狒狒尿酸氧化酶基因克隆及分子改造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尿酸氧化酶是生物体内嘌呤代谢途径中最后一个关键酶,决定了嘌呤代谢的最终产物。由于尿酸氧化酶基因在进化过程中发生了无义突变,导致人类和大多数高等灵长目动物不能合成尿酸氧化酶,嘌呤代谢最终以尿酸形式排出体外,这造成了人体内的尿酸浓度明显高于其他物种。高浓度的尿酸是人类罹患高尿酸血症、痛风及其相关疾病的元凶。现今用于治疗痛风及相关疾病的药物主要是别嘌呤醇、秋水仙碱等化学药物,具有严重的副作用,这促使人们寻找更安全高效的降尿酸药物。尿酸氧化酶由于降解尿酸的高效率而受到人们的关注。现今利用DNA重组技术可以方便高效地获得各物种来源的尿酸氧化酶。但是作为一种异源蛋白,尿酸氧化酶在用于人体治疗时,其免疫原性成为人们日益关注的问题。单纯的尿酸酶重组产品其安全性受到人们的质疑。因此,如何消除或降低尿酸氧化酶的免疫原性成为制约其大规模应用于医学治疗的瓶颈。这也成为现今有关尿酸氧化酶研究的热点问题,即如何通过酶分子的修饰达到消除其免疫原性。
     通过酶化学修饰将修饰分子与目的蛋白交联而达到消除尿酸氧化酶免疫原性的方法已获得成功。但是该法也有其缺点,如修饰后的酶分子稳定性下降等问题。利用基因工程技术,通过将修饰分子与目的蛋白融合表达以获得高纯度、高活力的尿酸氧化酶成为人们获得高效、安全的尿酸氧化酶的新途径。
     本论文以狒狒尿酸氧化酶(rbUOX)作为蓝本,选取牛乳铁蛋白肽作为修饰分子,结合狒狒尿酸氧化酶的分子结构特点,从三个水平上设计了目的蛋白的修饰策略:N端修饰、N端C端同时修饰以及N端、C端和分子内综合修饰。以期达到消除或降低狒狒尿酸氧化酶的免疫原性目的。
     在克隆策略上,通过密码子优化,设计了四个版本尿酸氧化酶基因的全序列,然后通过重叠延伸PCR克隆得到四个版本的狒狒尿酸氧化酶基因:rbUOX, rbUOX-LfcinB、rbUOX-LfcinB2、rbUOX-LfcinB3。接着将其导入到相应的大肠杆菌宿主菌中表达。结果证明,四个目的基因均成功得到表达。
     其次,通过优化发酵条件,蛋白质表达定位,发现在25℃下目的蛋白为细胞内可溶性表达。目的蛋白经IPTG诱导下,于6h后产量达到最大。经过细胞破碎,Ni+亲和层析分离,BCA定量分析,目的蛋白的产量分别达到了136.0mg/L、127.5mg/L,116.6mg/L和111.7mg/L。回收率达70%以上。酶活检测的结果显示,由于修饰分子的存在,目的蛋白的酶活有所下降,其酶活力分别为:17.93、8.10、6.23、3.76U/mg。
     通过MALDI-TOF-MS/MS对目的蛋白的一级结构进行分析。结果表明,四个版本的重组蛋白样品其蛋白质序列均与预期一致。
     通过间接ELISA法对修饰分子在降低目的蛋白免疫原性的效果进行了定量分析。首先通过重组狒狒尿酸氧化酶作为抗原免疫正常人白细胞以获得人抗rbUOX抗体。然后用所制得的抗体对四个重组蛋白进行免疫吸附测定。结果表明,以重组狒狒尿酸氧化酶作为阳性对照,三个改造后的尿酸氧化酶其免疫反应发生率分别下降了12.09%、16.96%、29.06%。
     本论文的研究结果表明通过牛乳铁蛋白肽的修饰,狒狒尿酸氧化酶的免疫原性得到降低,且其降低程度与修饰分子的数目成正相关。说明在目的蛋白分子中引入合适的活性小肽修饰分子并采取合适的修饰策略对于消除外源蛋白的免疫原性是可行的。
Uricase (UOX) is a key enzyme in the metabolic pathway of purine,which decides the final breakdown product of purine in living organism. Dueto the evolutionary fate that two non-sense mutations of uricase gene occurredin human genome, human can not produce uricase, which subsequently resultsin higher physiological concentration of uric acid in human body than in thosespecies who possess the active uricase gene. Excessive uric acid is consideredas the direct cause of diseases, such as hyperuricemia, gout, nephrolithiasis,and vascular diseases. Therefore, development of drugs for reducing uric acidhas keeping attracting interests from pharmaceutical industry and researchcycles. Despite the excellent performance on control of physiological uric acid,the drugs applied in clinic now, such as allopurinol, febuxostat andbenzbromarone have serious side effects, which actuates people to developmore effective and safer drugs. Uricase, as a living organism-derived enzyme,has a high efficiency on reduction of uric acid. However, as a heterogeneousprotein, it may trigger serious hypersensitive reactions when applied in humanbody. So, how to erase or decrease the immunogenicity of uricase becomes an issue that must be solved.
     This thesis aims at erasing or decreasing the immunogenicity of baboonuricase (bUOX) by way of modification of uricase with a proper, selectedmodifier. We took bovine lactoferricin (LfcinB) as a modifier and designedthree modified uricase fusions with LfcinB: rbUOX-LfcinB, rbUOX-LfcinB2,rbUOX-LfcinB3, in which rbUOX were connected by LfcinB at N-terminal,N-and C-terminal, and in molecule, respectively.
     Four genes encoding target proteins (rbUOX and three modified uricases)were first amplified by splicing by overlap extension PCR (SOE), andtransformed into proper E. coli host cell. After induction by IPTG, four geneshad expressed successfully the target proteins.
     By way of lowering induction temperature to25℃, the target proteinswere found in cytoplasm in a soluble form. After cell lysis, the target proteinswere separated effectively by Ni2+-His Bind Resin. The quantities of theexpressed proteins were detected by BCA method and results indicated thefields of the four proteins: rbUOX, rbUOX-LfcinB, rbUOX-LfcinB2, andrbUOX-LfcinB3were136.0mg/,127.5mg/L,116.6mg/L, and111.7mg/L,respectively. The recoveries of the proteins were over70%. Enzyme activitydetection on the acquired proteins revealed that the four proteins possessedactivities of17.93,8.10,6.23, and3.76U/mg, respectively. This result showedthat the activity of baboon uricase decreased after modified by LfcinB.
     For the characterization of the expressed proteins, MALDI-TOF-MS/MS was performed, and the results confirmed the amino acid sequences of the fourseparated proteins agreed very well with the theoretical proteins.
     As to the determination of immunogenicity of the modified rbUOX,rbUOX was first utilized to immune human leukocyte for7d to preparehuman anti-rbUOX antibody. And then a modified indirect ELISA wasoperated to detect the immunogenicity of modified uricases using rbUOX aspositive control and human serum albumin as negative control. Resultsrevealed that the immunogenicity of modified uricases declinedcorrespondingly with the amount of modifiers.
     Results presented here reveal it is helpful to decrease the immunogenicityof uricase by way of introduction of LfcinB and subsequently provide a novelstrategy on protein modification in enzyme engineering cycle.
引文
[1] Bongaert s GP, Uit zetter J, Brouns R, et al. Uricase of Bacillus fast idiosus. Propertiesand regulation of synthesis[J]. Biochem. Biophys. Acta,1978,527(2):348-358
    [2] Nobutoshi K, Keisuke S, Takao M, et al. Determination of Uric Acid in Plasma byClosed-loop FIA with a Coimmo bilized Enzyme Flow Cell[J]. Anal. Sci.,2000,16:1203-1205
    [3] Yamamoto K, Kojima Y, Kikuchi T, et al. Nucleotide sequence of the uricase genefrom Bacillus sp. TB-90[J]. J. Biochem.1996,119:80-84
    [4] Liu JG, Li GX, Liu H et al. Purification and properties of uricase from Candida sp. andits application in uric acid analysis in serum[J]. Appl. Biochem. Biotech.,1994,47(1):57-63
    [5] Richette P, Bardin T. Gout[J]. Lancet,2010,375:318-328
    [6] Wu XW, Lee CC, Muzny DM, et al. Urate oxidase: Primary structure and evolutionaryimplications[J]. Proc. Natl. Acad. Sci.,1989,86:9412-9416
    [7] Wu XW, Muzny DM, Lee CC, et al. Two independent mutational events in the loss ofurate oxidase during hominoid evolution[J]. J. Mol. Evol.,1992,34:78-84
    [8] Oda M, Satta Y, Takenaka O, Takahata N: Loss of urate oxidase in hominoids and itsevolutionary implications[J]. Mol. Biol. Evol.,2002,19(5):640-653
    [9] Ames BN, Cathcart R, Schwiers E, et al. Uric acid provides an antioxidant defense inhumans against oxidant-and radical-caused aging and cancer: a hypothesis[J]. Proc.Natl. Acad. Sci.,1981,78:6858-6862
    [10] Anzai N, Miyazaki H, Noshiro R, Khamdang S, et al. The multivalent PDZdomain-containing protein PDZK1regulates transport activity of renal urate-anionexchanger URAT1via its C-terminal[J]. J. Bio. Chem.,2004,279:45942-45950
    [11] Bakhiya A, Bahn A Burckhardt G, et al. Human organic anion transporter3(hOAT3)can operate as an exchanger and mediate secretory urate flux[J]. Cell Physiol.Biochem.,2003,13:249-256
    [12] Becker BF. Towards the physiological function of uric acid[J]. Free Radic. Biol. Med.,1993,14:615-631
    [13] Hediger MA, Johnson RJ, Miyazaki H, et al. Molecular physiology of uratetransport[J]. Physiol.,2005,20:125-133
    [14] Liebman SE, Taylor JG, Bushinsky DA. Uric acid nephrolithiasis[J]. Curr. Rheumatol.Rep.,2007,9:251-257
    [15] Benedek TG, Rodnan GP. A brief history of the rheumatic diseases[J]. Bull. Rheum.Dis.,1982,32:59-68
    [16] Nuki G, Simkin PA. A concise history of gout and hyperuricemia and their treatment[J].Arthr. Res. Ther.,2006,8: S1
    [17]北京双鹭药业.注射用重组尿酸氧化酶项目介绍[EB/OL].http://wenku.baidu.com/view/0d091ac20c22590102029d0e.html
    [18]搜狐健康.痛风并发症[EB/OL]. http://dise.health.sohu.com/disease-1065_6.shtml
    [19]百度百科.痛风[EB/OL]. http://baike.baidu.com/view/21922.htm?fromtaglist
    [20] Fam AG. Difficlut gout and new approaches for control of hyperuricemia in theallopurinal-allergic patient[J]. Curr. Rheumatol. Rep.,2005,3:29-35
    [21] Suzuki H, Verma DPS. Soybean nodule-specific uricase (Modulin-35) is expressed andassembled into a functional tetrameric holoenzyme in Escherichia coli[J]. PlantPhysiol.,1990,95:384-389
    [22] Koyama Y, Ichikawa T, Nakano E. Cloning, sequence analysis and expression inEscherichia coli of the gene encoding the Candida utilis urate oxidase (uricase)[J]. JBiochem.,1996,120:969-973
    [23] Legoux R, Delpech B, Dumont X, et al. Cloning and expression in E. coli of the geneencoding Aspergillus flavus urate oxidase[J]. J. Biol. Chem.,1992,267:8565-8570
    [24] Hongoh Y, Sasaki T, Ishikawa H. Cloning, sequence analysis and expression inEscherichia coli of the gene encoding a uricase from the yeast-like symbiont of thebrown planthopper, Nilaparvata lugens[J]. Insect Biochem. Mol. Biol.,2000,30:173-182
    [25] Rozenberg S, Roche B, Dorent R, Koeger AC, Borget C, Wrona N, Bourgeois P:Urate-oxidase for the treatment of tophaceous gout in heart transplant recipients. Areport of three cases[J]. Rev. Rhum. Engl. Ed.,1995,62(5):392-394
    [26] Bomalaski JS, Clark MA. Serum uric acid-lowering therapies: where are we headingin management of hyperuricemia and the potential role of uricase[J]. Curr. Rheumatol.Rep.,2004,6(3):240-247
    [27] Williams, David L, Michael S et al. PEG-urate oxidase conjugates and usethereof [P]. US patent,7723089.2010-5-25
    [28]陈历俊,姜铁明.乳铁蛋白生物功能及基因表达[M].北京:科学出版社,2007.69
    [29] Belany W, TAK, Yamauchik, et al. Identidication of the bactericidal domain oflactoferrin[J]. Biochem. Biophys. Acta,1992,1121(1/2):130-136
    [30] Vogel H, Sehlbli D, Jing W et al. Towards a structure-function analysis of bovinelactoferrincin and related tryptophan-and arginine-containing peptides[J].Biochemistry,2002,80(1):49-63
    [31]李忠清,王亮.牛乳铁蛋白肽的研究现状与应用前景[J].食品科学,2011,32(13):369-373
    [32] Gifford J, Hunter H, Vogel H. Lactoferricin: a lactoferrin-derived peptide withantimicrobial, antiviral, antitumor and immunological properties[J]. Cell Mol. LifeSci.,2005,62(22):2588-2598
    [33] Yi M, Kaneko S, Yu D, et al. Hepatitis C virus envelope proteins bind lactoferrin[J]. JVirol.,1997,71(8):5997-6002
    [34] Laquerre S, Arqnani R, Anderson D, et al. Heparan sulphate proteoglycan binding byherpes simplex virus type I glycoproteins B and C, which differin their contributionsto virus attachment, penetration, and cell-to-cell spread[J]. J. Virol.,1998,72(7):6119-6130
    [35] Andersen J, Gutterberg TJ. Lactoferrin and lactoferricin inhibit herpes simplex1and2infection and exhibits synergy when combined with acyclovire[J]. Antiviral. Res.,2003,58(3):209-215
    [36] Schwarze S, Vocer A, Akabani A, et al. in vivo protein transduction: delivery of abiologically active protein into the mouse[J]. Science,1999,285:1569-1572
    [37] Mader JS, Salsman J, Conrad DM, et al. Bovine lactoferricin selectively inducesapoptotic cells by macrophages and fibroblasts[J]. Biol. Chem.,2001,276(2):1071-1077
    [38] Fadok V, Cathelineau A, Daleke D, et al. Loss of phospholipid asymmetry and surfaceexposure of phosphatidylserine is required for phagocytosis of apoptotic cells bymacrophages and fibroblasts[J]. Biol. Chem.,2001,276(2):1071-1077
    [39] Rosso A, Zanetti M, Gennaro R. Cytotoxicity and apoptosis mediated by two peptidesof innate immunity[J]. Cell Immunol.,1998,189(2):107-115
    [40] Schroder H, Bakaloya, Andra E. The NK-lysin derived peptide NK-2preferentiallykills cancer cells with increased surface levels of negatively chargedphosphatidylserine[J]. FEBS Lett.,2005,579(27):6128-6134
    [41] Bodil F, Oysteyn R, Uhlin-hansen L. The anticancer activity of lytic pept-ides isinhibited by heparan sulfate on the surface of the tumor cells[J]. BMC Cancer,2009,9:183doi:10.1186/1471-2407-9-183
    [42] Mader J S, Salsman J, Conrad D M, et al. Bovine lactoferricin selectively inducesapoptosis in human leukemia and carcinoma cell lines[J]. Mol. Cancer Ther.,2005,4(4):612-624
    [43] Mader TS, Richardson A, Salsman J, et al. Bovine lactoferricin causes apoptosis inJurkat T-leukemia cells by sequential permeabilization of the cell membrane andtargeting of mitochondria[J]. Exp. Cell Res.,2007,313(12):2634-2650
    [44] Williams, David L, Michael S et al. PEG-urate oxidase conjugates and usethereof [P]. US patent,7723089.2010-5-25
    [45] Verstraete M. Third generation thrombolyic drugs[J]. Am. J. Med.,2010,109(1):42-58
    [46] Marder V, Stewart D. Towards safer thrombolytic therapy[J]. Semin Haematol,2002,39(3):206-216
    [47]施巧琴.酶工程[M].北京:科学出版社,2005.303
    [48] Hartman J, Mendelovitz S. Variant form of urate oxidase and use thereof[P]. US7811800.2011-9-8
    [49] Vogel H, Sehlblid, Jing W, et al. Towards a structure-function analysis of bovinelactofer-ricin and related tryptophan-and arginine containing peptides[J].Biochemistry,2002,80(1):49-63
    [50] Horton RM, Hunt HD, Ho SN, et al. Engineering hybrid genes without the use ofrestriction enzymes: gene splicing by overlap extension[J]. Gene,1989,77:61-68
    [51] Warrens AN, Jones MD, Lechler RI. Splicing by overlap extension by PCR usingasymmetric amplification: an improved technique for the generation of hybrid proteinsof immunological interest[J]. Gene,1997,186:29-35
    [52]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000.77-98
    [53] Koyama Y, Ichikawa T, Nakano E: Cloning, sequence analysis and expression inEscherichia coli of the gene encoding the Candida utilis urate oxidase (uricase)[J]. J.Biochem.,1996,120:969-973
    [54]葛海良,张冬青.免疫学技术[M].北京:科学出版社,2009.1-2
    [55]葛海良,张冬青.免疫学技术[M].北京:科学出版社,2009.19-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700