转座子Ac/Ds的番茄转化与转双价基因对提高番茄青枯病抗性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为重要的模式经济作物,番茄基因组较小(950MB,编码35000个基因,大部分基因位于占整个基因组25%的常染色质部分),遗传学基础雄厚,并且具有许多拟南芥、水稻等模式植物所不具备的生物学现象(如果实的发育、成熟过程等)。番茄突变体库的建立将为具有重要农艺性状基因的克隆及具有自主知识产权的相关基因的获得奠定基础,所获得的突变体和功能基因组学的研究将为其它蔬菜、水果(尤其是浆果类如Citrus、grape)等重要经济作物的同类研究提供理论和方法上的直接借鉴。
     本实验旨在通过农杆菌介导的遗传转化,将构建的激活表达标签转化Micro-Tom及M82,获得插入突变群体,并开展对突变体的鉴定和分析,以期分离克隆相关基因。主要研究结果如下:
     1.分别以CaMV 35S强启动子和Ac转座酶自身携带的弱启动子启动,以GFP、Lc、GUS基因作报告基因,构建了7个激活表达标签载体。
     2.利用农杆菌介导的遗传转化法将表达载体导入番茄,优化了Micro-Tom的转化体系,获得转基因番茄群体,平均转化效率为40.1%,其中载体pAcGFP转化效率最高,为49.21%。含有GUS基因的表达载体GUSL转化过程中,愈伤不分化,未得到转基因植株。同时利用M82建立了Ac/Ds标签插入辅助群体。
     3.对转化群体进行了GFP基因活性、染色体倍性及分子检测,结果表明:GFP基因已经整合到番茄基因组中,GFP基因的表达具有组织特异性和遗传材料特异性。气孔保卫细胞叶绿体数表明:转化株染色体为二倍体,倍性没有发生改变。Basta抗性试验表明T-DNA在番茄染色体中平均插入位点数为1.8个;通过Southern杂交分析,26.0%为1个插入位点,51.0%为2个插入位点,T-DNA在番茄基因组中的平均拷贝数为2.2个。对T1代植株的Southern杂交检测表明,Ds因子在基因组中可稳定遗传给子代。Basta抗性检测与Southern杂交检测结果基本一致。Southern杂交和Basta抗性检测还表明,来自同一愈伤组织的转基因植株不一定来自同一克隆。
     4.利用PCR方法检测杂交群体中Ds因子的转座活性,对280株T2植株的转座情况进行检测,筛选出既含Ds因子又含转座酶Ac基因的植株94株,结果表明,其中有21株Ds因子从原插入位点切离,转座频率为22.3%。利用半巢式PCR对Ds因子的跳跃活性进行了确定。利用TAIL-PCR对转Ds因子的T0植株的T-DNA插入位点的旁侧
Tomato has been considered as a model for genomic study of Solanaceae because of its difference to Arabidopsis thaliana and rice in biology phenomena, its smaller genomic size (950 Mb) and powerful genetics groundwork. Construction of insertion mutant pool and function genome research will greatly devote to gene clone with important agriculture character and the related gene with independent knowledge property right. The gained mutants and their function genome research will supply theory and technique references for the study of the other vegetables and fruits, especially for berry fruit like Citrus and grape.
     The aim of this thesis was to generate a population of T-DNA insertion mutants via Agrobacterium-mediated genetic transformation using the constructed activation tagging into Micro-Tom and M82. With the identity and analysis of mutants, we expected the related genes would be isolate and clone in the coming work. The main results obtained were as followed:
     1. Seven activation tagging constructs were built promoted with CaMV 35S and Ac self-promoter, and with GFP, Lc, GUS as reporter genes.
     2. The constructs were transformed into Micro-Tom via Agrobacterium-mediated, and the system was optimized. The transformed tomato population was gained and the mean transformed efficiency was 56.7%. The transformed efficiency of pAcGFP was the highest construct, which reached 49.21%. In the process of GUSL transformation, no any transformed plant was gained because of the callus without differentiation. The assisted Ac/Ds insertional population with M82 was also built.
     3. GFP gene activation, diploid plants and molecular detection were conducted with the transformed plants. The results showed that GFP gene was interknitted into tomato genome. Expressions of GFP gene possess tissue and genetic material specific. The transformed plants were diploid plants, which was the same as the wildness Micro-Tom. Basta resistance experiment indicated that the average T-DNA inserted sites were 1.8 as the average inserted sites were 2.2 through southern blotting. Analyzed with southern blotting, about 26.0% among T1 population with one inserted site and 51.0% with two inserted sites, the average inserted T-DNA sites were 2.2. It showed the similar results as that by Basta analysis.
     4. The excision frequency of Ds element in cross-derived population was evaluated with
引文
[1] Chang Y.L., Tao Q., Scheuring C., Ding K., Meksem K., and Zhang H.B. An integrated map of Arabidopsis thaliana for functional analysis of its genome sequence. Genetics, 2001, 159, 1231-1242.
    [2] Elizabeth Pennisi. SEQUENCE: Plants Join the Genome Sequencing Bandwagon. Science, 2000, 290(5499): 2054-2055.
    [3] Chris Somerville and Jeff Dangl. GENOMICS: Plant biology in 2010. Science, 2000, 290(5499): 2077-2078.
    [4] Colebatch G., Trevaskis B., Udvardi M. Functional genomics: tools of the trade. New Phytologist, 2002, 153(1): 27-36.
    [5] Lee Y., Tsai J., Sunkara S., Karamycheva S., et al. The TIGR Gene Indices: clustering and assembling EST and known genes and integration with eukaryotic genomes. Nucleic Acids Res, 2005, 33, 71–74.
    [6] Benson D.A., Karsch-Mizrachi I., Lipman D.J., et al. GenBank. Nucl Acids Res, 2003, 31: 23–27.
    [7] Rounsley S.D., Glodek A., Sutton G., et al. The construction of Arabidopsis expressed sequence tag assembles. Plant Physiology, 1996, 112: 1177-1183.
    [8] Yamamotoa N., Tsuganeb T., Watanabe M., et al. Expressed sequence tags from the laboratory-grown miniature tomato (Lycopersicon esculentum) cultivar Micro-Tom and mining for single nucleotide polymorphisms and insertions/deletions in tomato cultivars. Gene, 2005, 356: 127-134.
    [9] Shibata D. Genome sequencing and functional genomics approaches in tomato. J Gen Plant Pathol, 2005, 71: 1–7.
    [10] Mueller L.A., Solow T.H., Taylor N., et al. The SOL Genomics Network: a comparative resource for Solanaceae biology and beyond. Plant Physiol, 2005, 138: 1310–1317.
    [11] 何瑞锋,王媛媛,杜波等. 水稻双元细菌人工染色体载体系统转化体系的建立[J]. 遗传学报, 2006,33(3):269-276.
    [12] Hieter P., Boguski M. Functional genomics: it's all how you read it. Science, 1997, 278: 601-602.
    [13] Parinov S., Sevugan M., YE D., et al. Analysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell, 1999, 11: 2263-2270.
    [14] Bouchez D., Hofte H. Functional genomics in plants. Plant Physiology, 1998, 118: 725-732.
    [15] Somerville C and Somerville S. Plant functional genomics. Science, 1999, 285: 380-383.
    [16] Walbot. Saturation mutagenesis using maize transposons. Curr Opin plant boil, 2000, 3:103-107.
    [17] Brian I Osborne & Barbara Baker. Movers and shakers: maize transposons as tools for analyzing other plant genomes. Current Opinion in Cell Biology, 1995, 7(3), 406-413.
    [18] 唐益苗,马有志. 植物反转录转座子及其在功能基因组学中的应用[J]. 2005,6(2):221-225.
    [19] 廖鸣娟,董爱华,王正栋,朱睦元. 植物转座子及其在功能基因组学中的应用[J]. 遗传,2000,22(5):345-348.
    [20] Kurata N., Miyoshi K., Nonomura K.I., YamazakiY. and Ito Y. Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol., 2005, 46: 48-62.
    [21] Fisher K S., Barton J., Khush G.S., et al. Collaboration in Rice. Science, 2000, 290: 279-280.
    [22] Meissner R., Jacobson Y., Melamed S., Levyatuv S., Shalev G., Ashri A., Elkind Y., Levy A.A. Anew model system for tomato genetics. Plant Journal, 1997, 12, 1465-1472.
    [23] 吴海滨,朱汝财,赵德刚. TILLING 技术的原理与方法述评[J]. 分子植物育种,2004,2(4):574-580.
    [24] Howard M., Goodman, Joseph R., et al. The genome of Arabidopsis thaliana. Proc Natl Acad Sci USA, 1995, 92: 10831-10835.
    [25] Martienssen R. Weeding out the genes: The Arabidopis Genome Project. Functional and Integrative Genomics, 2000, 1: 2-20.
    [26] Alonso J.M., Stepanova AN, Leisse T., et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 30(1): 653-657.
    [27] Meissner R., Chague V., Zhu Q., et al. A high throughout system for transposon tagging and promoter trapping in tomato. Plant J, 2000, 22: 265-274.
    [28] 郭龙彪,储成才. 水稻突变体与功能基因组学[J]. 植物学通报,2006,23(1): 1-13.
    [29] 程英豪,郑文明,瞿礼嘉等. 插入 T-DNA 片段构建部分水稻突变体株系[J]. 中国农业科学,2004,37(3):313-321.
    [30] Ki-Hong Jung, Junghe Hur, Choong-Hwan Ryu, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant and Cell Physiology, 2003, 44(5): 463-472.
    [31] Zhao J.P., Cheng H., Wang J.H. Plant genetic function method. Journal of Shaoxing University, 2003, 23(7):71-74.
    [32] Patrick J.K., Jeffery C.Y., and Michael R., et al. T-DNA as insertional mutagen in Arabiopsis. The Plant Cell, 1999, 11: 2283-2290.
    [33] Hayashi, H., Czaja, I., Lubenow, H., Schell, J., Walden, R. Activation of a plant gene by T-DNA tagging: auxin-independent growth. In Vitro. Science, 1992, 258, 1350-1353.
    [34] Weigel D., Ahn J.H., Miguel A.B., et al. Activation Tagging in Arabidopis. Plant Physiology, 2000, 122: 1003-1013.
    [35] Kardailsk I., Vipula K.K., Ahn J.H., et al. Activation Tagging of the flora inducer FT. Science, 1999, 286: 1962-1965.
    [36] Simon R., Igeno M.I. and Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature, 1996, 384(7): 59-62.
    [37] Feldmann K.A. T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant journal, 1991, 1: 71-82.
    [38] 吴为人. 大规模T-DNA插入突变体筛选中所需T2代最小样本容量的确定方法[J]. 分子植物育种,2004,2(5):740-742.
    [39] Resmi Nath Radhamony. T-DNA insertional mutagenesis in Arabidopsis: a tool for functional genomics. Plant Biotechnology, 2005, 8(1): 1-11.
    [40] Sundaresan V., Springer P., Volpe P., Haward S., Dean C., Jones J.D.G., Ma H., Martienssen R. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev., 1995, 9, 1797-1810.
    [41] Tissier A.F., Marillonnet S., Klimyuk V., et al. Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell, 1999, 11: 1841-1852.
    [42] Marsch N.M., Greco R., Gert Van Arkel, Luis Herrera-Estrella, and Andy Pereira. Activation Tagging Using the En-I Maize Transposon System in Arabidopsis. Plant Physiol, 2002, 129: 1544-1556.
    [43] Ipek Ahmet. Introduction of Ac/Ds based two-element transposon tagging system and Trans-activation of Ds in carrot (Daucus carota L.)[D]. The University of Wisconsin-Madison. Ph.D. thesis. 2002.
    [44] 朱克明,曾大力,郭龙彪,钱前. 水稻突变体的创制与遗传分析[J]. 中国稻米,2006,7:16-17.
    [45] 瞿绍洪,景健康,胡含. 异源植物中转座因子标签研究的进展[J]. 遗传,1997,19(1):41-45.
    [46] Young N.D., Phillips R.L. Cloning plant genes known only by phenotype. Plant Cell, 1994, 6: 1193-1195.
    [47] Gidoni D., Fuss E., Burbidge A., et al. Multi-functional T-DNA/Ds tomato lines designed for gene cloning and molecular and physical dissection of the tomato genome. Plant Mol Biol., 2003; 51(1): 83-98.
    [48] Srinivasan Ramachandran,Venkatesan Sundaresan. Transposons as tools for functional genomics. Plant Physiol Biochem., 2001, 39: 243-252.
    [49] Koes R., Souer E., van Houwelingen A., et al. Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc. Natl Acad. Sci. USA, 1995, 92, 8149-8153.
    [50] 路铁刚. 水稻逆转座子及其在功能基因组研究中的应用[J]. 遗传,1997,19(4):39-44.
    [51] Hirochika H., Sugimoto K., Otsuki Y., et al. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA, 1996, 93: 7783-7788.
    [52] Wong H.L., Sakamoto T., Kawasaki T., et al. Down-regulation of metallothionein,a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol. 2004, 135: 1447-1456.
    [53] Kaneko M., Inukai Y., Ueguchi-Tanaka M., et al. Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell. 2004, 16: 33-44.
    [54] Meyers B C, Tingey S V, Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res, 2001, 11:1660-1676.
    [55] Nicolas Bouche, David Bouchez. Arabidopsis gene knockout: phenotypes wanted,Current opinion in Plant Biology, 200l, 4: 111-117.
    [56] Paticia S.S. Gene traps: tools for plant development and genomics. Plant Cell, 2000, 12: 1007-1020.
    [57] Springer P.S., Mccombie W.R.,Sundaresan V., et al. Gene traps tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Seience, 1995, 268: 877-880.
    [58] Errampali D., Patton D. Embryonic lethals and T-DNA insertional mutagensis in Arabidopsis. Plant cell, 1991, 11: 149 -157.
    [59] Eric van der Graaff, Amke Den Dnlk Ras, Paul JJ Hooykaas, et al. Activation tagging of the leafy petiole gene affects leaf petiole development in Arabidopsis thaliana. Development, 2000, 127, 4971-4980.
    [60] 郑继刚,李成梅,肖英华. 激活标签法及其在植物基因工程上的应用[J]. 遗传,2003,25,(4):471-474.
    [61] CHEN Shuang-Yan, WU Yun-Rong, WU Ping. A two-component Ac/Ds activation tagging system in rice genomic for mutant development. Journal of Agricultural Biotechnology, 2004, 12(4):369-372.
    [62] Arumuganathan K., Earle E.D. Nuclear DNA content of some important plant species. Plant. Mol. Biol. Report, 1991, 9: 208–218.
    [63] Van der Hoeven R., Ronning C., Giovannoni J., et al. Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell, 2002, 14, 1441–1456.
    [64] Tanksley S.D. Linkage map of tomato (lycopersicon esculentum) (2n=24)[M]. In Genetic Maps: Locus Maps of Complexs Genomes, J. O’Brien, ed (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press), 639-660.
    [65] Giovannoni J.J. Genetic regulation of fruit development and ripening. Plant Cell, 2004, 16: 170-180.
    [66] Hille J., Koornneef M., Ramanna M.S., et al. Tomato: A crop species amenable to improve by cellular and molecular methods. Euphytica, 1989, 42: 1-23.
    [67] Emmanuel E. and Levy A.A. Tomato mutants as tools for functional genomics. Current Opinion in Plant Biology, 2002, 5:112-117.
    [68] Scott J.W., Harbaugh B.K. Micro-Tom-a miniature dwarf tomato. Florida Agr. Expt. Sta. Circ., 1989, 370, 1-6.
    [69] Joni E.L., Rogério F.C., Augusto T.N., et al. Micro-MsK: a tomato genotype with miniature size, short life cycle, and improved in vitro shoot regeneration. Plant Science, 2004, 167(4), 753-757
    [70] Mathews H., Clendennen S.K., Caldwell C.G., et al. Activation lagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell, 2003, 15: 1689-1703.
    [71] Liu YL., Schiff M. & Dinesh-Kumar S.P. Virus-induced gene silencing in tomato. Plant J, 2002, 31: 777-786.
    [72] Taneaki Tsugane & Manabu Watanabe. Expressed sequence tags from the laboratory-grown miniature tomato (Lycopersicon esculentum) cultivar Micro-Tom and mining for single nucleotide polymorphisms and insertions/deletions in tomato cultivars. Gene, 2005, 4:1-8.
    [73] Hideki Takahashi, Ayano Shimizu, Tsutomu Arie, et al. Catalog of Micro-Tom tomato responses to common fungal, bacterial and viral pathogens. Journal of General Plant Pathology, 2005, 71(1): 8-22.
    [74] Tsugane T., Watanabe M., Yano K., et al. Expressed sequence tags of full-length cDNA clones from the miniature tomato (Lycopersicon esculentum) cultivar Micro-Tom. Plant Biotechnology, 2005, 22(2): 161-165.
    [75] Yano K., Watanabe M., Yamamoto N., et al. MiBASE: A database of a miniature tomato cultivar Micro-Tom. Plant Biotechnology, 2006, 23: 195-198.
    [76] Jones D.A., Thomas C.M., Hammond-Kosack K.E., Balint-Kurti P.J., Jones J.D.G. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 1994, 266, 789-792.
    [77] Takken F., Schipper D., Nijkamp H., Hille J. Identification and Ds-tagged isolation of a new gene at the Cf-4 locus of tomato involved in disease resistance to Cladosporium fulvum race 5. Plant J., 1998, 14, 401-411.
    [78] Bishop G., Harrison K., Jones J.D.G. The Tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell, 1996, 8: 959-969.
    [79] Keddie J.S., Carroll B., Jones J.D.G., Gruissem W. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves. EMBO J., 1996, 15, 4208-4217.
    [80] Van der Biezen, E., Brandwagt, B., van Leeuwen, W., Nijkamp, H., Hille, J. Identification and isolation of the FEEBLY gene from tomato by transposon tagging. Mol. Gen. Genet., 1996, 12, 267-280.
    [81] Keddie J.S., Carroll B.J., Thomas C.M. Transposon tagging of the Defective embryo and meristems gene of tomato. Plant Cell, 1998, 10: 877-888.
    [82] Barker C.L., Talbot S.J., Jones J.D.G. and Jones D.A. A tomato mutant that shows stunting, wilting, progressive necrosis and constitutive expression of defence genes contain a recombinant Hcr9 gene encoding an auto-active protein. The plant journal, 2006, 46(3):369-384.
    [83] Thomas C.M., Jones D.A., English J.J., et al. Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol Gen Genet., 1994, 242(5): 573-585.
    [84] Briza J., Niedermeierova H., Pavingerova D., et al. Transposition patterns of unlinked transposed Ds elements from two T-DNA loci on tomato chromosomes 7 and 8. Mol Genet Genomics, 2002, 266(5): 882-890.
    [85] Van Dam J., Levin I., Struik P., and Levy D. Multi-functional T-DNA/Ds tomato lines designed for gene cloning and molecular and physical dissection of tomato genome. Plant Molecular Biology, 2003, 51(1): 83-98. .
    [86] Bruggemann E., Handwerger K., Essex C., Storz G. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. Plant J 1996, 10: 755-760.
    [87] Verkerk K. Chimerism of the tomato plant after seed irradiation with fast neutrons. Neth J Agric Sci, 1971, 19: 197-203.
    [88] David-Schwartz R., Badani H., Smadar W., et al. Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J., 2001, 27:561-569.
    [89] 赵心爱,薛庆中. 利用番茄突变体进行功能基因组学研究[J]. 生命科学,2003,8:228-232.
    [90] Al-Hammadi A.S.A., Sreelakshmi Y., Negi S., et al. The polycotyledon mutant of tomato shows enhanced Polar Auxin Transport. Plant Physiology, 2003, 133, 113-125.
    [91] Li C., Liu G., Xu C., Lee G., et al. The tomato Suppressor of prosystemin-mediated response2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. The Plant Cell, 2003(15), 1646-1661.
    [92] 孟凡娟,许向阳,李景富. 番茄“白化”突变体果实的几个生理生化特性检测[J]. 植物生理学通讯, 2006, 42(1), 109-111.
    [93] Fedoroff N., Wessler S., Shure M. Isolation of the transposable maize controlling elements Ac and Ds. Cell, 1983, 35, 243-251.
    [94] Fedoroff N., Furtek D. and Nelson O. Cloning of the Bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Ac. Proc. Natl. Acad. Sci. USA, 1984, 81, 3825-3829.
    [95] Pohlman R.F., Fedoroff N.V. and Messing J. The nucleotide sequence of the maize controlling element Activator. Cell, 1984, 37, 635-643.
    [96] Tsugeki R., Fedoroff N. The ARP-S16 gene: rapid identification of the biochemical lesion underlying a transposon-tagged embryo-defective Arabidopsis mutation. Plant J., 1996, 10: 479-489.
    [97] Baker B., Schell J., Lorz H. and Fedoroff N. V. Transposition of the maize controlling element Activator in tobacco. Proc. Natl. Acad. Sci. USA, 1986, 83: 4844-4848.
    [98] Van Sluys M.A., Tempe J. and Fedoroff N. Transposition of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J., 1987, 13: 3881-3889.
    [99] Baker B., Coupland G., Fedoroff N., Starlinger P. and Schell J. Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J. 1987, 6: 1547-1554.
    [100] Enoki H., Izawa T., Kawahara M., et al. Ac as a tool for the functional genomics of rice. Plant J., 1999, 19: 605-613.
    [101] JIN Wei-zheng, WANG Shao-min, XU Min, DUAN Rui-jun, WU Ping. Characterization of enhancer trap and gene trap harboring Ac/Ds transposon in transgenic rice. Zhejiang Univ SCI, 2004, 5(4): 390-399.
    [102] Helena Mathews, Clendennen S.K., Caldwell C.G., et al. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell, 2003, 15(8): 1689-1703.
    [103] Sundaresan V., Springer P., Volpe T., et al. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev., 1995, 9: 1797-1810.
    [104] Zhu H.T., Wan X.S., Zhang J.L., Zhang G.Q. Isolation and identification of Ds insertion homozygotes in rice Oryza sativa L. J Plant Physiol Mol Biol., 2003, 294: 337-341.
    [105] 朱正歌,付业萍. 水稻转座子突变体库的构建及突变体的遗传分析[J]. 生物工程学报,2001,17(3):288-292.
    [106] Suzuki Y., Uemura S., Saito Y., et al. A novel transposon tagging element for obtaining gain-of-function mutants based on a self-stabilizing Ac derivative. Plant Mol Biol., 2001, 45: 123-131.
    [107] Kling J. Could transgenic super crops one-day breed super weeds. Science, 1996, 274(5285): 180-181.
    [108] Mikkelsen T.R., Anderson B. and Jorgensen R.B. The risk of crop transgene spread. Nature, 1996, 380: 31.
    [109] Hohn B., Levy A.A. and Puchta H. Elimination of selection markers from transgenic plants. Current Opinionin Biotechnology, 2001, 12(2): 139-143.
    [110] Odell J.T. Site-specific recombination of DNA in plant cells. Patent WO, 1991, 91: 09957.
    [111] Qin M., Barley C., Stockton T., Ow D.W., et al. Cre recombination-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci USA, 1994, 91(5): 1706-1710.
    [112] Stuurman J., de Vroomen M.J., Nijkamp H.J., et al. Single site manipulation of tomato chromosomes in vitro and in vivo using Cre-lox site-specific recombination. Plant Mol Biol., 1996,32(5): 901-913.
    [113] YUAN Yuan, LIU Yun-Jun, WANG Tao. A new Cre/lox system for deletion of selectable marker gene. Acta Botanica Sinica, 2004, 46 (7): 862-866.
    [114] 甄伟,汪阳明,丁伟等. Cre-lox重组系统介导转基因烟草中外源基因删除的研究[J]. 2001,37(4):477-482.
    [115] Miki B. & McHugh S. Selectable marker genes in transgenic plants: applications, alternatives and iosafety. Journal of Biotechology, 2004, 107(3): 193-232.
    [116] Jaiwal P.K., Sahoo L., Singh N.D. and Singh R.P. Strategies to deal with the concern about marker genes in transgenic plants: some environment friendly approaches. Current Science, 2002, 83(2): 128-136.
    [117] Sugita K., Kasahara T., Matsunaga E. and Ebinuma H. A transformation vector for the production of marker-free transgenic plants containing single copy transgene at high frequency. Plant J., 2000, 22(5): 461-469.
    [118] Sivamani E., Bahieldin A., Wraith J.M., Niemi T.A., Dyer W.E., Ho T.D. and Qu R. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVAI gene. Plant Science, 2000, 155(1): 1-9.
    [119] 葛庆燕,苏乔,安利佳. 转基因植物中选择标记基因的控制策略[J]. 分子植物育种,2004,2(4): 713-719.
    [120] Charng Y.C. & Pfitzner A.J.P. The firefly luciferase gene as a reporter for in vivo detection of Ac transposition in tomato plants. Plant Sci., 1994, 98: 175-183.
    [121] Kaeppler H.F., Meron G.K. and Skadsen R.W. Transgenic oat plants via visuals election of cells expressing green fluorescent protein. Plant Cell Reports, 2000, 19(7): 661-666.
    [122] Beeckman T. & Engler G. An easy technique for the clearing of histochemically stained plant tissue. Plant Mol. Biol. Report, 1994, 12: 37-42.
    [123] Charng Y.C., Pfitzner A.J.P., Pfitzner U.M., Charng-Chang K.F., Tu J. & Kuo T.T. Construction of an inducible transposon, INAc, to develop a gene tagging system in higher plants. Molecular Breeding, 2000, 6: 353-367.
    [124] Dooner H.K., and Belachew A. Transposition pattern of the maize element Ac from the Bz-m2(Ac) allele. Genetics, 1989, 122: 447–457.
    [125] Healy J., Corr C., De Young J., Baker B. Linked and unlinked transposition of a genetically marked dissociation element in. transgenic tomato. Genetics, 1993, 134: 571-584.
    [126] Dooner H.K., Keller J., Harper E., and Ralston E. Variable Patterns of Transposition of the Maize Element Activator in Tobacco. Plant Cell, 1991, 3: 473-482.
    [127] Bancroft I., Dean C. Factors affecting the excision frequency of the maize transposable element Ds in Arabidopsis thaliana. Mol. Gen. Genet., 1993, 240: 65-72.
    [128] Nakagawa Y., Machida C., Machida Y., et al. Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol., 2000, 41: 733-742.
    [129] Koprek T., McElroy D., Louwerse J., Williams-Carrier R., Lemaux P.G. An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J., 2000, 24: 253-263.
    [130] Ito T., Seki M., Hayashida N., Shibata D., Shinozaki K. Regional insertional mutagenesis of geneson Arabidopsis thaliana chromosome V using the Ac/Ds transposon in combination with a cDNA scanning method. Plant J., 1999, 17: 433-444.
    [131] Raina S., Mahalingam R., Chen F.Q., et al. A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana. Plant Mol Biol., 2002, 50: 93-110.
    [132] Balcells L., Coupland G. The presence of enhancers adjacent to the Ac promoter increases the abundance of transposase mRNA and alters the timing of Ds excision in Arabidopsis. Plant Mol. Biol., 1994, 24: 789-798.
    [133] Long D., Swinburne J., Martin M., et al. Analysis of the frequency of inheritance of transposed Ds elements in Arabidopsis after activation by a CaMV 35S promoter fusion to the Ac transposase gene. Mol. Gen. Genet., 1993, 241:627-636.
    [134] Greco R., Ouwerkerk P.B., Sallaud C., et al. Transposon insertional mutagenesis in rice. Plant Physiol., 2001, 125:1175-1177.
    [135] Kolesnik T., Szeverenyi I., Bachmann D., et al. Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J, 2004, 37: 301-314.
    [136] 栾维江,孙宗修. Ac/Ds标签系统与水稻功能基因组学[J]. 植物生理与分子生物学学报, 2005, 31 (5): 441-450.
    [137] Jefferson R.A., Kavanagh T.A., Bevan M.W. GUS fusion: β-glucuronidase as a sensitive and. versatile gene fusion marker in higher plants. EMBO J. 1987, 6: 3901-3907.
    [138] Lindsey K., Wei W., Clarke M.C., McArdle H.F., Rooke L.M., and Topping J.F. Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgen Res., 1993, 2: 33-47.
    [139] 赵 华,梁婉琪,杨永华,张大兵. 绿色荧光蛋白及其在植物分子生物学研究中的应用[J]. 植物生理学通讯,2003,39(2),171-178.
    [140] Chiu W.L., Niwa Y., Zeng W., Hirano T., Kobayashi H. & Sheen J. Engineered GFP as a vital reporter in plants. Curr. Biol., 1996, 6(3): 325-330.
    [141] Sheen J., Hwang S., Niwa Y., Kobayashi H., Galbraith D. W. Green-fluorescent protein as a new vital marker in plant cells. Plant J., 1995, 8: 777-784.
    [142] Haseloff, J., Siemering, K.R., Prasher, D.C., Hodge, S. 1997. Removal of a cryptic intron and subcellular localisation of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. U. S. A.
    [143] Niedz R.P., Sussman M.R., Satterlee J.S. Green fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Rep, 1995, 14: 403-406.
    [144] Chen S., Li X., Liu X., et al. Green fluorescent protein as a vital elimination marker to easily screen marker-free transgenic progeny derived from plants co-transformed with a double T-DNA binary vector system. Plant Cell Rep., 2005, 23(9): 625-631.
    [145] Tilahun Abebe, Ron Skadsen, Minesh Patel, Heidi Kaeppler. The Lem2 gene promoter of barley directs cell and development-specific expression of gfp in transgenic plants. Plant Biotechnology Journal, 2006, 4: 35-44.
    [146] Heather Ray, Min Yu, Patricia Auser, et al. Expression of Anthocyanins and Proanthocyanidins after transformation of Alfalfa with maize Lc. Plant Physiology, 2003, 132, 1448-1463.
    [147] Arnaud Bovy, Ric de Vos, Mark Kemper, et al. High-Flavonol Tomatoes Resulting from theHeterologous Expression of the Maize Transcription Factor Genes Lc and C1. Plant Cell, 2002, 14(10): 2509-2526.
    [148] Aflalo C. Biologically localized firefly luciferase: a tool to study cellular processes. Int Rev. Cytol., 1991, 130: 269-323.
    [149] Youbao Sha, Shutian Li, Zhongyou Pei, et al. Generation and flanking sequence analysis of a rice T-DNA tagged population. Theoretical and Applied Genetics, 2004, 108: 306-314.
    [150] Parinov S., Sevugan M., YE D., Yang W.C., Kumaran M., Sundaresan V. Analysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell, 1999, 11: 2263-2270.
    [151] Fray M., Stettner C. and Gierl A. A general method for gene isolation in tagging approaches, amplification of insertion mutagenised sites (AIMS). Plant J., 1998, 13(5): 717-721.
    [152] 洪登峰,万丽丽,杨光圣. 侧翼序列克隆方法评价[J]. 分子植物育种,2006,4(2):208-288.
    [153] McKinney E.C., Ali N., Traut A., et al. Sequence-based identification of T-DNA insertion mutations in Arabidopsis: actin mutants’ act2-1 and act 4-1. Plant J., 1995, 8(4): 613-622
    [154] Liu Y.G., Whittier R.F. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25: 674-681.
    [155] Liu Y.G., Mitsukawa N., Oosumi T., et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J., 1995, 58(3): 457-463.
    [156] Terauchi R., Kahl G. Rapid isolation sequences by TAIL-PCR: the 5-flanking regions of Pal and Pgi genes, from Yams of promote (Dioscorea). Mol Gen Genet, 2000, 263: 554-560.
    [157] Michiels A., Tucker M., Ende W.V.D. and Laere A.V. Chromosomal walking of flanking regions from short known sequence in GC-Rich plant genomic DNA. Plant Mol. Biol. Rep., 2003, 21: 295-302.
    [158] 罗丽娟,施季森. 一种 DNA 侧翼序列分离技术-TAIL-PCR [J]. 南京林业大学学报(自然科学版), 2003,27(4):87-90
    [159] Souer E., Quattrocchio F., de Vatten N., et al. A general method to isolate genes tagged by a high copy number transposable element. Plant J., 1995, 7(4): 677-685.
    [160] Girel A. & Saedler H. Plant-transposable elements and gene tagging. Plant Mol. Biol., 1992, 19: 39-49.
    [161] Fray M., Stettner C. and Gierl A. A general method for gene isolation in tagging approaches, amplification of insertion mutagenised sites (AIMS) Plant J., 1998, 13(5): 717-721.
    [162] Waterhouse P.M., Graham M.W., Wang M.B. Virus resistance and gene silencing in plants is induced by double-stranded RNA. Proc. Nat. Acad. Sci USA, 1998, 95: 13959-13964.
    [163] Baulcombe D.C. Fast forward genetics based on virus-induced gene silencing. Curr. Opin. Plant Biol., 1999, 2: 109-113.
    [164] Giraudat J., Hauge B., Valon C., et al. Isolation of the Arabidopsis ab13 gene by positional cloning. The Plant Cell, 1992, 1251-1261.
    [165] Leyser H., Lincoln C.A., Timpte C., et al. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activation enzyme EI. Nature, 1993, 364: 161-164.
    [166] Nash J., Luehrsen K.R., Walbot V. Bronze-2 gene of maize: Reconstruction of a wild-type alleleand analysis of transcription and splicing. Plant Cell, 1990, 2: 1039-1049.
    [167] PARK S.H., LEE B.M., SALAS M.G., et al. Shorter T-DNA or additional virulence genes improve Agrobacterium-mediated transformation. Theor. Appl. Genet., 2000, 101: 1015-1020.
    [168] Cheng M., Fry J.E., Pang S., et al. Genetic Transformation of Wheat Mediated by Agrobacterium tumefaciens. Plant physiology, 1997, 115(3): 971-980.
    [169] Elena Z., Charles S., Peter M. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol, 2000, 18: 442-445.
    [170] Shelton A.M., Zhao J.Z. & Roush R.T. Economic, ecological, food safety and social consequences of the deployment of Bt transgenic plants. Ann. Rev. Entomol., 2002, (47): 845-881.
    [171] David W.O. Transgenic plants, then and now: a personal perspective. Proceeding of the 2000 Cotton Research Meeting. Derrick M.O. Arkansas: Phillips County Community College. 2000, 16-21.
    [172] Mark A. Chapman and John M. Burke. Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytologist, 2006, 170: 429-443.
    [173] Cho Myeong-Je, Choi Hae-Woon, Jiang Wen. Ha Chi D. and Lemaux P.G. Endosperm-specific expression of green fluorescent protein driven by the hordein promoter is stably inherited in transgenic barley (Hordeum vulgare) plants. Physiologia Plantarum, 2002, 115(1): 144-154.
    [174] Jordan M.C. Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep., 2000, 19: 1069-1075.
    [175] Vain P., Worland B., Kohli A., Snape J.W., Christou P. The green fluorescent protein (GFP) as a vital screenable marker in rice transformation. Theor Appl Genet, 1998, 96: 164-169.
    [176] Van der Geest A.H.M., Petolino J.F. Expression of a modified green fluorescent protein gene in transgenic maize plants and progeny. Plant Cell Rep., 1998, 17: 760-764.
    [177] Haseloff J., Siemering K.R., Prasher D.C., Hodge S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA, 1997, 94: 2122-2127.
    [178] Hayashi H., Czaja I., Lubenow H., et al. Activation of a plant gene by T-DNA tagging-Auxin independent growth in vifro. Science, 1992, 258: 1350-1353.
    [179] Wilson K., Long D., Swinburne J., et al. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell, 1996, 8: 659-671.
    [180] Fillati J.J., Kiser J., Rose R. and Comai L. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Biotechnology, 1987, 5: 726-730.
    [181] Dan Y.H., Munyikwa T., Dong J., et al. MicroTom-a high-throughput model transformation system for functional genomics. Plant Cell Reports, 2006, 25(5): 432-441.
    [182] Sun H.J., Uchii S., Watanabe S. and Ezura H. A Highly Efficient Transformation Protocol for Micro-Tom, a Model Cultivar for Tomato Functional Genomics. Plant and Cell Physiology, 2006, 47(3): 426-431.
    [183] ZHU Zhengge, FU Yaping, Han XIAO, et al. Construction of transgenic rice population’s inserted maize transposable element Ac/Ds for functional genome studies[C]. The Asia Pacific Conference on Plant Tissue Culture & Agribiotechnology. Singapore, 2000, 19-23.
    [184] Knapp S., Larondelle Y., Rossberg M., et al. Transgenic tomato lines containing Ds elements at defined genomic positions as tools for targeted transposon tagging. Mol Gen Genet, 1994, 243(6): 666-73.
    [185] 石晓云, 申书兴, 张成合等. 利用组织培养进行四倍体西瓜育种[J]. 河北农业大学学报, 2002, 25 (Sup. ): 125-127.
    [186] 杨艳琼,何丽萍,和凤美. 鉴定烟草染色体倍性方法初探[J]. 种子,2002,3:24-25.
    [187] Murray M.G., Thompson W.F. Rapid isolation of high molecular weight plant DNA. Nuclear Acids Research, 1980, 8: 4321-4325.
    [188] J.萨姆布卢克, E.F.弗里奇, T.曼尼阿蒂斯. 分子克隆实验指南[M]. 北京: 科学出版社, 1999.
    [189] Tadeusz Wroblewski, Anna Tomczak and Richard Michelmore. Optimization of Agrobacterium- mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal, 2006, 3: 259-273
    [190] Smith R.H., Hood E.E: Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci., 1995, 35: 301-309.
    [191] Horsch R., Fraley R., Rogers S., et al. Agrobacterium-mediated transformation of plants. In: Green CE, Somers D.A., Hackett W.P., Biesboer D.D. (eds) Plant tissue and cell culture [M]. Geo J Ball, West Chicago, 1987, 317-329.
    [192] Yoder J.I., Palys J., Alpert K. and Lassner M. Ac transposition in transgenic tomato plants. Mol. Gen. Genet., 1988, 213: 291-296.
    [193] OUYANG Bo, LI Han-Xia, YE Zhi-Biao. Increased Resistance to Fusarium Wilt in Transgenic Tomato Expressing Bivalent Hydrolytic Enzymes. Journal of plant physiology and molecular biology, 2003, 29(3):179-184.
    [194] Hiei Y., Komari T., Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol., 1997, 35: 205-218.
    [195] Zupan J., Muth T.R., Draper O., Zambryski P. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J., 2000, 23: 11-28.
    [196] Fullner K.J. and Nester E.W. Temperature affect the T-DNA transfer machinery of Agrobacterium tumefaciens. J. Bacteriol., 1996, 178(6): 1498-1504.
    [197] Turk S.C.H.J., Melchers L.S, den Dulk-Ras H., et al. Environmental conditions differentially affect vie gene induction in different Agrobacterium strains. Role of the Vera sensor protein. Plant Mol Biol. 1991, 16: 1051-1059
    [198] 王关林,方宏筠. 植物基因工程原理与技术[M]. 北京:科学出版社,1998.
    [199] 颜丙强. 稻瘟菌(Magnaporthe grisea) T-DNA 插入突变体库的构建及其分析[D]. 华南热带农业大学,2004,50.
    [200] Kohli A., Griffiths S., Palacios N., et al. Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology-mediated recombination. Plant J. 1999, 17: 591-601.
    [201] 耿立召,刘传亮,李付广. 农杆菌介导法与基因枪轰击法结合在植物遗传转化上的应用[J]. 西北植物学报,2005,25(1):205-210
    [202] Jeon J.S., Lee S., Jung K.H., et al. T-DNA insertional mutagenesis for functional genomics in rice. The plant Journal, 2000, 22(6): 561-570.
    [203] Goff S.A., Ricke D., Lan T.H., et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296: 92-100.
    [204] Izawa T., Ohnishi T., Nakano T., et al. Transposon tagging in rice. Plant Mol. Biol., 1997, 35: 219-229.
    [205] Weil C.F. and Kunze R. Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nat. Genet., 2000, 26: 187-190.
    [206] Takano M., Egawa H., Ikeda J.E. The structure of integration sites in transgnic rice. Plant J., 1997, 11: 353-361.
    [207] Mayerhofer R., Koncz-Kalman Z., Nawrath C., et al. T-DNA integration; a model of illegitimate recombination in plants. EMBO J., 1991, 10: 697-704.
    [208] Gheysen G., Villaroel R., and Van Mantagu M. Illegitmate recombination in plants: a model for T-DNA integration. Gene Dev., 1991, 5: 287-297.
    [209] Barakat A., Gallois P., Ralnal M. The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS letter, 2000, 471: 161-164.
    [210] Krysan P.J., Young J.C. and Sussman M.R. T-DNA as an insertional mutagen in Arabidopsis. Plant cell, 1999, 11: 2283-2290.
    [211] 中国科学院上海植物生理研究所. 现代植物生理学实验指南[M]. 科学出版社. 1999,95,109-111.
    [212] Fambrini M., Castagna A., Vecchia F.D. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS II activity and low endogenous level of abscisic acid. Plant Sci, 2004, 167: 79-89.
    [213] Parks B.M., Quail P.H. Phytochrome-deficient hy1 and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell, 1991, 3: 1177-1186.
    [214] Agrawal G.K., Yamazaki M., Kobayashi M., et al. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 Insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC Gene. Plant Physiol, 2001, 125: 1248-1257.
    [215] Singh U.P., Prithiviraj B., Sarma B.K. Development of Erysiphe pisi (powdery mildew) on normal and albino mutants of pea (Pisum sativum L.). J Phytopathol, 2000, 148 (11-12): 591-595.
    [216] Hansson A., Kannangara C.G., von Wettstein D., Hansson M. Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Natl Acad Sci USA, 1999, 96 (4): 1744-1749.
    [217] Lopez-Juez E., Jarvis R.P., Takeuchi A., Page A.M., Chory J. New Arabidopsis cue mutants suggest a close connection between plastid and phytochrome regulation of nuclear gene expression. Plant Physiol, 1998, 118: 803-815.
    [218] Oster U., Tanaka R., Tanaka A., Rüdier W. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis(CAO) from Arabidopsis thaliana . Plant J, 2000, 21 (3): 305-310.
    [219] Schultes N.P., Sawers R.J.H., Brutnell T.P., Krueger R.W. Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. Plant J, 2000, 21 (4): 317-327.
    [220] Terry M.J., Kendrick R.E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol, 1999, 119: 143-152.
    [221] 盖均镒主编. 作物育种学各论[M]. 北京:中国农业出版社,1997,440-443.
    [222] Borlaug N.E. Contributions of conventional plant breeding to food production. Science, 219(4585), 689-693.
    [223] Gale M.D., Youssefian S. Dwarfing genes in wheat. In: Plant Breeding Program Reviews 1985, 1: 1-3.
    [224] Sasaki A., Ashikari M., and Ueguchi-Tanaka M., et al. Green revolution: A mutant gibberellin-synthesis gene in rice. Nature, 2002, 416, 701-712.
    [225] Hong Z., Ueguchi-Tanaka M., Umemura K., et al. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15, 2900-2910.
    [226] Wei T., Shimizu T., Hagiwara K. Pns12 protein of Rice dwarf virus is essential for formation of viroplasms and nucleation of viral-assembly complexes J Gen Virol., 2006, 87, 429-438.
    [227] 何冰,刘玲珑,张文伟等. 植物叶色突变体[J]. 植物生理学通讯,2006,42(1):1-9.
    [228] Hirochika H. Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol., 1997, 35: 231-240.
    [229] Marie-Angele. Activation of plant retrotransposons under stress conditions. Trends in plant science, 1998, 3: 181-187.
    [230] 孙伯铮,冉学东,王立敏等. 水稻转基因再生植株突变体筛选的研究[J]. 辽宁农业科学, 1999, (5): 11-13.
    [231] Junshi Yazaki, Zenpei Shimatani, Akiko Hashimoto, et al. Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis. Physiological Genomics, 2004, 17: 87-100.
    [232] 黄红梅. 大规模水稻 T-DNA 插入突变体库的建立及初步分析[J]. 西北农林科技大学 2004 届攻读硕士学位研究生学位(毕业)论文[D]. 41.
    [233] Jung K.H., Hur J., Ryu C.H., et al. Characterization of a rice chlorophylldeficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44 (5): 463-472.
    [234] Petersen B.L., Moller M.G., Jensen P.E., Henningsen K.W. Identification of the Xan-g gene and expression of the Mgchelatase encoding genes Xan-f, -g and -h in mutant and wild type barley (Hordeum vulgare L.). Hereditas, 1999, 131: 165-170.
    [235] Kumar A.M., Soll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol, 2000, 122: 49-55.
    [236] Frick G., Su Q.X., Apel K., Armstrong G.A. An Arabidopsis porB porC double mutant lacking light-dependent NADPH: protochlorophyllide oxidoreductases B and C are highly chlorophyll-deficient and developmentally arreste. Plant J, 2003, 35(2): 141-153.
    [237] Gaubier P., Wu H.J., Laudié M., Delseny M., Grellet F. A chlorophyll synthetase gene from Arabidopsis thaliana. Mol.Gen.Genet, 1995, 249: 58-64.
    [238] Hayward, A.C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol, 1991, 29: 65-87.
    [239] Stephane genin, Christian Boucher. Ralstonia solanacearum: secrets of a major pathogen unveiled by analysis of its genome. 2002. 3(3): 111-118.
    [240] Deslandes L., Pileur F., Liaubet L., et al. Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soiborne pathogen Ralstonia solanacearum. Mol. Plant-Microbe Interact., 1998. 11: 659-667.
    [241] Salanoubat M., Genin S., Artiguenave F. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature, 2002. 415(6871): 497-502.
    [242] 黄自然,徐飞,庄楚雄,等. 农杆菌携带柞蚕抗菌肽基因转入烟草的研究[J]. 华南农业大学学报,1992,13(4):1-5.
    [243] 贾土荣,屈贤铭,冯兰香等. 抗菌肽基因提高马铃薯对青枯病的抗性[J]. 中国农业科学,1998,3l(3):5-12.
    [244] 田长恩,王正询,陈韬等. 抗菌肽 D 基因导入番茄及转基因植株的鉴定[J]. 遗传,2000,22(2):86-89.
    [245] 张秀海,郭殿京,张利明等. 兔防御素 NP-1 基因在转基因番茄中表达的初步研究[J]. 遗传学报,2000,27(11):953-958.
    [246] Salmeron J.M., Oldroyd E.D.G., Rommens C.M.T., et al. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embeded within the Pto kinase gene cluster. Cell, 1996, 86: 123-133.
    [247] Giles E.D.O.and Brian J.S. Genetically engineered broad-spectrum disease resistance in tomato. Proc Natl Acad Sci USA., 1998. 95(17): 10300-10305.
    [248] Yanqing W., Qian Y., and Yukio T. Nitric oxide-overproducing transformants of Pseudomonas fluorescens with enhanced biocontrol of tomato bacterial wilt. J. of Gen. Plant Pathol., 2005, 71: 33-38.
    [249] Sujon S., Eui N.K., and Young J.K. Overexpression of a pepper ascorbate Peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Sci., 2005, 169: 55-63.
    [250] Yoshikawa M., Sawada H., Kobayashi S., Nakajima I., Nakamura Y. Expression of soybean β-1, 3-endoglucanase cDNA and Effect on disease tolerance in kiwifruit plants. Plant Cell Reports, 1999, 18: 527-532.
    [251] Gao A.G., Hakimi S.M., Mittanck C.A., et al. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat. Biotechnol., 2000, 18: 1307-1310.
    [252] Yuexia Wang, Albert P. Kausch and Joel M. Chandler. Co-transfer and expression of chitinase, glucanase and bar genes in creeping bent grass for conferring fungal disease resistance. Plant Science, 2003, 165(3): 497-506.
    [253] Scott C.S., Ksenija Gasic, Bruno Cammue, Willem Broekaert. Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta, 2005, 27: 1-9.
    [254] Ouyang B., Li H.-Y., and Ye Z.-B. Increased Resistance to Fusarium Wilt in Transgenic Tomato Expressing Bivalent Hydrolytic Enzymes. J. of Plant Physiol. and Mol. Biol., 2003, 29: 179-184.
    [255] Mao B.Z., Li D.B., Li Q., and He Z.H. Transgenic rice with double defense genes exhibiting resistance to Bheath Blight (Rhizoctonia solani Kuhn.). J. of Plant Physiology and Molecular Biology, 2003, 29: 322-326.
    [256] Jana Moravckova, Ildiko Matusikova, Jana Libantova, Miroslav Bauer. Expression of a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants. Plant Cell, Tissue and Organ Culture, 2004, 79: 161-168.
    [257] Sarowar S., Kim Y.J., Kim E.N., et al. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep., 2005, 4: 216-224.
    [258] Hideki T., Ayano S., Tsutomu A., Syofi R., Sumire F., Mari K., and Yasufumi H. Catalog of Micro-Tom tomato responses to common fungal, bacterial, and viral pathogens. J. of Gen. Plant Pathol., 2005, 71: 8-22.
    [259] F.奥斯伯,R.布伦特,R.E.金斯顿,等. 精编分子生物学实验指南 [M]. 北京:科学出版社,1998,39.
    [260] Roberts P.D., Denny T.P., Schell M.A. Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J Bacteriol., 1988, 170: 1445–1451.
    [261] Nariyoshi K., Hitoshi K., and Takayuki A.B.E. Control of tomato bacterial wilt without disinfections using a new functional polymer that captures microbial cells alive on the surface and is highly biodegradable. Biosci. Biotechnol. Biochem, 2005, 69: 326-333.
    [262] Schaefer S.C., Gasic K., Cammue B., Broekaert W. Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta, 2005, 27:1-9.
    [263] Destefano-Beltran L., Nagpala P, Jaeho K, et al. Genetic transformation of potato to enhance nutritional value and confer disease resistance [C]. In: Dennis E.S. Llewellyn D.J.(eds.). Plant Gene Research, Molecular Approaches to Crop Improvement. Springer Verlag Wien, New York, l991: 17-32.
    [264] Jaynes J.M., Nagpala P., Destefano-Beltran L., et al. Expression of a cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Sci., 1993, 89: 43-53.
    [265] Düring K., Porsch P., Fladung M., L?rz H. Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J., 1993, 3: 587-598.
    [266] Hightower R., Baden C., Penzes E., Dunsmuir P. The expression of cecropin peptide in transgenic tobacco does not confer resistance to Pseudomonas syringae pv tabaci. Plant Cell Reports, 1994, 13: 295-299.
    [267] Florack D., Allefs S., Bollen R., Bosch D., Visser B., and Stiekema W. Expression of giant silkmoth cecropin B genes in tobacco. Transgenic Res., 1995, 4: 132-141.
    [268] Powell A.L.T, Dhallewin G., Hall B.D., Stotz H., Labavitch J.M., Bennett A.B. Glycoprotein inhibitors of fungal polygalacturonases: expression of pear PGiP improves resistance in transgenic tomatoes [C]. In: Fourth Cong Plant Mol Biol, Amsterdam, the Netherlands, 1994, 11.
    [269] Park S.M., Lee J.S., Jegal S., Jeon B.Y., Jung M. Transgenic watermelon rootstock resistant to CGMMV (cucumber green mottle mosaic virus) infection. Plant Cell Reports, 2005, 24(6): 350-356.
    [270] Fagard M, Vaucheret H. Systemic silencing signal, Plant Mol. Biol., 2000, 43: 285-293.
    [271] Jana Moravckova, Ildiko Matusikova, Jana Libantova, Miroslav Bauer. Expression of a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants. Plant Cell, Tissue and Organ Culture, 2004, 79: 161-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700