贵金属纳米颗粒的结构及形成机制的XAFS研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵金属纳米颗粒由于在催化、燃料电池、气体传感等许多领域有潜在的应用价值,引起了科研人员的广泛关注。由于纳米颗粒的性能与尺寸、形状及电子结构等息息相关,而纳米颗粒最终的相貌和尺寸又很大程度上决定于初始阶段的成核,因此研究贵金属纳米颗粒的的原子分布、电子结构以及形成机制对实现贵金属纳米颗粒的可控生长及性能调控有非常重要的意义。本论文利用同步辐射x射线吸收谱精细结构谱学(XAFS)技术、透射电镜(TEM)、X射线衍射(XRD)、紫外-可见(UV-vis)和液相色谱-质谱(LCMS)等实验方法结合多重散射理论、第一性原理计算研究了氯铂酸的氨水溶液中铂离子周围的局域几何结构、甲醇还原氯铂酸制备铂纳米颗粒的反应机制以及多元醇液相法合成的Cu-Pt纳米颗粒的电子原子结构信息。此外,本论文还研究了采用沉淀煅烧法制备的尖晶石ZnCr2O4纳米颗粒的反向常数受煅烧温度的影响。
     本论文主要包括以下几个内容:
     1.研究了氯铂酸的氨水溶液中铂离子周围局域几何结构。通过x射线吸收谱的EXAFS拟合和:XAENS计算分析,发现铂离子周围的六个氯完全被溶液中的氨配体取代了。实验结果表明铂氯键长为2.32A,而铂氮键长为2.05A。无论是铂氯还是铂氮,都会因为两者轨道杂化的影响产生一个可以用来指示近邻原子多少的边后特征峰。
     2.研究了甲醇还原氯铂酸制备铂纳米颗粒的反应机制及水的加入对反应机制的影响。发现在纯的甲醇溶液中反应路径为[PtCl6]2至[PtCl5(CH3O)]2到[PtCl4]2-到[PtCl3(CH3O)]2到[PtCl2]2到Pt30最后变为Pt纳米颗粒;而当10%体积的水加入甲醇中时,反应大大加快,反应路径变为[PtCl6]2到[PtCl5(CH3O)(H2O)]2到[PtCl4]2-到[PtCl3(CH3O)(H2O)]2到[PtCl2]2到Pt30最后变成Pt纳米颗粒。在这个过程中,水起到了“催化剂”的作用。
     3.研究了乙二醇-水还原法制备的不同Cu/Pt摩尔比的Cu-Pt双金属纳米颗粒的原子分布及电子结构信息。实验结果表明,大部分铜迁移到纳米颗粒表面形成了一个有类似CuO壳和富含Pt的Cu/Pt核的核壳结构。通过对Pt的L2,3边白线峰强度的研究发现了一个与相应块体Cu-Pt合金不同的变化。事实上,铂和铜形成合金时会失去d电子,但是当表面的铜原子被氧化后,铂的d电子数目又会增加。这表明Cu-Pt纳米颗粒的电子行为可以通过合金效应和表面氧化效应来调控。
     4.通过沉淀煅烧法制备了不同尺寸的ZnCr2O4纳米颗粒,XRD和TEM表明不同温度煅烧得到的样品有相同的晶体结构,且颗粒尺寸随着煅烧温度升高而增加。通过Cr和Zn的K边XANES和EXAFS谱来研究反向常数随煅烧温度的改变,发现反向常数随着煅烧温度的升高而减小。特别是,在750℃煅烧的样品基本是正尖晶石结构;而300℃煅烧的样品反向常数可以达到0.24。这是第一次发现ZnCr2O4纳米颗粒的反向常数随温度的改变,提供了一种得到不同反向常数的ZnCr2O4纳米颗粒的方法。
Noble metal nanoparticles are extremely interesting because of their large applications in catalysis, fuel cell, gas sensing, et al. Since nanopartles properties strongly depend on partle size, morphology and electronic structure, and the initial nucleation mechanism is critical to determine the final partile size and morphology, it is mandatory characterizing the atomic distribution, the electronic structure and the formation mechanism of nanoparticle for its controllable synthesis and control of performance. In this dissertation, we will discuss the geometrical structure of Pt(IV) in H2PtCl6ammonia solution, the formation mechanism of Pt nanoparticles in the reduction of H2PtCl6to Pt nanoparticles by methanol, and the electronic and atomic structure of Cu-Pt nanoparticles synthesized by a polyol liquid phase method. To this purpose we used a combination of X-ray absorption fine structure spectroscopy (XAFS), transmission electron microscopy (TEM), X-ray diffraction (XRD) patterns, UV-Vis, liquid chromatography mass spectrometry (LCMS), multiple scattering theory and First-principle calculation method. Besides, we also studied the change of the inversion parameter of ZnCr2O4nanoparticles synthesized by a co-precipitation and postcalcined method vs the annealing temperatue. This dissertation includes:
     1. We investigated the geometry structure of Pt(IV) in H2PtCl6ammonia solution. By means of extended x-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) calculations. Data show that C1ligands around Pt with a Pt-Cl bond length of2.32A are completely replaced by NH3ligands with a Pt-N distance of2.05A. Data point out both the Pt-Cl and a Pt-N orbital hybridization will cause a post-edge feature that indicates the number of neighboring atoms.
     2. We investigated the formation mechanism of Pt nanoparticles and the effect of H2O on the reduction of H2PtCl6to Pt nanoparticles by methanol. The transformation route is:[PtCl6]2-to [PtCl5(CH3O)]2-to [PtCl4]2-to [PtCl3(CH3O)]2-to [PtCl2]2-to Pt30and finally to Pt nanoparticles in a pure CH3OH solution. With10vol%water added into the CH3OH solution, a new chemical reduction pathway from [PtCl2]2-to [PtCl5(CH3O)(H2O)]2-to [PtCl4]2-to [PtCl3(CH3O)(H2O)]2-to [PtCl2]2-to Pt30and finally to Pt nanoparticles was detected. In the latter case, H2O not only participated but also greatly accelerated the reaction acting as a "catalyst".
     3. We investigated the electronic and atomic structure of Cu-Pt nanoparticles with different Cu/Pt molar ratio synthesized by a glycol-water reduction method. Results show that majority of Cu atoms segregated to the surface to form a CuO-like shell around a Pt-rich Cu/Pt core. The analysis of the Pt-L2,3white line (WL) intensities points out a novel change compared to the corresponding bulk Cu-Pt alloy. Actually, forming Cu-Pt alloy nanoparticles Pt atoms lose d electrons while an increase of Pt d-electron is observed when the Cu atoms on the surface are gradually oxidized. Results suggest that the electronic properties of Cu-Pt nanoparticles can be tuned by manipulating surface and alloying effects.
     4. ZnCr2O4nanocrystals with different sizes were synthesized by a co-precipitation and post-calcined method. XRD and TEM showed that the nanocrystals annealed at different temperature have the same crystal structure and their size increases with the annealing temperature. Cr and Zn K-edge XANES and EXAFS has been used to investigate the change of the inversion parameter vs. the annealing temperature. The inversion parameter is found to decrease with increasing annealing temperature. In particular, samples annealed at750℃has a normal spinel structure, like the bulk ZnCr3O4. On the contrary, the inversion parameter of the sample annealed at300℃can get0.24. This is the first study that shows in the ZnCr2O4a variation of the inversion degree tuned by the annealing temperature, and provides also an original method to obtain ZnCr2O4nanoparticles with different inversion parameters.
引文
[1]A. Arcadi, Chem. Rev,2008,108,3266-3325.
    [2]M. Haruta, N. Yamada, T. Kobayashi, et al. J Catal,1989,115,301-309.
    [3]M. Valden, X. Lai, D. W. Goodman. Science,1998,281,1647-1650.
    [4]AA. Lazarides, GC. Schatz, J. Phys. Chem. B,2000,104,460-467.
    [5]Z. Zhang, Z. Cui, Nanotechnology and Nanomaterial, National Defense Industry Press,2000, 1-65.
    [6]SE. Habas, H. Lee, V. Radmilovic, GA. Somorjai, P. Yang, Nature Mater,2007,6,692-697.
    [7]C. Wang, YJ. Hu, CM. Lieber, SH. Sun, J. Am. Chem. Soc,2008,130,8902-8903.
    [8]Y. Yin, Alivisatos AP,2005,437,664.
    [9]CY. Park, PA. Fenter, NC. Sturchio, JR. Regalbuto, Phys. Rev. Lett.,2005,94,076104.
    [10]X. Chen, W.S. Chu, L. Wang, Z.Y. Wu, J. Mol. Sturct,2009,920,40.
    [11]W.A. Spieker, J. Liu, J.T. Miller, A.J. Kropf, J.R. Regalbuto, Appl. Catal. A:General.2002, 232,219.
    [12]X. Chen, W.S. Chu, D.L. Chen, Z.H. Wu, A. Marcelli, Z.Y. Wu, Chem. Geol.,2009,268, 74-80
    [13]A. Regla, S.M. Enrique, D.M. Sofiia, S.V. Armando, M.P. Adela, J. Phys. Chem. B,2001, 105,7588-7593.
    [14]L.I. Elding, Inorg. Chim. Acta,1976,20,65.
    [15]F. Farges, J.A. Sharps, G.E. Brown, Geochim. Cosmochim. Acta.1993,57,1243-1252.
    [16]D.A. Paola, B. Vincenzo, C. Giovanni, S. Nico, M. K. Wolfram and V.P. Nicolae, J. Am. Chem. Soc.2002,124,1958-1967.
    [17]Q. Ye, X. Chen, J. Zhou, H.F. Zhao, W.S. Chu, XS. Zheng, M. Angusto and Z.Y. Wu, Chin. Phys. C,2013,37,038003.
    [18]Q. Ye, J. Zhou, T. Zhao, H.F. Zhao, W.S. Chu, Z.X. Sheng, X. Chen, M. Augusto, Y. Luo and Z.Y. Wu,2012,116,7866-7873.
    [19]D. W. Oxtoby, Nature 2000,406,464.
    [20]S. Auer, D. Frenkel, Nature 2001,409,1020.
    [21]U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, D. A. Weitz, Science 2001,292,258.
    [22]a) A. C. Hillier, M. D. Ward, Science 1994,263,1261; b) H. Bruce, M. Giovannini, K. Bromann, K. Kern, Nature 1998,394,451.
    [23]M. G.Richmond, Coord. Chem. Rev.2003,241,273.
    [24]a) H.W. Roesky, S. Singh, K. K. M. Yusuff, J. A. Maguire, N. S. Hosmane, Chem. Rev.2006, 106,3813; b) Y. Sevryugina, A. Y. Rogachev, M. A. Petrukhina, Inorg. Chem.2007,46, 7870.
    [25]a) T. Yao, Z. Sun, Y. Li, Z. Pan, H. Wei, Y. Xie, M. Nomura, Y. Niwa, W. Yan, Z. Wu, Y. Jiang, Q. Liu, and S. Wei, J. Am. Chem. Soc.2010,132,7696-7701; b) T. Yao, S. Liu, Z. Sun, Y. Li, S. He, H. Cheng, Y. Xie, Q. Liu, Y. Jiang, Z. Wu, Z. Pan, W. Yan, and S. Wei, J. Am. Chem. Soc.2012,134,9410-9416.
    [26]V. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc.1950,72,4847.
    [27]M. A.Watzky, R. G. Finke, J. Am. Chem. Soc.1997,119,10382.
    [28]J. H. Yu, J. J, H. M. Park, S. Baik, Y. W. Kim, S. C. Kim, and T. Hyeon, J. Am. Chem. Soc. 2005,127,5662-5670.
    [29]H. Zheng, R. K. Smith, Y. Jun, C. Kisielowski, U. Dahmen, A. P. Alivisatos, Science 2009, 324,1309.
    [30]L. Colombi Ciacchi, W. Pompe, A. De Vita, J. Am. Chem. Soc.2001,123,7371.
    [31]L. Colombi Ciacchi, W. Pompe, A. De Vita, J. Phys. Chem. B 2003,107,1755.
    [32]a) A. Henglein, Chem. Rev.1989,89,1861; b) L. C. Ciacchi, M. Mertig, R. Seidel, W. Pompe, A. De Vita, Nanotechnology 2003,14,840; c) E. E. Finney, R. G. Finke, J. Colloid Interface Sci.2008,317,351.
    [33]J. Ma, Y. Zou, Z. Jiang, W. Huang, J. Li, G. Wu, Y. Huang and H. Xu, Phys Chem. Chem. Phys.,2013,15,11904
    [34]a) Y. Xiong, Y. Xia, Adv. Mater.2007,19,3385; b) Younan Xia, Yujie Xiong, Byungkwon Lim, and Sara E. Skrabalak, Angew. Chem. Int. Ed.2008,47,2-46
    [35]a) D. J. Smith, A. K. Petford-Long, L. R. Wallenberg, J. O. Bovin, Science 1986,233,872; b) S. Iijima, T. Ichihashi, Phys. Rev. Lett.1986, L56,616.
    [36]a) P. L. Gai, M. A. Harmer, Nano Lett.2002,2,771; b) C. Lofton, W. Sigmund, Adv. Funct. Mater.2005,15,1197.
    [37]P. M. Ajayan, L. D. Marks, Phys. Rev. Lett.1998,80,585.
    [38]C. Cleveland, U. Landman, J. Chem. Phys.1991,94,7376.
    [39]V. Germain, J. Li, D. Ingert, Z. L. Wang, M. P. Pileni, J. Phys. Chem. B 2003,107,8717.
    [40]a) Y. Xiong, A. R. Siekkinen, J. Wang, Y. Yin, M. J. Kim, Y. Xia, J. Mater. Chem.2007,17, 2600; b) I. Washio, Y. Xiong, Y. Yin, Y. Xia, Adv. Mater.2006,18,1745; c) B. Lim, P. H. C. Camargo, Y. Xia, Langmuir 2008,24,10437.
    [41]Y. Xiong, J. M. McLellan, J. Chen, Y. Yin, Z.-Y. Li, Y. Xia, J. Am. Chem. Soc.2005,127, 17118.
    [42]Y. Sun, Y. Xia, Adv. Mater.2003,15,695.
    [43]B. Wiley, T. Herricks, Y. Sun, Y. Xia, Nano Lett.2004,4,1733-1739.
    [44]B. J. Wiley, Y. Xiong, Z.-Y. Li, Y. Yin, Y. Xia, Nano Lett.2006,6,765.
    [45]B. Wiley, Y. Sun, Y. Xia, Langmuir 2005,21,8077.
    [46]Y. Xiong, J. M. McLellan, Y. Yin, Y. Xia, Angew. Chem.2007,119,804.
    [47]A. Tao, P. Sinsermsuksakul, P. Yang, Angew. Chem.2006,118,4713.
    [48]Z. L.Wang, J. Phys. Chem. B 2000,104,1153.
    [49]Y. Xiong, H. Cai, Y. Yin, Y. Xia, Chem. Phys. Lett.2007,440,273.
    [50]B. J.Wiley, Z.Wang, J.Wei, Y. Yin, D. H. Cobden, Y. Xia, Nano Lett.2006,6,2273.
    [51]a) B. Wiley, Y. Sun, B. Mayers, Y. Xia, Chem. Eur. J.2005,11,454; b) A. R. Tao, S. Habas, P. Yang, Small 2008,4,310; b) C. J. Murphy, N. R. Jana, Adv. Mater.2002,14,80; c) Y. Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett.2003,3,955.
    [52]a) J. S. Spendelow, A. Wieckowski, Phys. Chem. Chem. Phys.2004,6,5094; b) E. A. Baranova, C. Bock, D. Ilin, D. Wang, B. MacDougall, Surf. Sci.2006,600,3502; c) A. M. Joshi, M. H. Tucker,W. N. Delgass, K. T. Thomson, J. Chem. Phys.2006,125,194707.
    [53]a) Y. Sun, Y. Xia, Science 2002,298,2176; b) Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, Z.-Y. Li, Nano Lett.2005,5,1237.
    [54]B. Lim, Y. Xiong, Y. Xia, Angew. Chem.2007,119,9439.
    [55]N. R. Jana, L. Gearheart, C. J. Murphy, Adv. Mater.2001,13,1389.
    [56]S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. Yang, Nature. Mater.2007,6,692.
    [57]F.-R. Fan, D.-Y. Liu, Y.-F. Wu, S. Duan, Z.-X. Xie, Z.-Y. Jiang, Z.-Q. Tian, J. Am. Chem. Soc.2008,130,6949.
    [58]a) D. Xu, Z. P. Liu, H. Z. Yang, Q. S. Liu, J. Zhang, J. Y. Fang, S. Z. Zou, K. Sun, Angew. Chem. Int. Ed.2009,48,4217; b) B. D. Adams, G. Wu, S. Nigro, A. Chen, J. Am. Chem. Soc. 2009,131,6930.
    [59]D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev.2008,108,3351.
    [60]a) S. Mandal, K. M. Krishnan, J. Mater. Chem.2007,17,372; b) W. Wei, S. Li, J. E. Millstone, M. J. Banholzer, X. Chen, X. Xu, G. C. Schatz, C. A. Mirkin, Angew. Chem. Int. Ed.2009,48,4210.
    [61]D. Wang and Y. Li, Adv. Mater.2011,23,1044-1060.
    [62]C. Suryanarayana, Prog. Mater. Sci.2001,46,1.
    [63]C. Binns, Surf. Sci. Rep.2001,44,1.
    [64]A. K. Sra, R. E. Schaak, J. Am. Chem. Soc.2004,126,6667.
    [65]N. H. Chou, R. E. Schaak, J. Am. Chem. Soc.2007,129,7339.
    [66]N. Toshima and Y. Wang, Langmuir 1994,10,4574-4580.
    [67]a) S. H. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 2000,287,1989; b) S. Sun, Adv. Mater.2006,18,393.
    [68]H. Bonnemann, R. A. Brand, W. Brijoux, H. W. Hofstadt, M. Frerichs, V. Kempter, W. Maus-Friedrichs, N. Matoussevitch, K. S. Nagabhushana, F. Voigts, V. Caps, Appl. Organometal. Chem.2005,19,790.
    [69]R. D. Rutledge, W. H. Morris, M. S. Wellons, Z. Gai, J. Shen, J. Bentley, J. E. Wittig, C. M. Lukehart, J. Am. Chem. Soc.2006,128,14210.
    [70]I. Robinson, S. Zacchini, L. D. Tung, S. Maenosono, N. T. K. Thanh, Chem. Mater.2009,21, 3021.
    [71]B. Lim, H. Kobayashi, T. Yu, J. Wang, M. J. Kim, Z. Y. Li, M. Rycenga, Y. Xia, J. Am. Chem. Soc.2010,132,2506.
    [72]C. Wang, W. Tian, Y. Ding, Y. Ma, Z. L. Wang, N. M. Markovic, V. R. Stamenkovic, H. Daimon, S. Sun, J. Am. Chem. Soc.2010,132,6524.
    [73]W. Chen, R. Yu, L. L. Li, A. N. Wang, Q. Peng, Y. D. Li, Angew. Chem. Int. Ed 2010,49, 2917.
    [74]a) Y. Sun, B. T. Mayers, Y. Xia, Nano Lett.2002,2,481-485; b) Y. Sun, B. Mayers, Y. Xia, Adv. Mater.2003,15,641.
    [75]Y. Sun, and Y. Xia, J. Am. Chem. Soc.2004,126,3892-3901
    [76]X. Lu, H.-Y Tuan, J. Chen, Z.-Y Li, B. A. Korgel, and Y. Xia, J. Am. Chem. Soc.2007,129, 1733-1742
    [77]L. Au, X. Lu, and Y. X, Adv. Mater.2008,20,2517-2522.
    [78]D. S. Wang and Y. D. Li, J. Am. Chem. Soc.2010,132,6280.
    [79]D. S. Wang, T. Xie, Q. Peng, S. Y. Zhang, J. Chen, Y. D. Li, Chem. Eur. J.2008,14,2507.
    [1]H. Friche, Phys. Rev.1920,16,202.
    [2]G. Hertz, Z. Phys.1920,3,19.
    [3]DE. Sayers, EA. Stern and FW. Lytle, Phys. Rev. Lett.1971,27,1204.
    [4]Bare, SR 2008, XANES measurements and interpretation. APS XAFS School.
    [5]A. Bianconi, EXAFS and Near Edge Structure, Springer-Verlay, Berlin,1983.
    [6]P. A. Lee, P. Citrin, P. Eisenberger. and B. Kincaid, Phys. Rev. B,1981,53,769-806.
    [7]马礼敦,杨福家,同步辐射应用概论,复旦大学出版社,2001,p287-292.
    [8]A. Erbil, G. S. Cargill and R. Frahm et al., Phys. Rev. B 1988,37,2450.
    [9]Y. N. Xie, H. Yang, S. Qiao, S. Xia and D. Xian, Rev. Sci. Instrum.1992,63,956-957.
    [10]S. Qiao, Y. N. Xie, H. Yang, T. Hu, S. Xia, E. Tang and D. Xian, Rev. Sci. Instrum.1992,63, 545-547.
    [11]V. V. Shmidt, Bull. Acad. Sci. USSR Phys. Ser.1961,25,988.
    [12]G. Beni and P. M. Piatzman, Phys. Rev. B,1976,14,1514.
    [13]E. A. Stern, B. A. Bunker and S. M. Heald, Phys. Rev. B,1980,21,5521.
    [14]王其武,刘文汉,X射线吸收精细结构及其应用,科学出版社,1994.
    [15]M. Orchin, H. H. Jaffe, "Symmetry, Orbitals, and Spectra", John Wiley,1971.
    [16]S. Sugano, Y. Tanabe and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals, Acadamic, New York,1970.
    [17]B. N. Figgs, Introduction to Ligand Fields, Wiley-Interscience, New York,1966.
    [18]A. Pantelouris, H. Modrow, M. Pantelouris, J. Hormes, and D. Reinen, Chem. Phys.2004, 300,13-22.
    [19]B. J. Hwang, S. M. S. Kumar, C.-H Chen, R.-W Chang, D.-G Liu, and J.-F Lee, J. Phys. Chem. C 2008,112,2370-2377.
    [20]Z. Y. Wu, S. Gota, F. Jollet, M. Pollak, M. Gautier-Soyer, and C. R. Natoli, Phys. Rev. B, 1997,55,2570.
    [1]RA. Buchanan, IS. Lee, JM. Williams, J. Biomed Mater Res.,1990,24,309-18.
    [2]CY. Park, PA. Fenter, NC. Sturchio, JR. Regalbuto, Phys. Rev. Lett.,2005,94,076104.
    [3]J. Grasjo, E. Andersson, J. Forsberg, EF. Aziz, B. Brena, C. Johansson, J. Nordgren, L. Duda, J. Andersson, F. Hennies, J. Rubensson, P. Hansson, J. Phys. Chem. B,2009,113,8201-8205.
    [4]X. Chen, WS. Chu, L. Wang, ZH. Wu, Z.Y. Wu, J. Mol. Struct.,2009,920,40-44.
    [5]X. Chen, WS. Chu, DL. Chen, ZH. Wu, A. Marcelli, Z.Y. Wu, Chem. Geol.,2009,268, 74-80.
    [6]L. Helm, LI. Elding, AE. Merbach, Inorg. Chem.1985,24,1719.
    [7]RJ. Deeth, LI. Elding, Inorg. Chem.1996,35,5019.
    [8]RNJ. Comans, CPJ. Vandijik. Nature,1988,336,151-154.
    [9]BD. Honeyman, PH. Santschi. Environ Sci Technol,1988,22,862-871.
    [10]MM. Hoffmann, JG. Darab, BJ. Palmer, JL. Fulton, RJJ. Reeder, Phys. Chem. A,1999,103, 8471-8482.
    [11]P. D'Angelo, V. Barone, G. Chillemi, N. Sanna, W. Meyer-Klauche, NV. Pavel, J.Am.Chem.Soc.,2002,124,1958-1967.
    [12]H. Ohtaki, T. Radnai, Chem. Rev.,1993,93,1157-1204.
    [13]S. Diaz-Moreno, J. Chaboy, A. Munoz-Paez, J. Phys. Chem. A,2000,104,1278-1286.
    [14]I. Takashi, H. Masaru, KJ. Takaumi, Chem. Phys.,2005,122,024510
    [15]T. Yamaguchi, M. Niihara, T. Takamuku, H. Wakita, H. Kanno, Chem. Phys. Lett.,1997,274, 485.
    [16]M. Benfatto, P. D'Angelo, DS. Longa, NV. Pavel, Phys. Rev. B,2002,65,174205.
    [17]EJ. Elzinga, RJ. Reeder, Geochim. Cosmochim. Acta,2002,66,3943-3954.
    [18]A. Regla, SM. Enrique, DM. Sofiia, SV. Armando, MP. Adela, J. Phys. Chem. B,2001,105, 7588-7593.
    [19]LI. Elding, Inorg. Chim. Acta,1976,20,65.
    [20]F. Farges, JA. Sharps, GE. Brown, Geochim. Cosmochim. Acta.1993,57,1243-1252.
    [21]M. Benfatto, CR. Natoli, A. Bianconi, J. Garcia, A. Marcelli, M. Fanfoni, I. Davoli, Phys. Rev. B 1986,34,5774.
    [22]a) Z.Y. Wu, A. Mottana, A. Marcelli, E. Paris, G. Giuli, G. Cibin, Phys. Rev. B,2004,69, 104106; b) Z.Y. Wu, G. Ouvrard, S. Lemaux, P. Moreau, P. Gressier, F. Lemoigno, J. Rouxel, Phys. Rev. Lett.,1996,77,2101-2104.
    [23]Garcia J, Bianconi A, Benfatto M, Natoli CR, J. Phys (France) 1986, Colloq 47, C9-49.
    [24]C. Hennig, J. Tutschku, A. Rossberg, G. Bernhard, AC. Scheinost, Inorg. Chem.2005,44, 6655-6661.
    [25]L. Gmelin, R.J. Meyer, Gmelins Handbuch der anorganischen Chemie, Platin, Teil C Lieferurig 1,8 Auflage, Verlag Chemie, Weinheim,1939.
    [26]T. Mang, B. Breitscheidel, P. Polanek, H. Knozinger, Appl. Catal. A:Gen.1993,106, 239-258.
    [27]J.R. Anderson, Structure of Metallic Catalysts. Academic Press, New York,1975.
    [28]A. Miolati, U. Pendini, Z. Anorg. Chem.1903,33,251.
    [29]L.G. Sillen, A.E. Martell, The Stability Constants of Metal Ion Complexes. Special Publication No.25 (Suppl.1), The Chemical Society, Burlington House, London,1971.
    [30]W.A. Spieker, J. Liu, J.T. Miller, A.J. Kropf, J.R. Regalbuto, Appl. Catal. A:General.2002, 232,219.
    [31]A. Muiioz-Phezt and D. C. Koningsberger, J. Phys. Chem.1995,99,4193.
    [32]E. Beck, V.V. Kriventsov, M.A. Fedotov, V.I. Bukhtiyarov, Nucl. Instrum. Methods Phys. Res. A.2009,603,182.
    [33]Y. W. Tsai, Y. L. Tseng, L, S. Sarma, D. G. Liu, J. F. Lee and B. J. Hwang, J. Phys. Chem. B. 2004,108,8148.
    [34]A.L. Ankudinov, J.J. Rehr, Simon R. Bare, Chem. Phys. Lett.2000,316,495.
    [1]NQ. Wu, L. Fu, M. Su, M. Aslam, KC. Wong, VP. Dravid, Nano. Lett.,2004,4,383-386.
    [2]SE. Habas, H. Lee, V. Radmilovic, GA. Somorjai, P. Yang, Nature Mater.,2007,6,692-697.
    [3]C. Wang, YJ. Hu, CM. Lieber, SH. Sun, J. Am. Chem. Soc.,2008,130,8902-8903.
    [4]Y. Borodko, SM. Humphrey, TD. Tilley, H. Frei, GA. Somorjai, J. Phys. Chem. C 2007,111, 6288-6295.
    [5]CJ. Johnson, E. Dujardin, SA. Davis, CJ. Murphy, S. Mann, J. Mater. Chem.,2002,12, 1765-1770.
    [6]Y. Yin, AP. Alivisatos, Nature,2005,437,664.
    [7]D. W. Oxtoby, Nature 2000,406,464.
    [8]a) T. Yao, Z. Sun, Y. Li, Z. Pan, H. Wei, Y. Xie, M. Nomura, Y. Niwa, W. Yan, Z. Wu, Y. Jiang, Q. Liu, and S. Wei, J. Am. Chem. Soc.2010,132,7696-7701; b) T. Yao, S. Liu, Z. Sun, Y. Li, S. He, H. Cheng, Y. Xie, Q. Liu, Y. Jiang, Z. Wu, Z. Pan, W. Yan, and S. Wei, J. Am. Chem. Soc.2012,134,9410-9416.
    [9]H. Lee, S. E. Habas, S. Kweskin, D. Butcher, G. A. Somorjai, and P. Yang, Angew. Chem. 2006,118,7988-7992
    [10]C. Burda, X. Chen. R. Narayanan, M. A. El-Sayed, Chem. Rev.2005,105,1025-1102.
    [11]S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 2001,412,169.
    [12]N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science 2007,316,732-735.
    [13]K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G. A. Somorjai, Nano Lett.2007,7, 3097-3101.
    [14]Y. W. Tsai, Y. L. Tseng, L. S. Sarma, D. G. Liu, J. F. Lee, and B. J. Hwang, J. Phys. Chem. B 2004,108,8148-8152
    [15]M. Harada, and H. Einaga, Langmuir 2006,22,2371-2377
    [16]H. Zheng, R. K. Smith, Y. W. Jun, C. Kisielowski, U. Dahmen, A. P. Alivisatos, Science 2009,324,1309-1312
    [17]L. C. Ciacchi, W. Pompe, and A. D. Vita, J. Am. Chem. Soc.2001,123,7371-7380
    [18]L. C. Ciacchi, W. Pompe and A. D. Vita, J. Phys. Chem. B 2003,107,1755-1764
    [19]R. E. Cameron and A. B. Bocarsly, Inorg. Chem.1986,25,2910-2913
    [20]J. Yang, T. C. Deivaraj, H.-P Too, and J. Y. Lee, Langmuir 2004,20,4241-4245
    [21]Y.-T Yu, J. Wang, J.-H Zhang, H.-J Yang, B.-Q Xu, and J.-C Sun, J. Phys. Chem. C 2007, 111,18563-18567
    [22]J. Chen, T. Herricks, M. Geissler, and Y. Xia, J. Am. Chem. Soc.2004,126,10854-10855
    [23]C.-S Lin, M. R. Khan, S. D. Lin, J. Colloid Interface Sci.2006,299,678-685
    [24]D.G. Duff, P.P. Edwards, B.F.G. Johnson, J. Phys. Chem.1995,99,15,934
    [25]A.L. Ankudinov, J.J. Rehr,2000, Chem. Phys. Lett.316,495
    [1]S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. Yang, Nature. Mater.2007,6,692.
    [2]a) D. Xu, Z. P. Liu, H. Z. Yang, Q. S. Liu, J. Zhang, J. Y. Fang, S. Z. Zou, K. Sun, Angew. Chem. Int. Ed.2009,48,4217; b) B. D. Adams, G. Wu, S. Nigro, A. Chen, J. Am. Chem. Soc. 2009,131,6930.
    [3]J.B. Wu, J.L. Zhang, Z.M. Peng, S.C. Yang, F. T. Wagner, and H. Yang, J. Am. Chem. Soc. 2010,132,4984-4985.
    [4]B. J. Hwang, S. M. S. Kumar, C.H. Chen, R.W. Chang, D.G. Liu, and J.F. Lee, J. Phys. Chem. C,2008,112,2370-2377.
    [5]L. Deng, W.Y. Hu, H.Q. Deng, and S.F. Xiao, J. Phys. Chem. C 2010,114,11026-11032.
    [6]F. Liu, D. Wechsler, P. Zhang, Chem. Phys. Lett.2008,461,254-259.
    [7]M. Benfatto, C.R. Natoli, A. Bianconi, J. Garcia, A. Marcelli, M. Fanfoni and I. Davoli, Phys. Rev. B 1986,34,5774.
    [8]B.J. Hwang, L. S. Sarma, J.M. Chen, C.H. Chen, S.C. Shih, G.R. Wang, D.G. Liu, J.F. Lee, and M.T. Tang, J. Am. Chem. Soc.2005,127,11140-11145.
    [9]C. C. Tyson, A. Bzowski, P. Kristof, M. Kuhn, R. Sammynaiken, and T. K. Sham, Phys. Rev. B,1992,45,8924.
    [10]A. Bzowski, T. K. Sham, and Y. M. Yiu, Phys. Rev. B,1994,49,13776.
    [11]I. Coulthard and T. K. Sham, Phys. Rev. Lett,1996,77,4824.
    [12]H. H. Hsieh, Y. K. Chang, W. F. Pong, J. Y. Pieh, P. K. Tseng, T. K. Sham, I. Coulthard, S. J. Naftel, J. F. Lee, S. C. Chung, and K. L. Tsang, Phys. Rev. B,1998,57,15204.
    [13]W. Drube, R. Treusch, T. K. Sham, and A. Bzowski, Phys. Rev. B,1998,58,6871.
    [14]T. D. Thomas and P. Weightman, Phys. Rev. B 1986,33,5406.
    [15]G. K. Wertheim, R. L. Cohen, G. Crecelins, K. W. West, and J. Wernick, Phys. Rev. B 1979, 20,860.
    [16]S. C. Cook, J. D. Padmos, and P. Zhang, J. Chem. Phys.2008,128,154705.
    [17]J. B. Raoof, R. Ojani, S. A. Esfeden, and R. Nadimi, Int. J. Hydrogen Energy.2010,35, 3937-3944.
    [18]J. Ma, A. Habrioux, N. Alonso-Vante, J. Solid State Electrochem.2013,17,1913-1921.
    [19]S. Zhou, B. Varughese, B. Eichhorn, G Jackson, and K. McIlwrath, Angew. Chem. Int. Ed. 2005,44,4539-4543.
    [20]G. Mattei, C. Maurizio, P. Mazzoldi, F. D'Acapito, G. Battaglin, E. Cattaruzza, C. de Julian, C. Sada, Phys. Rev. B,2005,71,195418.
    [21]H. H. Hsieh, Y. K. Chang, W. F. Pong, J. Y. Pieh, and P. K. Tseng, Phys. Rev. B,1998,57, 15204.
    [22]Y.S. Lee, K.Y. Lim, Y.D. Chung, C.N. Whang, and Y.S. Jeon, Surface and Interface Ananlysis, 2000,30,475-478
    [1]F. Tielens, M. Calatayud, R. Franco, J. M. Recio, M. P. Ramirez, C. Minot, J. Phys. Chem. B 2006,110,988-995.
    [2]N. Ballarini, F. Cavani, S. Passeri, L. Pesaresi, A. F. Lee, K. Wilson, Appl. Catal, A 2009,366, 184-192
    [3]S. Pokhrel, B. Jeyaraj, K. S. Nagaraja, Mater. Lett.2003,57,3543-3548
    [4]H. Gul, A. Maqsood, M. Naeem, M. N. Ashiq, J. Alloys Compd.2010,507,201-206.
    [5]H. St. C. O'Neill,Navrotsky, Am. Mineral.1983,68,181-194
    [6]N. G. Jovic, A. S. Masadeh, A. S. Kremenovic, B. V. Antic, J. L. Blanusa, N. D. Cyjeticanin, G F. Goya, M. V. Antisari, E. S. Bozin, J. Phys. Chem. C 2009,113,20559-20567.
    [7]Z. J. Zhang, Z. L. Wang, B. C. Chakoumakos, J. S. Yin, J. Am. Chem. Soc.1998,120, 1800-1804.
    [8]V. Sreeja, T. S. Smitha, D. Nand, T. G. Ajithkumar, and P. A. Joy, J. Phys. Chem. C,2008,112, 14737-14744
    [9]Schreyeck, L.; Wlosik, A. and Fuzellier, H. J. Mater. Chem.,2011,11,483-486
    [10]X. L. Duan, D. R. Yuan, and F. P. Yu, Inorg. Chem.2011,50,5460-5467
    [11]R. J. Harrison, S. A. T. Redfern, H. St. C. O'Neill, Am. Mineral.1998,83,1092-1099.
    [12]S. M. Antao, I. Hassan, and J. B. Parise, Am. Mineral.2005,90,219-228.
    [13]M. Benfatto, C. R. Natoli, A. Bianconi, J. Garcia, A. Marcelli, M. Fanfoni, and I. Davoli, Phys. Rev.B 1986,34,5774-5781
    [14]V. Krishnan, R. K. Selvan, C. O. Augustin, A. Gedanken, and H. Bertagnolli, J. Phys. Chem. C,2007,111,16724-16733
    [15]R. K. Selvan, V. Krishnan, C. O. Augustin, H. Bertagnolli, C. S. Kim, and A. Gedanken, Chem. Mater,2008,20,429-439
    [16]D. Carta, C. Marras, D. Loche, G. Mountjoy, S. I. Ahmed, and A. Corrias, J. Chem. Phys, 2013,138,054702
    [17]M. J. Akhtar, M. Nadeem, S. Javaid, and M. Atif, J. Phys.:Condens. Matter 2009,21,405303
    [18]D. Carta, M. F. Casula, G. Mountjoyz, and A. Corrias, Phys. Chem. Chem. Phys.,2008,10, 3108-3117
    [19]D. Carta, M. F. Casula, P. Floris, A. Falqui, G. Mountjoyz, A. Boni, C. Sangregorio, and A. Corrias, Phys. Chem. Chem. Phys.,2010,12,5074-5083
    [20]D. Carta, D. Loche, G Mountjoy, G. Navarra, and A. Corrias, J. Phys. Chem. C 2008,112, 15623-15630
    [21]D. Carta, G. Mountjoy, G. Navarra, M. F. Casula, D. Loche, S. Marras, and A. Corrias, J. Phys. Chem. C 2007,111,6308-6317
    [22]C. Upadhyay, H.C. Verma, V. Sathe, A. V. Pimpale, J. Magn. Magn. Mater.2007,312, 271-279.
    [23]L. Mancic, Z. Marinkovic, P. Vulic, C. Moral, and O. Milosevic, Morphology,2003,3, 415-423
    [24]X. S. Niu, W. P. Du, W. M. Du,2004,99,405-415.
    [25]C. Peng, and L. Gao, J. Am. Ceram. Soc.,2008,91,2388-2390
    [26]Z. V. Marinkovic, L. Mancic, P. Vulic, O. Milosevic, Mater. Sci. Forum,2004,453,456-461.
    [27]S. Levy, D. Diella, V. Pavese, A. Dapiaggi, M. Sani, Am. Mineral,2005,90,1157-1167.
    [28]M. Yazdanbakhsh; I. Khosravi, E. K. Goharshadi, A. Youssefi,2010,184,684-689
    [29]R. G. Chandran, K. C. Patil, Mater. Lett.1992,12,437-450.
    [30]Z. V. Marinkovic, L. Mancic, R. Maric, O. Milosevic, J. Eur. Ceram. Soc,2001,21, 2051-2067.
    [31]H. St. C. O'Neill, W. A. Dollase, Phys Chem Minerals.1994,20,541-555
    [32]J. Yuh, L. Perez, W.M. Sigmund, J. C. Nino, J Sol-Gel Sci Techn,2007,42,323-329
    [33]S. J. Stewart, S. J. A. Figueroa, J. M. R. Lopez, S. G Marchetti, J. F. Bengoa, R. J. Prado, and F. G Requejo, Phys. Rev. B,2007,75,073408
    [34]B. Jeyadevan, K. Tohji, and K. Nakatsuka, J. Appl. Phys.1994,76,6325-6327
    [35]S. Nakashima, K. Fujita, K. Tanaka, K. Hirao, T. Yamamoto, and I. Tanaka, Phys. Rev. B. 2007,75,174443
    [36]S. Calvin, E. E. Carpenter, B. Ravel, V. G. Harris, and S. A. Morrison, Phys. Rev. B 2002,66, 224405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700