheat powdery mildew. ActaAgron Sin,1995b,21 (3):257-262.
    183. Qi L L, Cao M S, Chen P D, Li W L, Liu D J. Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome,1996,39:191-197.
    184. Qi L L, Wang S L, Chen P D, Liu D J, Gill B S. Identification and physical mapping of three Haynaldia villosa chromosome-6V deletion lines. Theor Appl Genet,1998,97:1042-1046.
    185. Qi L L, Chen P D, Liu D J, Gill B S. Homoeologous relationships of Haynaldia villosa chromosomes with those of Triticum aestivum as revealed by RFLP analysis. Genes Genet Syst, 1999,74:77-82.
    186. Qi L L, Echalier B, Chao S, Lazo G R, et al. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics,2004,168: 701-712.
    187. Qi L L, Pumphrey M O, Friebe B, Zhang P, Qian C, Bowden R L, Rouse M N, Jin Y, Gill B S. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor Appl Genet,2011, 123:159-167.
    188. Ramos M L, Fleming G, Chu Y, et al. Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence. Mol Gen Genomics,2006,275:578-592.
    189. Rayburn A L, Gill B S. Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered,1985a,76:78-81.
    190. Rayburn A L, Gill B S. Molecular identification of the D-genome chromosomes of wheat. J Hered, 1986,77:253-255.
    191. Rayburn A L, Gill B S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep,1987,4:102-109.
    192. Reader S M, Abbo S, Purdie K A. Direct labeling of plant chromosome by rapid in situ hybridization. Trend Genet,1994,10:265-266.
    193. Riley R, Chapman V. Genetic control of the cytologically diploid behavior of hexaploid wheat. Nature,1958,182:713-715.
    194. Riley R, Chapman V, Johnson R. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature,1968,217:383-384.
    195. Salvo-Garrido H, Travella S, Bilham L J, Harwood W A, Snape J W. The distribution of transgene insertion sites in barley determined by physical and genetic mapping. Genetics,2004,167: 1371-1379.
    196. Sando W J. Intergeneric hybrids of Triticum and Secale with Haynaldia villosa. J Agric Res,1935, 51:759-800.
    197. Sanz J C, et al. Chromosomal location by F1 monosomic analysis of endosperm proteins in bread wheat 2. Two-dimensional fraction of gliadins. Theor Appl Genet,1988,76:933-940.
    198. Schwarzacher T, Leitch A R, Bennett M D. In situ localization of parental genomes in wide hybrid. Ann Bot (London),1989,64:315-324.
    199. Schwarzacher T, Anamthawat-J6nsson K, Harrison G E, Islam A K M R, Jia J Z, King I P, Leitch A R, Miller T E, Reader S M, Rogers W J, Shi M, Heslop-Harrison J S. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet,1992,84: 778-786.
    200. Sears E R. Misdivision of univalents in common wheat. Chromosoma,1952,4:535-550.
    201. Sears E R. Addition of genome of Haynaldia villosa to Triticum aestivum. Am J Bot,1953,40: 168-174.
    202. Sears E R. The aneuploids of common wheat. Mo Agr Exp Sta Res Bull,1954,572:1-59.
    203. Sears E R. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symposia in Biology,1956,9:1-22.
    204. Sears E R., Okamoto M. Intergenomic chromosome relationships in hexaploid wheat. In:Proc. Tenth Intl Congr Genet,1958,2:258-259.
    205. Sears E R. Chromosome engineering in wheat. In:Stadler Symposia, Univ of Missouri, Columbia. 1972,4:23-38.
    206. Sears E R. An induced homoeologous-pairing mutant in Triticum aestivum. Genetics,1975,80:74.
    207. Sears E R. Transfer of alien genetic material to wheat. In:Euans L T, Peacock W J. (eds). Wheat Science-Today and Tomorrow. Cambridge Uni Press, New York,1981, pp 75-89.
    208. Sears E R. Use of irradiation to transfer alien chromosome segments to wheat. Crop Sci,1993,33:897-901.
    209. Sears R G, Deckard E L. Tissue culture variability in wheat callus induction and plant regeneration. Crop Sci,1982,22:546-550.
    210. Sears R G, Hatchett J H, Cox T S, Gill B S. Registration of Hamlet, a Hessian fly resistant hard red winter wheat germplasm. Crop Sci,1992,32:506.
    211. Sharma H, Ohm H, Goulart L, Lister R, Appels R, Benlhabib O. Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome,1994, 38:406-413.
    212. Sharp P J, Kreis M, Shewry P. Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet,1988,75:289-290.
    213.Shen D L, Wang Z F, Wu M. Gene mapping on maize pachytene chromosomes by in situ hybridization. Chromosoma,1987,95:311-314.
    214. Shi F, Endo T R. Genetic introduction of chromosome rearrangements in barley chromosome 7H added to common wheat. Chromosoma.2000,109:358-363.
    215. Simpson P R, Newman M A, Davies D R. Detection of legumin gene DNA sequences in pea by in situ hybridization. Chromosoma,1988,96:454-458.
    216. Snape J W, Parker B B, Simpson E, Ainsworth C C, Payne P I, Law C N. The use of irradiated pollen for differential gene transfer in wheat (Triticum aestivum). Theor Appl Genet,1983,65: 103-111.
    217. Snowdon R J, Friedrich T, Friedt W, Kohler W. Identifying the chromosomes of the A- and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor Appl Genet,2002,104:533-538.
    218. Speicher M R, Ballard S G, Ward D C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet,1996,12 (4):368-375.
    219. Sprague R. Relative susceptibility of certain species of Gramineae to Cercosporella herpotrichoides. J Agric Res,1936,53:659-670.
    220. Svitashev S, Ananiev E, Pawlowski W P. Association of transgene integration sites with chromosome rearrangements in hexaploid oat. Theor Appl Genet,2000,100:872-880.
    221.Taketa S, Awayama T, Ichii M, Sunakawa M, Kawahara T, Murai K. Molecular cytogenetic identification of nullisomy 5B induced homoeologous recombination between wheat chromosome 5D and barley chromosome 5H. Genome,2005,48:115-124.
    222. Tang J F, Gao L F, Cao Y S, et al. Homologous analysis of SSR-ESTs and transferability of wheat SSR-EST markers across barley, rice and maize. Euphytica,2006,151:87-93.
    223. Ten Hoopen R, Robbins T P, Fransz P F, Montijn B M, Oud O, Gerats A G M, et al. Localization of T-DNA insertions in Petunia by fluorescence in situ hybridization:physical evidence for suppression of recombination. Plant Cell,1996,8:823-830.
    224. Tixier M H, Sourdille P M S. Detection of wheat microsatellite using no-radioactive silvermitrate staining method. Genetic Breed,1997,51:175-177.
    225. Tsujimoto H. Gametocidal genes in wheat and its relatives. Ⅰ. Genetic analysis in common wheat of a gametocidal gene derived from Aegilops speltoides. Can J Genet Cytol,1984,26:78-84.
    226. Tsujimoto H, Tsunewaki K. Gametocidal genes in wheat and its relatives. Ⅱ. Suppressor of the chromosome 3C gametocidal gene of Aegilops triuncialis. Can J Genet Cytol,1985,27:178-184.
    227. Varshney R K, Thiel T, Stein N, et al. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett,2002,7:537-546.
    228. Vershinin A V, Svitashev S K, Gummesson P O, Salomon B, von Bothmer R, Bryngelsson T. Characterization of a family of tandemly repeated DNA sequences in Triticeae. Theor Appl Genet, 1994,89:217-225.
    229. von Bothmer R, Claesson L. Production and meiotic pairing of intergeneric hybrids of Triticum× Dasypyrum species. Euphytica,1990,51:109-117.
    230. Walter M A, Spillett D E. A spontaneous translocation that transfer wheat curl mite resistance from decaploid Agropyron elongatum to common wheat. Genome,1988,30:289-292.
    231. Wirigley C W, Shepherd K W. Electrofocussing of grain protein from wheat geneotypes. Ann N.Y. Acad Sci,1973,209:154-162.
    232. Yildirim A, Jones S S, Murray T D. Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome,1998, 41:1-6.
    233. Yildirim A, Jones S S, Murray T D, Line R F. Evaluation of Dasypyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens. Plant Dis,2000,84:40-44.
    234. Ying J, Chen P D. Studies of development of disomic addition lines of Triticum aestivum-Haynaldia villosa via A ABBDDDD octaploid. Acta Genetica Sinica,2000,27 (6):506-510.
    235. Yu J K, Dake T M, Singh S, et al. Development and mapping of EST derived simple sequence repeat (SSR) markers for hexaploid wheat. Genome,2004,47:805-818.
    236. Yu M Q, Deng G B, Zhang X P, Ma X R, Chen J. Effect of the ph1b mutant on chromosome pairing in hybrids between Dasypyrum villosum and Triticum aestivum. Plant Breeding,2001,120: 285-289.
    237. Yuan J H, Chen P D, Liu D J. Development of Triticum aestivum-Leymus racemosus translocation lines using gametocidal chromosomes. Sci China Ser C,2003,46:522-531.
    238. Yuan W Y, Tomita M, Sun S C, et al. Multicolor fluorescence in situ hybridization of the rRNA genes in wheat relatives, Dasypyrum villosum and Thinopyrum intermedium. Bulletin of the Faculty of Agriculture, Tottori University,2000,53:7-12.
    239. Zhang H B, Dvorak J. Isolation of repeated DNA sequences from Lophopyrum elongatum for detection of Lophopyrum chromatin in wheat. Genome,1990,33:282-293.
    240. Zhang Q P, Li Q, Wang X E, Wang H Y, Lang S P, Wang Y N, Wang S L, Chen P D, Liu D J. Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS-4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica,2005,145: 317-320.
    241. Zhang R Q, Cao Y P, Wang X E, Feng Y G, Chen P D. Development and characterization of a Triticum aestivum-Haynaldia villosa T5VS-5DL translocation line with soft grain texture. J Cereal Sci,2010,51:220-225.
    242. Zhang W, Gao A L, Zhou B, Chen P D. Screening and applying wheat microsatellite markers to trace individual Haynaldia villosa chromosomes. Acta Genetica Sinica,2006,33 (3):236-243.
    243. Zhong X B, Fransz P F, Eden J W, Ramanna M S, Kammen A, Zabel P, De Jong J H. FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J,1998,13 (4):507-517.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700