螺旋沟槽单螺杆挤出机新型挤出理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于开槽机筒单螺杆挤出机具有产量高、挤出稳定性好等优异性能,已经被越来越广泛地应用到塑料聚合物加工领域中。本研究中以螺旋沟槽单螺杆挤出机新型挤出理论研究为主线,对螺旋沟槽单螺杆挤出机固体输送段的固体输送机理、固体输送产量模型和不同固体输送机理下螺旋沟槽固体输送段的能耗等方面进行了探索和研究。在系统研究并结合理论分析基础上,研制了具有正位移输送能力的新型螺旋沟槽式单螺杆挤出机。该挤出机打破了单螺杆挤出机不能实现正位移输送的思想禁锢,在固体输送段实现了类似于异向双螺杆挤出机中的正位移输送方式,填补了国内外单螺杆挤出领域的一项技术空白。主要研究工作如下:
     1、通过将机筒衬套沟槽和螺杆螺槽视为对物料协同作用的整体系统,将嵌入机筒衬套沟槽和螺杆螺槽内的物料视为整体固体塞,建立了新型的弧板物理模型,通过对弧板固体塞的受力平衡和力矩平衡分析求解,建立了螺旋沟槽单螺杆挤出机固体输送段实现对整体固体塞正位移输送的边界条件方程,可以确定实现正位移输送条件下的机筒衬套沟槽和螺杆螺槽几何结构参数,实现了对固体输送段输送特性的可控。
     2、分析了螺槽中固体塞微元的受力情况,通过求解螺槽中固体塞微元的连续性方程和运动方程,得到了正位移输送机理下的固体输送段的建压方程式和固体塞运动速度方程式。在理论分析并结合实验验证的基础上,系统研究了不同机筒衬套沟槽和螺杆螺槽结构参数以及原料物性参数对正位移固体输送段压力分布的影响规律,揭示了正位移固体输送的建压机理。
     3、建立了新型的固体输送粒径模型,在粒径模型中,根据不同的机筒衬套沟槽深度和螺杆螺槽深度以及原料粒径之间的尺寸关系确立了固体塞内部不同位置处的剪切界面,使用正位移输送的边界条件方程讨论了不同的机筒衬套沟槽深度和螺杆螺槽深度以及不同的原料粒径对剪切界面上的固体输送机理的影响规律,利用不同结构参数的机筒衬套和螺杆装置以及不同的原料粒径进行了实验验证,并确立了不同固体输送机理下螺旋沟槽固体输送段的产量和能耗计算模型。
     4、通过系统分析和理论研究,研制了具有正位移固体输送能力的新型螺旋沟槽单螺杆挤出机,并在该挤出机实验平台基础上,自行研制了螺杆挤出固体输送段在线模拟试验机,用于在线真实检测固体输送段末端的压力值和固体输送段的产量和能耗等参数。
     本研究取得的阶段性成果不仅可为螺旋沟槽正位移输送单螺杆挤出机的工业化应用提供理论指导,还可为我国高分子材料科学与技术的进步提供新的设备平台。
Grooved barrel single screw extruders were widely used to processplastics for molding because higher throughput and better pressure invariancewere revealed than before during extrusion. Based on the study of the novelextrusion theory in helically grooved single screw extruders, the solidsconveying mechanism, throughput model and energy consumption was deeplyresearched and detailed in this paper. By the systematic research andtheoretical analysis, the novel helically grooved single screw extruder withpositive conveying was first designed and manufactured. In the novel extruder,not the friction-drag conveying mechanism but the positive conveyingmechanism similar to that in the counter-rotating twin-screw extruder wasachieved, which made up for the technology blank of the single screwextrusion. The main research efforts are summarized as follows:
     1. In the theory, screw channel rotated against static grooves, whichbehaved as the cooperative twin-screws. They turned as two parallel arc plates,between which an arc-plate solid-plug composed of the solids embedded in thegroove and screw channel was assumed. By analyzing the forces and torque on the solid-plug, the boundary condition equations for positive conveyingwere built and used to guide the reasonable designs of the groove and screwgeometry to positively convey the solid-plug in the helically grooved feedzone, which achieved the effective control for solids conveying characteristics.
     2. After analyzing the forces on the solid-plug, the continuity equationand kinematic equation was resolved to obtain the pressure equation in thesolids conveying zone and the conveying velocity equation of the solid-plug inthe positive conveying mechanism. In addition, the effects of the groove andscrew geometry and the friction coefficients on the characteristics of thepressure distribution in the solids conveying zone were theoreticallyresearched and well verified with the experimental data. Based on these, thepressure-building mechanism with positive conveying was accurately revealedto achieve steady extrusion.
     3. A novel particle-size conveying model was proposed by the differentdimension relationships of the groove depth, screw channel depth and particlesize in the helically grooved feed section. In the model, shear interfaces insidethe solid-plug were determined and the effects of the different differentdimension relationships on the solids conveying mechanism on the shearinterfaces were discussed by the boundary condition equations for positiveconveying. After the theoretical analysis being examined by the measured data,the calculating models for the throughput and energy consumption of thesolids conveying zone were established with different solids conveying mechanisms.
     4. By the systematic analysis and theoretical research, the novel helicallygrooved single screw extruder with positive conveying was invented. On thebasis of the novel extruder, a specially designed instrument, called onlinetesting instrument of solids conveying zone for single screw extrusion, wassuccessfully developed to online measure the pressure, throughput and energyconsumption of the solids conveying zone.
     Generally speaking, all the preliminary research achievements canprovide not only the theoretical guideline for industrial application but also ascientific research stage for the improvement of the polymer materials scienceand technology of China.
引文
[1]朱复华,李辉玲.挤出工程和挤出理论发展史研究[J].塑料,2003,32(1):39-43
    [2]杨惠娣.中国经济与与中国塑料工业[J].中国塑料,2003,117(11):1-10
    [3]朱复华.挤出理论及应用[M].北京:中国轻工业出版社,2000.1
    [4] Anon. The history of extrusion[J]. Plastics,1953
    [5] Brooman R A. Br Pat[P].1845,10:582
    [6] Gray M. Br Pat[P].1879,10:825
    [7]潘龙,张玉霞,金志明,等.单螺杆挤出机高速挤出技术研究进展[J].中国塑料,2009,23(8):1-6
    [8] Schneider K. PhD thesis[D]. Germany: Aachen,1968
    [9]冯彦洪,瞿金平.单螺杆挤出机固体输送机理研究的发展与趋势[J].中国塑料,2000,14(11):1-9
    [10]李建波,瞿金平.振动力场作用下挤出机固体输送理论的研究[J].轻工机械,2002,19(3):26-28
    [11]高勇.一种挤出机[P].中国专利,201357555.2009-12-09
    [12]王波.一种塑料挤出机机筒[P].中国专利,2546176.2003-04-23
    [13] Hackl L. Single-screw extruder having a rotatable screw and a grooved bush arranged in theregion of the feed zone[P]. PCT Patent, DE3443412A1.1985-06-13
    [14] Single-screw extruder having a rotatable screw and a grooved bush arranged in the region ofthe feed zone[P]. PCT Patent, AT397941B.1994-08-25
    [15] Davis B A, Germann P J, Norieqa E M D P, Osswald T A. Grooved feed single screwextruders-improving productivity and reducing viscous heating effects[J]. Polym. Eng. Sci.,1998,38:1199-1204
    [16]王银霞,任冬云,陈卫红,等.新型高速挤出机计量段冷却方法研究[J].塑料工业,2005,8(4):7-9
    [17]施广轩,施佐.超高速挤出机[J].机械设计与制造,1991,28(6):52
    [18] Machen J F. High-speed direct-drive extruder[P]. PCT Patent, US4249877A.1981-02-10
    [19]瞿金平.螺杆一线式电磁塑化动态挤出机[P].中国专利,1067609A.1993-01-06
    [20]吴大鸣.精密挤出技术的开发和应用展望[J].塑胶工业,2007,10(2):8-14
    [21]吴大鸣,李晓林.国内外精密挤出技术现状与进展[J].塑料加工,2008,44(2):16-24
    [22]吴大鸣,丁玉梅,陈卫红,等.挤出机机头稳压装置[P].中国专利,2512580Y.2002-09-25
    [23] Darnell W H, Mol E A. Solid conveying in extruders[C]. SPE ANTEC,1959,12:20-29
    [24] Schneider K. Reibverhalten von Kunststoffgranulat[J]. Kunstst Ger Plast,1969,59:97-102
    [25] Chung C I. Plasticating single-screw extrusion theory[J]. Polym. Eng. Sci.,1971,11:93-98
    [26] Broyer E, Tadmor Z. Solids conveying in screw extruders. Part I: A modified isothermalmodel[J]. Polym. Eng. Sci.,1972,12:12-24
    [27] Chung C I. New ideal about solids conveying in screw extruders[C]. SPE ANTEC,1970,26:32-36
    [28] Tedder W, A new theory of solid conveying in single screw[C]. SPE ANTEC,1971,27:42
    [29] Zhu F H, Fang S Z, Chen L Q. Studies on the theory of single screw plasticing extrusion. PartⅡ: Non-plug flow solid conveying[J]. Polym. Eng. Sci.,1991,31:1117-1122
    [30] Spalding M A, Donald E K, Kun S H. Coefficient of dynamic friction for low densitypolyethylene[J]. Polym. Eng. Sci.,1993,33:423-430
    [31] Jaluria Y, Yan L, Chiruvella R V. Modeling and simulation of the solids conveying andunfilled regions in polymer extrusion[J]. J. Reinf. Plast. Compos,1999,18:15-26
    [32] Wilczyn ski K. Single-screw extrusion model for plasticating extruders[J]. Ploym. Plast.Technol. Eng.,1999,38:581-608
    [33] Wilczyn ski K. SSEM: a computer model for a polymer single-screw extrusion[J]. J. Mat.Process. Technol.,2001,109:308-313
    [34] Wilczyn ski K. Modeling for morphology development during single-screw extrusion ofLDPE/PS blend[J]. J. Mat. Process. Technol.,2001,109:320-323
    [35] Moysey P A, Thompson M R. Modelling the solids inflow and solids conveying of single-screw extruders using the discrete element method[J]. Powder Technol.,2005,153:95-107
    [36] Moysey P A, Thompson M R. Determining the collision properties of semi-crystallineandamorphous thermoplastics for DEM simulations of solids transport in an extruder[J].Chem. Eng. Sci.,2007,62:3699-3709
    [37] Moysey P A, Thompson M R. Discrete particle simulations of solids compaction andconveyingin a single-screw extruder[J]. Polym. Eng. Sci.,2008,48:62-73
    [38] Sikora J W. The effect of the feed section groove taper angle on the performance of a single-screw extruder[J]. Polym. Eng. Sci.,2001,41:1636-1643
    [39] Duska J J, Gasior J, Pomper A W. Effects of grooved feed throat on extruder performance[J].SPE ANTEC,1975,31:434-438
    [40] Kowalska B. Grooved feed sections[J]. Kunstst Plast Eur,2000,90:10-11
    [41] Potente H. Methods of calculating grooved extruder feed sections[J]. Kunstst Ger Plast,1985,75:25-26
    [42] Rauwendaal C, Sikora J W. The adjustable grooved feed extruder[J]. Plast. Addit. Compd.,2000,2:26-30
    [43]张惠敏,周桂莲.可提高挤出产量的沟槽加料段[J].上海塑料,2004,6(2):28-31
    [44]张琳,瞿金平,李建波.振动力场强化单螺杆挤出固体输送的离散单元法模拟[J].中国机械工程,2006,17(22):2406-2410
    [45]贾明印,薛平,王克俭,朱复华,等.考虑离心作用的螺杆挤出机固体输送理论分析[J].高分子材料科学与工程,2008,24(4):113-116
    [46]唐广利,贾明印,薛平,等. IKV挤出机新型固体输送理论研究[J].中国塑料,2007,21(2):90-95
    [47] Jia M Y, Xue P, Tang G L. Research on novel solid conveying theory of grooved feedextruders. International Conference on Polymer Processing,2007
    [48] Pan L, Jia M Y, Xue P, Wang K J, Jin Z M. Studies on positive conveying in helicallychanneled single screw extruders[J]. Express Polym. Lett.,2012,6(7):543-560
    [49] Pan L, Jia M Y, Xue P, Jin Z M. Studies on the solids conveying mechanism for helicallygrooved single screw extruders[J]. J Wuhan Univ Technol,2012(In press)
    [50]冯彦洪,瞿金平,任鸿烈,等.单螺杆挤出机熔融机理研究的发展[J],中国塑料,2002,16(6):9-14
    [51] Tadmor Z. Fundamentals of plasticating extrusion. Part I: A theoretical model for melting[J].Polym. Eng. Sci.,1966,6:185-190
    [52] Maddock B H. A visual analysis of flow and mixing in extruder screws, SPE ANTEC,1959,15:383-387
    [53] Menges G, Klenk P. Aufschelz-und plastiziervorgäinge beim verarbeiten von PVC hart-pulver aufeinem einschnecken-extruder[J]. Kunstst Ger Plast,1967,57:677-682
    [54] Dekker J. Verbesserte schneckenkonstruktion fur das extrudieren von polypropylene[J].Kunstst Ger Plast,1976,66:130-140
    [55] Lindt J T, Polymer.1976,(17):284.
    [56] Pearson J R A, Halmos A L, Shapiro J. Melting in single screw extruders[J]. Polymer,1976,17:905-912
    [57] Fukase H, Kunio T, Shinya S, Akihiro N. A plasticating model for single-screw extruders[J].Polym. Eng. Sci.,1982,22:578-586
    [58] Edmondson I, Fenner R. Melting of thermoplastics in single screw extruders[J]. Polymer,1975,16:49-56
    [59] Cox A P D, Fenner R, Melting performance in the single screw extrusion of thermoplastics[J].Polym. Eng. Sci.,1980,20:562-571
    [60]朱复华.单螺杆塑化挤出理论的研究[J].高分子材料科学与工程,1986,2:1-6
    [61] Zhu F H, Chen L Q. Studies on the theory of single screw plasticating extrusion. Part I: A newexperimental method for extrusion[J]. Polym. Eng. Sci.,1991,31:1113-1116
    [62] Wong A C Y, Zhu F H, Liu W. Breakup of solid bed in melting zone of single screw extruder[J]. Plast. Rubber and Compos. Process. Appl.,1997,26:78-83
    [63]赵月云.固相破碎理论研究初探[D].北京:北京化工大学,1989
    [64] Syrjala S. A new approach for the simulation of melting in extruders[J]. Int. J. Comm. HeatMass Transfer,2000,27:623-634
    [65] Greqory C, Tang Z R, Wang C C, Bullwinkel M. Some new observations relative to meltingin single screw extruders[J]. SPE ANTEC,2003,59:213-217
    [66]陈达,冯彦洪,瞿金平.振动力场下单螺杆挤出机聚合物熔融过程模拟[J].现代塑料加工应用,2006,18(2):44-48
    [67]冯彦洪,瞿金平,刘斌,等.振动诱导单螺杆挤出机熔融过程实验研究[J].塑料工业,2006,34(8):22-24
    [68] Zeng G S, Qu J P, Feng Y H. Melting process and mechanism for vibration induced single-screw extruder[J]. J. Appl. Polym. Sci.,2007,104:2504-2514
    [69] Qu J P, Zeng G S, Feng Y H, Jin G, He H Z, Gao X W, Effect of screw axial vibration onpolymer melting process in single-screw extruders[J]. J. Appl. Polym. Sci.,2006,100:3860-3876
    [70] Rauwendaal C. Recent advances in barrier screw design[J]. Plast. Addit. Compd.,2005,7:36-39
    [71] Atakan A, Gupta M, Spalding M A, CrabtreeS L. Numerical investigation of the effect ofscrew temperature on the melting profile in a single-screw extruder[J]. SPE ANTEC,2007,63:429-433
    [72] Rowell H S, Finlayson D. Engineering,1922,114:606-611
    [73] Carley J F, Mallouk R S, Mckelevy J. Ind. Eng. Chem. Fundam.,1953,4:974-982
    [74] Meskat W. Kunstst Ger Plast,1955,45:87
    [75] Maddock B H. SPE ANTEC,1959,15:383
    [76] Weeks D J, Allen W J. J. Mech. Eng. Sci.,1962,4:380
    [77] Barr R A, Chung C I. SPE ANTEC,1966,22:77
    [78] Maddock B H. SPE ANTEC,1967,23:835
    [79] Fenner R T. Extruder Screw Design[M]. London: Illifer Books,1972
    [80] Palit K, Fenner R T. AICHE. J.,1972,18:628
    [81] Rolyance D. Use of penalty finite elements in analysis of polymer melting processing[J].Polym. Eng. Sci.,1980,20:1029-1034
    [82] Menges G, Limper A, Schwenzer C. Kunstst Ger Plast,1989,79:2
    [83] He X Y, Chen S Y, Gary D D. A novel thermal model for the lattice boltzmann method inincompressible limit[J]. J. Comput. Phys.,1998,146:282-300
    [84] Buick J M, Cosgrove J A. Numerical simulation of the flow field in the mixing section of ascrew extruder by the lattice Boltzmann model[J]. Chem. Eng. Sci.,2006,61:3323-3326
    [85] Buick J M. Lattice boltzmann simulation of power-law fluid flow in the mixing section of asingle-screw extruder[J]. Chem. Eng. Sci.,2009,64:52-58
    [86] Yeh An-I, Jaw Yih-Mon. Predicting residence time distributions in a single screw extruderfrom operating conditions[J], J. Food Eng.,1999,39:81-89
    [87] Hoppe S, Detrez C, Pla F. Modeling of a cokneader for the manufacturing of compositematerials having absorbent properties at ultra-high-frequency waves. Part I: Modeling of flowfrom residence time distribution investigations[J]. Polym. Eng. Sci.,2002,42:771-780
    [88] Ajay K, Girish M G, David D J, Milford A H. Digital image processing for measurement ofresidence time distribution in a laboratory extruder[J]. J. Food Eng.,2006,75:237-244
    [89] Chao B, Jiang B. Study of residence time distribution in a reciprocating single-screw pin-barrel extruder[J]. J. Mater. Process. Technol.,2009,209:4147-4153
    [90] Das M K, Ghoshdastida P S. Experimental validation of a quasi three-dimensional conjugateheat transfer model for the metering section of a single-screw plasticating extruder [J]. J.Mater. Process. Technol.,2002,120:397-411
    [91] Seppo S. Numerical simulation of non-isothermal flow of polymer melt in a single-screwextruder: a validation study[J]. Numer. Heat Transfer, Part A,2000,37:897-915
    [92] Yu C X, Gunasekaran S. Modeling of melt conveying in a deep-channel single-screw cheesestretcher[J], J. Food Eng.,2004,61:241-251
    [93] Gino F, Roberto M. A finite-difference method for the prediction of velocity field in extrusionprocess[J]. J. Food Eng.,2007,83:84-92
    [94] Rauwendaal C. Finite element studies of flow and temperature evolution in single screwextruders[J]. Plast. Rubber Compos. Process. Appl.,2004,34:390-396
    [95] Ahmad K, Robert J. Clermont Numerical simulations of non-isothermal three-dimensionalflows in an extruder by a finite-volume method[J]. J. Non-Newton Fluid,2005,126:7-22
    [96] Andre B, Marco D, Erich J. WindhabExtrusion flow of complex viscoelastic polymer blendmodel[J]. J. Non-Newton Fluid,2008,149:93-103
    [97]刘维亮.单螺杆螺纹混炼元件的流场模拟与分析[D].北京:北京化工大学,2006
    [98] Duska J J, Gasior J. How grooved feed throat design effects extruder performance[J]. SPEANTEC,1976,49:432-438
    [99] Franzkoch B, Menges G. Grooved forced-feeding zones can improve extruder performance[J].Plast. Eng.,1978,34:51-54
    [100] Rautenbach R, Peiffer H. Model calculation for the design of the grooved forced conveyingfeed section of single-screw extruders[J]. Kunstst Ger Plast,1982,72:6-11
    [101] Rautenbach R, Peiffer H. Throughput and torque characteristics of grooved feed sections insingle-screw extruders[J]. Kunstst Ger Plast,1982,72:7-10
    [102] Guenschloss E. Calaulation of the mean coefficient of barrel friction in grooves feed sections[J]. Kunstst Ger Plast,1984,74:24-26
    [103] Guenschloss E. Process improvements in single-screw extruders with grooved feed sections[J]. Kunstst Ger Plast,1985,75:22-24
    [104] Schuele H. Minimising the abrasive wear in the feed zone of grooved barrel extruders[J].Kunstst Ger Plast,1987,77:11-15
    [105]黄汉雄.开槽衬套挤出机的设计、应用及抗磨损对策(I)[J].塑料科技,1988,16(3):55-64
    [106]黄汉雄.开槽衬套挤出机的设计、应用及抗磨损对策(II)[J].塑料科技,1988,16(4):32-38
    [107]黄汉雄.开槽衬套挤出机的设计、应用及抗磨损对策(III)[J].塑料科技,1988,16(6):37-45
    [108] Potente H, Koch M. Residence time in behavior in grooved-barrel extruders[J]. Adv. Polym.Tech.,1989,9:119-127
    [109] Potente H. The forced feed extruder must be reconsidered[J]. Kunstst Ger Plast,1988,78:37-42
    [110] Potente H, Stenzel H, Bergedieck J. Output computation in the grooved-barrel extruder withregard to various conveyance techniques[J]. Adv. Polym. Tech.,1990,10:285-295
    [111] Potente H, Schoppner V. A throughput model for grooved bush extruders[J]. Int. Polym. Proc.,1995,10:289-295
    [112]伊藤公正,罗世华.用开槽进料段提高单螺杆挤出机的性能(连载之一)[J].塑料加工应用,1990,(4):42-56.
    [113]伊藤公正,罗世华.用开槽进料段提高单螺杆挤出机的性能(连载之二)[J].塑料加工应用,1990,(4):65-80.
    [114]刘辉,吴靖,冯金海,等.强制加料挤出机优化目标数学模型的建立[J].塑料科技,1994,22(6):31-34
    [115] Johannes W. Screw and barrel design for grooved feed VS. smooth bore extruders[J]. SPEANTEC,2002,58:1-5
    [116] Miethlinger J. Modelling the Solids Feed Section in Grooved-feed Extruders[J]. Kunsts PlastEur,2003,93:17-19
    [117]思语.螺旋沟槽机筒挤出机[J].现代橡塑,2004,16(3):27-28
    [118]瞿金平.聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005.120-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700