拟南芥与草酸互作的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多在生态、生理学上不同的真菌都可以产生草酸(Oxalic acid, OA)。这些草酸产生菌如核盘菌、灰葡萄孢等寄主范围广泛,可以引致上百种植物病害,造成世界范围的粮油、蔬菜等农作物的严重减产。草酸在病菌致病过程中可能起着关键性的作用。因此研究植物对草酸产生菌的防卫机制,挖掘抗病资源,提高农作物抗性,是急需解决的重要科学问题,也是生产上首先要解决的实践问题。拟南芥具有基因组小、结构简单、形体小、生长周期短、繁殖系数高、自花授粉、基因组序列已知、与高等植物的基因组间有较高同源性等特点,是研究植物防御机制的良好模式植物。因此本论文着眼于拟南芥与草酸的互作机制的研究。分为三部分:1.通过筛选草酸抗性突变体,并对突变体进行分子分析。最终目的是分离草酸抗性基因来获得作物的菌核病抗性,从而减少农药的使用,提高环境的质量和食品安全;2.草酸可以通过氧化与脱羧两条途径降解,本研究从枯草芽孢杆菌中克隆草酸脱羧酶,从大麦中克隆草酸氧化酶,构建其植物表达载体,转化拟南芥,对转基因植株进行菌核病抗性分析;3.对草酸胁迫下拟南芥全基因表达谱和microRNA的差异表达谱进行分析,进一步明了草酸致病的分子机制,为草酸产生菌的生物防治提供理论基础。获得的主要结果如下:
     1.通过拟南芥Col-0的浓度梯度的实验,确定了筛选草酸抗性突变体的筛选压为1.2mmol/L OA;建立并优化了草酸抗性突变体的筛选体系;
     2.通过对中国科学院遗传与发育生物学研究所左健儒实验室构建的化学诱导型功能获得和缺失性突变体库(公开释放的6,000余个突变体)进行两代的筛选,得到5株草酸抗性增强突变体,并通过TAIL-PCR扩增获得T-DNA插入的侧翼序列;BLAST结果显示这5株突变体中有4株突变体(D630、D282、D154、D74)均插在At5g10450的第一个内含子上,并且验证了At5g10450基因的SALK T-DNA插入缺失突变体的SALK_068774(插入位点为外显子)的纯合体并没有草酸抗性。D33突变体插入位点为At2g39720和At2g39730两个基因间区;
     3.半定量RT-PCR表明D33突变体的At2g39690、At2g39700、At2g39720及At2g39750表达上调;
     4.构建了At2g39690,At2g39700和At2g39720的过表达载体,进行了拟南芥浸花转化,将对转基因植株进行菌核病抗性和草酸抗性分析;
     5.对突变体分别进行了核盘菌的离体叶片接种和活体接种,发现无论是离体接种还是活体接种,突变体都比野生型植株更抗菌核病。说明通过筛选草酸抗性突变体来筛选抗菌核的材料是可行的。有可能通过分离草酸抗性基因来获得作物的菌核病抗性,从而减少农药的使用,提高环境的质量和食品安全;
     6.从枯草芽孢杆菌Bs168中克隆了草酸脱羧酶基因(Yvrk),从大麦中克隆了草酸氧化酶基因(Y14203)并构建了植物表达载体,对拟南芥进行转化,获得了转基因植株。转草酸脱羧酶的拟南芥植株表现出对核盘菌的抗性,这为草酸产生菌的生物防治提供了一条新途径;
     7.首次利用拟南芥全基因组Oligo芯片研究草酸胁迫下差异基因表达谱。通过对两张生物学重复的表达谱芯片数据的生物信息学分析表明:草酸胁迫诱导了拟南芥的JA/ET途径,而不是SA途径。此外,苯丙烷代谢途径、WRKY转录因子家族、细胞色素P450家族、ABC转运蛋白、热激蛋白基因家族上调表达,表明这些途径或基因家族参与了拟南芥对草酸的抗性反应。
     8.首次利用拟南芥microRNA芯片研究草酸胁迫下microRNA差异基因表达谱。获得三个差异表达microRNA和9个差异表达的Predicted_miRNA。其中下调表达的小立碗藓Ppt-miR1211,根据miRU找到一个最匹配的靶mRNA是一个萜烯合成酶(At3g14520);另一下调表达的毛果杨Ptc-miR3991 (与Ath-miR399b同源),对应的靶mRNA是一个泛素连接酶(At2g33770);这两个靶基因在表达谱芯片中的Ratio值都上调。上调表达的Ath-miR858有三个靶mRNA,分别为At2g47460(转录因子)、At3g08500(转录因子)、At3g20310(ethylene responsive element- binding family protein),它们在表达谱芯片中对应的Ratio值都分别下调。说明microRNA对其靶mRNA确有负调控功能。
Many physiologically and ecologically different fungi can secrete oxalic acid (OA), which plays a crucial role during pathogen infection process. OA-producing pathogens, such as S. sclerotiorum and Botrytis cinerea, can infect hundreds of plants and cause severe loss of crops, but the material resistant to the fungi is limited due to the extensive host range. So, there is a great need to study the defense response to OA-producing pathogen and seek the resistant materials. Arabidopsis thaliana possesses good characteristics, such as small genome, simple structure, small figure, short life period, high propagating rate and self-pollination etc. Moreover, its genomic sequence was completed on the end of 2000, which provided high homology between Arabidopsis and higher plants on the genome. So, Arabidopsis has been used as a model plant for the analysis of plant defense response. In this paper, the interaction between Arabidopsis and OA was studied in three aspects: first, OA-resistant mutants were obtained from screening a chemical-inducible mutant library and their molecular mechanism was studied. The ultimate objective is to isolate the OA-insensitive gene and obtain the S. sclerotiorum resistant material, thus, decrease the use of pesticide and improve the quality of environment and security of foods; second, Oxalic acid is catabolized by two major pathways, i.e. decarboxylation and oxidation. So, oxalate decarboxylase was cloned from Bacillus subtilis 168, and oxalate oxidase was cloned from barley, and their plant expression vectors were constructed and transgenic plants were obtained by floral dip. The S. sclerotiorum resistance was detected among the transgenic plants; third, oligo microarray and microRNA microarray were used to investigate the differentially expressed genes and miRNAs under the stress of OA, thus further understand the mechanism of pathological effects of OA and provide the theoretical foundation of biological control on OA-producing pathogens.
     The major results in this study are as follows:
     1. Based on the effects of different concentration OA treatments on the growth of Arabidopsis ecotype Columbia-0 seeds, the threshold concentration of OA was obtained. The screen system was to sow the sterilized seeds of mutant library on agar plates of MS medium (pH 6.5, calcium free) supplemented with OA (final concentration 1.2 mmol/L), estradiol (final concentration 10μmol/L), and MES (final concentration 1g/L).
     2. Putative OA-insensitive mutants were screened from the mutant library constructed by the laboratory of Professor Zuo Jiruo from the Chinese Academy of Sciences (about 6000 individual lines) using MS medium containing 1.2 mmol/L OA and 10μmol/L estradiol. About 300 putative OA insensitive mutants were obtained. Those mutants were again screened on the selective medium and five mutants, D33, D74, D154, D282, and D630 with enhanced resistance toward OA were obtained. Through TAIL-PCR, the flanking sequences were rescued. The sequences were blasted against TAIR database. The result indicated that the T-DNA of mutant D33 was inserted between At2g39720 (zinc finger) and At2g39730 (Rubisco activase) (GenBank accession No. EF591991), and the T-DNA junctions of the other four mutants were the same, all inserted in the same site of the first intron of At5g10450 (14-3-3 protein GF14 lambda) (GenBank accession No. EF591992).
     3. The expression of At2g39690,At2g39700, At2g39720 and At2g39750 were up-regulated in mutant D33 compared with wild type by semi-quantitation RT-PCR.
     4. The over-expression vectors of At2g39690,At2g39700 and At2g39720 were constructed and the transgenic plants were obtained by floral tip, and the resistance to S. sclerotiorum and OA will be detected among the transgenic plants.
     5. The putative OA-insensitive mutants were inoculated with agar plugs of S. sclerotiorum using detached leaves or in planta, mutants were more resistant than wild type. So the method to screen OA-resistant mutant, thus obtain S. sclerotiorum resistant mutant is practicable. It is possible to isolate the OA-resistant gene and obtain S. sclerotiorum resistant material.
     6. Oxalate decarboxylase (Yvrk) was cloned from Bacillus subtilis168, and oxalate oxidase was cloned from barley, and their plant expression vectors were constructed and transgenic plants were obtained by floral dip. The transgenic plants possess resistance to S. sclerotiorum. This result indicates a novel approach to develop transgenic plants resistant to fungal infection.
     7. Oligo microarray was used to investigate the differentially expressed genes under the stress of OA. The bioinformatics analysis indicated that OA induces the jasmonic/ethylene signaling, not salicylic acid signaling. The expressions of phenylpropanoid pathway, WRKY transcription family, cytochrome P450 family, ATP-binding cassette transporter family and heat shock family proteins were up- regulated, which indicating these pathway or family proteins were involved in the plant response to OA.
     8. MicroRNA microarray was used to investigate the differentially expressed micro-RNAs under the stress of OA. Three differentially expressed microRNAs and 9 predicted_miRNAs were obtained. Among them, one down-regulated microRNA is Ppt-miR1211 from Physcomitrella patens, and its target mRNA is At3g14520- terpene synthase based on miRU, another down-regulated microRNA is Ptc-miR3911 from Populus trichocarpa, which is identical to Ath-miR399b, and its target mRNA is At2g33770- a ubiquitin-conjugating E2 enzyme, both the two targets up-regulated in oligo-microarray. The only up-regulated differentially expressed microRNA is Ath-miR858, whose target mRNAs are At2g47460(DNA transcription factor)、At3g08500(DNA transcription factor)and At3g20310(ethylene responsive element- binding family protein. All the three target mRNAs were down-regulated in oligo-microarray, indicating the negatively-regulating function of microRNA.
引文
1. Dutton M V and Evans C S. Oxalate production by fungi : its role in pathogenicity and ecology in the soil Environment [J] . Can. J. M icrobiol. , 1996, 42, 881- 895.
    2. Boland G J, and Hall R. Index of plant hosts of Sclerotinia sclerotiorum [J]. Can. J. Plant Pathol. , 1994, 16, 93-100.
    3. The Arabidopsis Genome Initiative . Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J]. Nature ,2000, 408, 796-815
    4. 景岚,康振生.草酸病原真菌致病毒素的研究进展[J].西北植物学报.2003,23(12):2223-2228
    5. 刘良宏,石淑穗,吴江生等.油菜诱变和离体草酸筛选抗菌核病材料[J].中国油料作物学报,2003,25(1) : 5-9
    6. Bateman, D F. An induced mechanism of tissue resistance to polygalacturonase in Rhizoctonia -infected hypocotyls of bean [J]. Phytopathology, 1964, 54, 438–445.
    7. Kurian, P and Stelzig D A. The synergistic role of oxalic acid and endopolygalacturonase in bean leaves infected by Cristulariella pyramidalis [J]. Phytopathology, 1979, 69, 1301–1304.
    8. Wojtaszek P. Oxidative burst: an early plant response to pathogen infection [J]. Biochem.J.1997, 322, 681-692
    9. Cessna S G., Sears V E, Dickman M B, et al. Oxalic acid , a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant [J]. Plant Cell, 2000,12:2191-2199
    10. David A,Merida J,Legendre L,et a1. Enhancement of phytoalexin accumulation in cultured plant cells by oxalate [J]. Phytochem., 1992,31 (5): 1603-1607
    11. Lane B G, Dunwell J M, Ray J A, et al. Germin, a protein marker of early plant development, is an oxalate oxadise[J]. J Biol. Chem., 1993, 268: 12239-12242.
    12. Zhou F, Zhang Z, Gregersen P L, et al. Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus[J]. Plant Physiol., 1998, 117: 33-41.
    13. Annis S L and Goodwin P H . Recent advances in the molecular genetics of plant cell wall –degrading enzymes in plant pathogenic fungi [J]. Eur. J. Plant Pathol. 1997, 103, 1–14.
    14. Bolton M D, Thomma B P H J and Nelson B D. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen [J]. Moleccular plant pathology.2005,6(3):1-16
    15. Keon J PR , Byrde, R J W and Cooper R M . Some aspects of fungal enzymes that degrade plant cell walls. In Fungal Infection of Plants (Pegg G F and Ayres PG, eds) [M]. Cambridge: Cambridge University Press, 1987, pp. 133–157
    16. Alghisi P and Favaron F . Pectin-degrading enzymes and plant parasite interactions [J]. Eur. J. Plant Pathol. 1995, 101, 365–375
    17. Rollins J A and Dickman M B. pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1homolg [J]. Appl. Environ. Microbiol.2001,67, 75–81
    18. Riou C, Freyssinet G and Fèvre M. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl. Environ. Microbiol [J]. 199157, 1478–1484
    19. Shehy R E,Kranler M K and Hiatt W R.Reduction of polygalacturonase activity in tomato fruit by antisennse RNA [J].Proc Natl. Acad. Sci. USA. 1988,85,8:805-809.
    20. Smith CJS,Watson C F,Morris P C, et a1.Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomato [J].Plant Mol Biol., 1990, 14:369-379
    21. Davis K R, Darvill A G, Albersheim P, et a1. Host–pathogen interactions. XXIX. Oligo-galacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexin in soybean [J]. Plant Physiol.1986, 80, 568–577
    22.Begey D R,Orozco-Cardenas M L,Moura D S, et a1.A wound and systemic-inducible poly-galacturonase in tomato leaves [J].Proc Natl. Acad. Sci. USA, 1999, 96,1756-1760.
    23. Orozco-Cardenas M L,Narvaez-Vasquez J and Ryan C A.Hydrogen peroxide acts as a second messenger for the induction of defense gene in tomato plants in response to wounding,systemin and methyl jasmonate [J].The Plant Cel1.2001,13:179-191.
    24. Ferrari S, Galletti R, Pontiggia D, et al. Transgenic expression of a fungal endo- polygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity [J]. Plant Physiology, 2008, 146:669-681
    25. Carpita N C and Gibeaut D M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the wall during growth [J]. Plant J. 1993,3, 1–30
    26. Marciano P, Di Lenna P and Magro P.Oxalic acid, cell wall degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower [J]. Physiol.Plant Pathol. 1983.22, 339–345.
    27. Bateman D F. An induced mechanism of tissue resistance to polygalacturonase in Rhizoctonia- infected hypocotyls of bean[J]. Phytopathology, 1964, 54, 438–445.
    28. Bateman D F and Beer S V . Simultaneous production and synergistic action of oxalic acid and poly-galacturonase during pathogenesis by Sclerotinia rolfsii [J]. Phytopathology,1965, 55, 204–211 
    29. Magro P, Marciano P and Di Lenna, P. Oxalic aid production and its role in pathogenesis of Sclerotinia sclerotiorum [J]. FEMS Microbiol.Lett. 1984, 24, 9–12.
    30. Maxwell D P and Lumsden R D. Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture [J]. Phytopathology, 1970, 60, 1395–1398.
    31. Stone H E and Armentrout V N . Production of oxalic acid by Sclerotium ceivorum during infection of onion [J ]. Mycologia,1985,77(4):526- 530.
    32. Guimaraes R L and Stotz H U. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection[J] . Plant Physiol., 2004, 136: 3703-3711.
    33. 刘胜毅,周必文,潘家荣.油菜对毒素草酸的吸收代谢与抗性机理[J].植物病理学报,1998,28(1):33-37
    34. Ferrar P H and Walker J R L . o-Diphenol oxidase inhibition- an additional role for oxalic acid in the phytopathogenic arsenal of Sclerotinia sclerotiorum and Sclerotium rolfsii [J]. Physiol Mol Plant Pathol.1993, 43: 415–422.
    35. De Lorenzo G, D’Ovidio R and Cervone F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi [J]. Annu. Rev. Phytopathol. 2001, 39:313-325.
    36. Cervone F,Hahn M G and Lorenzo G. Host-pathogen interaction XXXIII A plant protein converts a fungal pathogenesis factor onto an elicitor of plant defense responses[J].Plant Physiol.1989,90:542-548
    37. Cervone F, Lorenzo G, Degra L, et al. Purification and characterization of a polygalacturonase inhibiting protein from Phaseolus vulgaris L. Plant Physiol. 1987,85, 631-637
    38. Johnston D, J Rmanathan V and Williamson B. A protein from immature raspberry fruits which inhibits endopolygalacturonases from Botrytis cinerea and other micro-organisms[J].J. Exp. Bot., 1993; 44: 971 - 976.
    39. Favaron F,D’Ovidio R,Porceddu E,et a1. Purification and molecular characterization of a soybean polygalacturonase inhibiting protein [J]. Planta , 1994,195(1):80-87
    40. Stotz H U, Powell A, Damon S, et al. Molecular characterization of a polygalacturonase inhibitor from Pyrus communis L. cv Bartlett [J].Plant Physiol. 1993,102:133-138
    41. Ramanthan V, Simpson C G, Thow G, et al. cDNA cloning and expression of polygalacturonase inhibiting proteins (PGIPs) from red raspberry (Rubus idaeus) [J]. J. Exp. Bot., 1997, 48: 1185- 1193
    42. Sicilia F, Fernandez-Recio J, Caprari C, et al. The polygalacturonase-inhibiting protein PGIP2 of Phaseolus vulgaris has evolved a mixed mode of inhibition of endopolygalacturonase PG1 of Botrytis cinerea[J]. Plant Physiol., 2005, 139:1380–1388,
    43. Spadoni S , Zabotina O, Matteo A D, et al. Polygalacturonase-inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine[J]. Plant Physiol. , 2006, 141:557–564
    44. James, T J and Dubery I A. Inhibition of polygalacturonase from Verticillium dahliae by a polygalact- uronase inhibiting protein from cotton[J]. Phytochemistry, 2001, 57, 149–156.
    45. 张开春,张军科.马哈利樱桃 GPIP 基因克隆及全序列测定[J].农业生物技术学报.2000,8(3): 281-283
    46. 李广平,房经贵,蔡斌华,等.梅PGIP基因的克隆及全序列分析[J].园艺学报.2006, 33 (1): 125-127
    47. 李广平,乔玉山,陶建敏,等. 中国李PGIP基因的克隆及序列分析[J].西北植物学报. 2006,26(9):1870-1873
    48. 王家福,朱春林,陈桂信等.龙眼梅 PGIP 基因的克隆及序列分析[J]. 果树学报.2007,24(1):55-58
    49. 万琳,周立. 小麦多聚半乳糖醛酸酶抑制蛋白的部分结构[J].中国生物化学与分生物报.2002:18(2):197-201
    50. Kemp G, Bergmann C W , Clay R , et al. Isolation of polygalacturonase–inhibiting protein (PGIP) from wheat [J]. Mol. Plant–Microb. Interact., 2003,16, 955–961.
    51. Ferrari S, Vairo D, M.Ausubel F, et al. Tandemly duplicated Arabidopsis genes that encode polygalact- uronase inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection [J].The Plant Cell.2002,15, 93–106
    52. Favaron F, Castiglioni C, D’Ovidio R, et al. Polygalacturonase-inhibiting proteins from Allium porrum L. and their role in plant tissue against fungal endopolygalacturonases[J]. Mol. Plant–Microb. Interact., 1997, 50, 403–417.
    53. Favaron, F. Gel detection of Allium porrum polygalacturonase inhibiting protein reveals a high number of isoforms [J]. Physiol. Mol.Plant Pathol., 2001, 58, 239–245
    54. Abu-Goukh A A, Greve L C and Labavitch J M . Purification and partial characterization of ‘Bartlett’ pear fruit, polygalacturonase inhibitors [J]. Physiol. Plant Pathol., 1983, 23, 111–122.
    55. Abu-Goukh A A and Labavitch J M.The in-vivo role of ‘Bartlett’ pear fruit, polygalacturonase inhibitors [J]. Physiol. Plant Pathol.,1983, 23, 123–135
    56. Yao C, Conway S W, Ren R, et al. Gene encoding polygalacturonase inhibitor in apple fruit is develop- mentally regulated and activated by wounding and fungal infection [J]. Plant Mol. Biol., 1999, 39, 1231–1241
    57. Conway W S, Yao C , Ross G S, et al. Apple polygalacturonase-inhibiting protein cDNA cloning and transcription[M]. Proceedings of 7th International Congress of Plant Pathology, Edinburgh, Scotland, 16 August 1998.
    58. Fielding A H . Natural inhibitors of fungal polygalacturonases in infected fruit tissues[J]. J. Gen. Micro-biol., 1981, 123, 377–381
    59. Abu-Goukh A A , Greve L C and Labavitch J M. Purification and partial characterization of ‘Bartlett’ pear fruit, polygalacturonase inhibitors [J]. Physiol. Plant Pathol., 1983, 23, 111–122.
    60.Gomathi V and Gnanamanickam S S. Polygalacturonase-inhibiting proteins in plant defence [J]. Current Science. 2004,87,1211-1217
    61. Kajava V. Structural diversity of leucine –rich repeat proteins [J].J. Mol. Biol.,1998, 277 :519-527
    62. Leckie, F, Mattei B,Capodicasa C, et al., The specificity of polygalacturonase-inhibiting protein (PGIP); a single amino acid substitution in the solvent exposed beta-strand/beta-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability [J]. EMBO J., 1999, 18, 2352–2363.
    63. Mattei B, Bernalda M S and Federici L. Secondary structure and post-translational modifications of the leucine-rich repeat protein PGIP (polygalacturonase-inhibiting protein) from Phaseolus vulgaris[J]. Biochemistry, 2001, 40, 569–576.
    64. Jones D A , Thomas C M, Hammond-Kosack K E, et al. Isolation of the tomato Cf-9 gene forresistance to Cladosporium fulvum by transposon tagging[J]. Science, 1994, 266, 789–793.
    65. Wang G L, Song W Y, Ruan D L, Sideris, S. et al. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants[J]. Mol. Plant–Microb. Interact., 1996, 9, 850–855.
    66. Parniske M, Hammond-Kosack K E, Golstein C, et al., Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato [J]. Cell, 1997, 91, 821–832.
    67. Denby K J, Kumar P and Kliebenstein D J. Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana [J]. Plant J, 2004, 38: 473-486
    68. Mengiste T, Chen X, Salmeron J, et al . The BOS1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis [J].Plant Cell,2003,15 :2551 -2565.
    69. Veronese P, Chen X, Bluhm B, et al. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection [J]. Plant J, 2004, 40: 558-574
    70. Ferrari S, Plotnikova J M, De Lorenzo G, et al. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4 [J].Plant J,2003,35:193-205.
    71. Denby K J, Jason L J M, Murray S L, et al. upsl, an Arabidopsis thaliana camalexin accumulation mutant defective in multiple defence signalling pathways [J]. Plant Journal, 2005, 41(5): 673-684.
    72. Veronese P, Nakagami H, Bluhm B, et al. The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens [J]. Plant Cell, 2006,18, 257-273.
    73. Diaz J , Have A T and Kan J A V .The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea [J]. Plant Physiol,2002,129:1341-1351.
    74. Dai F M , Xu T ,Wolf G A , et al .Physiological and molecular features of the pathosystem Arabidopsis thaliana L.- Sclerotinia sclerotiorum Libert [J]. Journal of integrative plant biology.2006,48(1):44-52
    75. Guo X M and Stotz H U. Defense against Sclerotinia sclerotiorum in Arabidopsis thaliana is dependent on jasmonic acid ,salicylic acid and ethylene signaling [J].MPMI.2007,20,1384-1395
    76.丁健桦,罗明标,王兴祥,等.HPLC 法测定蔬菜中草酸的干扰处理方法的研究[J]. 食品科学,2005,26(12):172-175.
    77. Kesarwani M, Azam M, Natarajan K et al. Oxalate decarboxylase from Collybia velutipes . Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato [J]. Journal of biological chemistry , 2000,275: 7230-7238
    78. Kunst F , Ogasawara N, Moszer A M et al. The complete genome sequence of the Gram- positive bacterium Bacillus subtilis [J]. Nature 1997, 390:249–256.
    79. Dumas B , Freyssinet G, and Pallett K E. Tissue-specific expression of germin-like oxalate oxidese during development and fungal infection of barley seedlings[J]. Plant Physiol.1995,107,1091-1096.
    80. Lane B G , Dunwell J M, Ray J A, et al. Germin ,a protein marker of early plant development ,is an oxalate oxidase [J].The Journal of biological chemistry .1993,17,12239-12242.
    81. Neill S J, Desikan R, Clarke A, et al. Hygrogen peroxide and nitric oxide as signaling molecules in plants[J]. Journal of experimental botany .2002, 53(372):1237-1247.
    82. Thompson C, Dunwell J M, Johnstone C E, et al. Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase[J]. Euphytica .1995, 85: 169–172.
    83. Livingstone D M, Hampton J L, Phipps P M, et al. Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene[J]. Plant Physiology ,2005,137: 1354–1362.
    84. Liang H, Maynard CA, Allen RD, et al. Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing wheat oxalate oxidase gene [J]. Plant Molecular Biology ,2001,45: 619–629.
    85. 景岚,康振生,孙燕飞,等. 草酸氧化酶基因转化烟草的研究[J].西北植物学报,2004,24(10):1845-1849
    86. Burke J M and Riesenberg LH . Fitness effect of transgenic disease resistance in sunflowers [J]. Science 2003,300: 1250.
    87. Hu X , Bidney D L , Yalpani N et al .Overexpression of a gene encoding hydrogen peroxide generating oxalate oxidase evokes defense responses in sunflower [J]. Plant physiol, 2003,133,170-181
    88. Donaldson PA, Anderson T, Lane BG, et al. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2·8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum[J]. Physiological and Molecular Plant Pathology , 2001, 59: 297–307.
    89. 曹茂新,洪枫,朱利民 .草酸脱羧酶及其应用[J]. 中国生物工程杂志,2005,35(zk):170~175
    90. Dias B B A, Cunhua W G, Morais L G, et al . Expression of an oxalate decarboxylase gene from Flammulina sp. In transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia Sclerotiorum [J].Plant pathology , 2006,55,187-19
    91. Lu G. Engineering Sclerotinia Sclerotiorum Resistance in Oilseed Crops [J]. African Journal of Bio- technology , 2003, 2 (12): 509-516
    92. 于金凤,张修国,张天宇.植物抗真菌基因工程研究进展[J].山东农业大学学报(自然科学版).2003,34(1):148-151
    93. 刘胜毅, 周必文, 潘家荣, 等. 抗感菌核病油菜品种对草酸的吸收和转运差异[J]. 中国油料, 1997, 19(1): 50-?52
    94.熊秋芳,刘胜毅,李合生. 抗、感菌核病油菜品种几种酶活性对草酸处理的响应[J]. 华中农业大学学报.1998,17(1):10-13
    95. 吴力游, 高必达, 廖小兰, 等. 油菜抗菌核病突变体筛选及抗性鉴定[J]. 农业现代化研究, 1997, 18(5): 314-3?16
    96. 吴力游, 刘学端, 黄红, 等. 油菜抗菌核病突变体筛选方法研究[J]. 湖南农业大学学报, 1997, 23(6): 515-?519
    97. 刘胜毅, 周必文, 余琦, 等. 草酸法筛选油菜抗菌核病材料的效果及其影响因素[J]. 植物保护学报, 1998, 25: 566?0
    98. Kolkman J M. and Kelly J D. An indirect test using oxalate to determine physiological resistance to white mold in common bean [J]. Crop Science, 2000, 40: 281-?285
    99. 赵云, 王茂林, 郑洪武, 等. 油菜细胞诱变及抗草酸突变体的筛选[J].中国油料, 1996, 18(4): 10-?14
    100. 陈薇, 李名扬, 李宣源. 离体茎尖诱变筛选油菜耐草酸变异体[J].西南农业学报, 2001, 14(2): 31-?33
    101. 王亦菲, 黄剑华, 陆瑞菊, 等. 利用油菜单倍体茎尖筛选抗菌核病变异体[J].核农学报, 2002, 16(6): 355-?359
    102. 张燕玲,吴立蓉,贺红. 人工诱变技术在植物抗病育种中的应用(综述)[J].亚热带植物科学, 2007,36(3):69-73
    103. 王风华,李光远.T-DNA 插入突变及其研究进展[J].河南农业科学.2007(6):12-14
    104. McCallum C.M, Comai L, Greene E.A, et al. Targeted screening for induced mutations[J]. Nature Biotech. , 2000a, 18: 455-457
    105. McCallum C M, Comai L, Greene E A, et al. Targeting induced local lesions in genomes (TILLING) for plant functional genomics[J]. Plant Physiol. 2000b, 123:439-442
    106. Colbert T, Till B J, Tompa R, et al. High-throughput screening for induced point mutations[J]. Plant Physiol. 2001, 126:480-484
    107.李春寿,阮关海,张琳琳,等.TILLING 技术的原理、特点及其在点突变筛选中的应用.核农学报[J].2005,19(4):317-321
    108. Clough S J and Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. Plant J. 1998,16,735-743
    109. Gheysen G, Villarroel R and Montagn M V. Illegitimate recombination in plants :a model for T-DNA integration [J] .Gens and Development.1991,5:287-297
    110. Tinland B. The integration of T-DNA into plant genomes [J]. Trends in Plant Sci, 1996, 1:178-184
    111. Zupan J, Muth T R, Draper O, et al. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights [J]. Plant J. 2000. 23: 11-28
    112. Wang K, Herrera-Estrella L, Van Montagu M, et al. Right 25bp terminus sequence of the nopaline T-DNA is essential for and determines of DNA transfer from Agrobacterium to the plant genome [J]. Cell, 1984, 38: 455462
    113. Tzfira T, Frankman L R, Vaidya M, et al. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates [J]. Plant Physiol. 2003,133:1011-1023
    114. Gelvin S B . Agrobacterium VirE2 proteins can form a complex with T strands in the plant cytoplasm [J]. J Bacteriol.1998. 180: 4300–4302
    115. Gelvin S B .The introduction and expression of transgenes in plants[J]. Curr. Opin. Biotechnol.1998. 9:227–232
    116. Gelvin S B. Agrobacterium and plant genes involved in T-DNA transfer and integration [J]. Annu. Rev of Plant Physiol and Plant Mol. Biol.2000, 51: 223–256
    117. Bent A F. Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species[J]. Plant Physiol., 2000, 124: 1540-1547
    118.Azpiroz-Leehm R and Feldmann K A. T-DNA insertion mutagenesis in Arabidopsis: going back and forth [J]. Trends in Genet., 1997, 13: 152-156
    119. McElver J,Tzafrir I,Aux G, et al. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana[J] .Genetics. 2001, 159: 1751-1763
    120. Alonso J M,Stepanova A N,Leisse T J, et a1.Genome- wide insertional mutagenesis of Arabidopsis thaliana [J]. Science, 2003, 301:653- 657.
    121.Hayashi H,Czaja I, Lubenow H, et al. Activation of a plant gene by T-DNA tagging:auxin-independent growth in vitro[J]. 1990, Science, 258: 1350–1353
    122. Weigel D, Ahn J H, Blazquez M A, et a1. Activation tagging in Arabidopsis[J].Plant Physiol. 2000,122:1003-1013
    123. Tani H, Chen X W, Nurmberg P, et al. Activation tagging in plants: a tool for gene discovery[J]. Funct . Integr. Genomics, 2004, 4: 258-266.
    124. Zuo J R,Chua N-H.Chemical-inducible systems for regulated expression of plant gene [J]. Curr. Opin. Biotechnol, 2000, 11:146-151
    125. Zuo J R, Niu Q W, Chua N H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants [J]. Plant J., 2000, 24, 2652?73.
    126. 张健, 徐金相, 孔英珍,等. 化学诱导激活型拟南芥突变体库的构建及分析[J].遗传学报, 2005, 32(10): 1082-?1088
    127. 李元元,张靖溥.基因捕获技术及其最新进展[J].遗传学报, 2006,33(3):189-198
    128. Jeong D H, An S Y, Kang H G, et al. T-DNA insertional mutagenesis for activation tagging in rice [J]. Plant Physiol, 2002, 130: 1636-1644.
    129. Winkler R G, Frank M R, Galbraith D W, et al. Systematic reverse genetics of transfer-DNA-tagged lines of Arabidopsis [J]. Plant Physiol., 1998, 118: 743-750
    130. Liu Y G, Whinier R F.Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert and fragments from P1 and YAC clones for chromosome walking [J]. Genomics, 1995, 25: 674-681
    131. Liu Y G, Mitsukawa N, Oosumi T, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR[J]. Plant J, 1995, 8(3): 457-?463
    132. An S Y, Park S , Jeong D H, et al. Generation and analysis of end sequence database for T-DNA tagging lines in rice [J]. Plant Physiology, 2003, 133, 2040–2047
    133. Sessions A, Burke E, Presting G, et al. A high-throughput Arabidopsis reverse genetics system [J].Plant Cell, 2002, 14: 2985-2994
    134. Sha Y, Li S, Pei Z, et al. Generation and flanking sequence analysis of a rice T-DNA tagged population [J]. Theor. Appl. Genet. 2004,108: 306-314
    135. Kakimoto T. CKIl, a histidine kinase homolog implicated in cytokinin signal transduction [J], Science, 1996, 274: 982-985
    136. Kardailsky I, Shukla V K, Ahn J H, et al. Activation tagging of the floral inducer FT [J]. Science, 1999. 286: 1962-1965
    137. Ito T and Meyerowitz E M. Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis [J]. Plant Cell, 2000, 12: 1541-1550
    138. Van der Graaff E, Hooykaas P J J, Keller B. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number [J]. Plant J.2002, 32: 819-830
    139. Van der Graaff E, Dulk-Ras A D, Hooykaas P J J, et al.Activation of LEAFY PFTIOLE gene affects leaf petiole development in Arabidopsis thaliana [J]. Development, 2000, 127: 4971-4980
    140. Huang S, Cerny R E, Bhat D S, et al. Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging [J]. Plant Physiol., 2001,125: 573-584
    141. Mathews H, Clendennen S K, Caldwell C G, et al. Activation tagging in tomato identifies a t ranscriptional regulator of anthocyanin biosynthesis, modification, and transport [J]. Plant Cell, 2003, 15, 1689-1703
    142. Weijers D, Dijk M F V, Vencken R J, et al. An Arabidopsis minute-like phenotype caused semi- dominant mutation in a RIBOSOMAL PROTEIN S5 gene [J]. Development, 2001,128, 4289-4299
    143. Tanaka S, Mochizuki N, Nagatani. Expression of the AtGH3a gene, an Arabidopsis homologue of the soybean GH3 gene, is regulated by phytochrome B [J]. Plant Cell Physiol., 2002, 43: 281-289
    144. Kumaran M K, Ye D, Yang W C, et al. Molecular cloning of ABNORMAL FLORAL ORGANS: a gene required for flower development in Arabidopsis [J]. Sexual Plant Reproduction. 1999, 12: 118-122
    145. Dubreucq B, Berger N, Vincent E, et al. The Arabidopsis AtEPR1 extensin-like gene is specifically expressed in endosperm during seed germination [J]. Plant J., 2000, 23: 643-652
    146. Swaminathan K, Yang Y Z. Grotz N, et al. An enhancer trap line associated with a D-Class cyclin gene in Arabidopsis [J]. Plant Physiol., 2002, 124:1658-1667
    147. Gu Q, Ferrandiz C, Yanofsky M F, et al. The FRUITFULL MADS-box gene mediates cell differen- tiation during Arabidopsis fruit development [J]. Development, 1998, 125: 1509-1517
    148. Agrawal G K, Yamazaki M, Kobayashi M, et al . Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion, Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene [J]. Plant Physiol.2001, 125:1248- 1257
    149. 陈双臣,张孝峰,刘星,等.植物转座子及其在番茄功能基因组的应用[J].生物技术.2005,15(6):83-85
    150. 徐伟文,李文全,毛裕民.表达谱基因芯片[J].生物化学与生物物理进展,2001,28(6):822-826
    151. Schena M , Shalon D , Davis R W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarrays [J]. Science .1995, 70: 467-470.
    152. 张银红,倪中福,姚颖垠,等.利用大麦寡核苷酸芯片分析小麦种间杂交种与亲本之间根系基因表达谱[J].自然科学进展.2006,16(3):300-308
    153. Ylstra B , van den Ijssel P, Carvalho B , et al. BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH) [J]. Nucleic Acids Res.2006, 34, 445-450 .
    154. Redon R , Ishikawa S , Fitch K R , et al. Global variation in copy number in the human genome [J]. Nature ,2006, 444, 444-454
    155. Pearson J V, Huentelman M J , Halperin R F, et al . Identification of the genetic basis for complex disorders by use of pooling-based genomewide single-nucleotide-polymorphism association studies [J]. Am. J. Hum. Genet. 2007,80, 126-139 .
    156. Hirschhorn J N , Sklar P, Lindblad-Toh K , et al. SBE-TAGS: an array-based method for efficient single-nucleotide polymorphism genotyping [J]. Proc Natl . Acad. Sci. USA ,2000, 97:12164-12169
    157. Keshet I , Schlesinger Y, Farkash S, et al. Evidence for an instructive mechanism of de novo methyl- ation in cancer cells [J]. Nat.Genet. 2006,38, 149-153 .
    158. Zhang X, Yazaki J, Sundaresan A et al. Genome-wide high-resolution mapping and functional analy- sis of DNA methylation in arabidopsis[J]. Cell ,2006,126, 1189-1201 .
    159. 石嵘,马文丽,吴清华,等,用于 SARS 冠状病毒检测的 60mer 寡核苷酸基因芯片的设计及应用[J].科学通报,2003,48: 1237-1241
    160. Cristillo A D, Bierer B E. Identification of novel targets of immunosuppressive agents by cDNA- based microarray analysis [J]. J Biol Chem 2002, 277: 4465-4476
    161. Kostic T,Weilharter A, Rubino S, et al. A microbial diagnostic microarray technique for the sensitive detection and identification of pathogenic bacteria in a background of nonpathogens [J]. Anal. Biochem. 2007,360, 244-254 .
    162. Bodrossy L and Sessitsch A . Oligonucleotide microarrays in microbial diagnostics. Curr. Opin. Microbiol [J]. 2004,7, 245-254
    163. Yanaihara N , Caplen N , Bowman E ,et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis [J]. Cancer Cell, 2006, 9, 189-198
    164. M.谢纳(美)著,张亮等译.生物芯片分析[M],北京,科学出版社:2004
    165.吴兴海,陈长法,张云霞,等.基因芯片技术及其在植物检疫工作中应用前景[J].植物检疫,2006,20(2):108-111
    166. 李淼,檀根甲,周冬生,等. 基因芯片技术及其在植物病害研究中的应用[J].植物保护,2003,29(1):5-9
    167. Schenk P M, Kazan k, Wilson I, et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis [J]. PNAS , 2000 , 97 (21 ):11655–11660
    168. Sasaki Y, Asamizu E, Shibata D, et al. Monitoring of methyl jasmonate-responsive genes in Arabido- psis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res. 2001,8, 153-161.
    169. Reymond P, Weber H, Damond M, et al. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis [J]. The Plant Cell, 2000 , 12: 707–719
    170. Theodoulou F L. Plant ABC transporters[J]. Biochim Biophys Acta, 2000, 1465: 79-103.
    171. Dudler R and Hertig C. Structure of an mdr-like gene from Arabidopsis thaliana: Evolutionary implications[J]. J Biol Chem, 1992, 267: 5882-5888.
    172. Schulz B and Kolukisaoglu H U.Genomics of plant ABC transporters: the alphabet of photosynthetic life forms or just holes in membranes? [J]. FEBS Lett, 2006, 580: 1010-1016.
    173. Yazaki K. Transporters of secondary metabolites [J]. Curr Opin Plant Biol, 2005, 8: 301-307.
    174. Sasabe M, Toyoda K, Shiraishi T, et al. cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene[J]. FEBS Lett. , 2002, 518: 164-168.
    175. Campbell E J,Schenk P M, Kazan K, et al.Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis [J]. Plant Physiology, 2003, 133, 1272–1284
    176. Lee M, Lee K, Lee J, et al .AtPDR12 contributes to lead resistance in Arabidopsis[J]. Plant Physiology , 2005 , 138 : 827
    177. Fauteux F, Chain F, Belzile F, et al.The protective role of silicon in the Arabidopsis-powdery mildew pathosystem [J]. PNAS , 2006 , 103,17554-17559
    178. 刘仁虎,赵建伟,肖勇,等.拟南芥cDNA芯片和油菜-拟南芥比较作图相结合筛选甘蓝型油菜抗菌核病先验基因[J].中国科学C辑生命科学,2005,35(1):13-21
    179. 曹爱忠,李巧,陈雅平,等:利用大麦基因芯片筛选簇毛麦抗白粉病相关基因及其抗病机制的初步研究[J].作物学报,2006,32(10):1444-1452
    180. 曲涛,吴建民,赵志光,等.植物microRNA及其抗胁迫作用机制研究进展[J].西北植物学报,2007, 27 (6) :1275 - 1284
    181. Jones-Rhoades M W, Bartel D P and Bartel B. MicroRNAs and their regulatory roles in plants[J]. Annu. Rev. Plant. Biol. 2006.57:19-53.
    182. 李伟,金由辛. miRNA的生物合成.生物化学与生物物理进展[J].2005,32(8):707-711
    183. Kurihara Y, Takashi Yand Wlatanabe Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis [J].RNA,2006,12(2):206-2l2.
    184. Tkaczuk K L, Obarska A and Bujnicki J M. Molecular phylogenetics and comparative modeling of HEN1, a methyltransferase involved in plant microRNA biogenesis[J]. BMC. Evol. Bio1. 2006,6:6.
    185. Yu B, Yang Z, Li J, et al.Methylation as a crucial step in plant microRNA biogenesis[J].Science,2005,307(571 1):932-935.
    186. Park M Y, Wu G and Gonzalez-Sulser A , et al. Nuclear processing and export of microRNAs in Arabidopsis [J]. Proc Natl Acad Sci , 2005, 102(10) :369l-3696.
    187. Chen X . A microRNA as a translational repressor of APETALA2 in Arabidopsis flower develop- ment[J]. Science,2004, 303:2022–2025
    188. Ambros V and Lee R C. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning [J]. Methods Mol Biol. 2004, 265:131-158
    189. Wang J F , Zhou H, Chen Y Q, et al. Identification of 20 microRNAs from Oryza sativa [J] .Nucleic Acids Res. 2004,32(5):1688-1695.
    190. Ambros V , Bartel B , Bartel D P ,et al . A uniform system for microRNA annotation [J] . RNA , 2003 ,9 (3) :277 - 279.
    191.王玫,李思光,罗玉萍. microRNA识别和鉴定方法[J].细胞生物学杂志.2007,29:503-507
    192. Xie X H, Lu J , Kulbokasl E J, et al. Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals [J]. Nature, 2005, 434, 338-345.
    193. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction [J]. NucleicAcids Res . , 2003 ,31 (13) :3406 - 3415.
    194. Mathews D H ,Sabina J ,Zuker M , et al. Expanded sequence dependence of thermodynamic para- meters improves prediction of RNA secondary structure[J ] .J .Mol . Biol ., 1999 ,288 (5) :911 - 940.
    195. Enright A J ,John B ,Gaul U , et al. MicroRNA target s in Drosophila[J ] .Genome Biol ., 2003 , 5(1) :1.
    196. Dsouz M , Larsen N and Overbeek R. Searching for patterns in genomic data[J ] . Trends Genet. , 1997 ,13 (12) :497 - 498.
    197. Zhang Y J. miRU: an automated plant miRNA target prediction server [J]. Nucleic Acids Res .2005, 33(Web Server issue):w701-w704
    198. Griffiths-Jones, S, Grocock RJ, van Dongen S, et al. miRBase: microRNA sequences, targets and gene nomenclature [J]. Nucleic Acids Res.( (Database Issue),2006, 34, D140–D144.
    199. Brenner S, Johnson M, Bridgham J , et al . Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays[J ] .Nat . Biotechnol . ,2000 ,18 (6) :630 - 634.
    200. Meyers B C, Tei S S, Vu T H , et al. The use of MPSS for whole genome transcriptional analysis in Arabidopsis[J] .Genome Res . , 2004 ,14 (8) :1641 - 1653.
    201. 陈杰.大规模平行测序技术(MPSS)研究进展[J].生物化学与生物物理进展.2004 ,31 (8) :761- 765
    202. Cutler S R, Ehrhardt DW, Griffitts J S, et al . Random GFP::cDNA fusions enable visualization ofsubcellular structures in cells of Arabidopsis at a high frequency [ J].Proc. Natl. Acad. Sci. USA, 2000, 97: 3718-3723.
    203. Kerschen A , Napoli C A, Jorqensen R A, Muller A E. Effectiveness of RNA interference in transgenic plants [J]. FEBS Lett. 2004, 566(1-3):223-228
    204. 洪登峰,万丽丽,杨光圣. 侧翼序列克隆方法评价[J].分子植物育种,2006,4(2):280-288
    205. Weigel D. and Glazebrook J. Arabidopsis :a laboratory manual[M] .Beijing : Chinese Industry Press,2004
    206. Sambrook J, Russell D W. Molecular Clone: A Laborataoy Manual, 3rd edition [M]. Cold Spring Harbor, New York. 2001
    207. 王关林,方宏筠.植物基因工程(第二版)[M].北京:科学出版社,2002
    208. Tanner A and Bornemann S , Bacillus subtilis Yvrk is and acid –induced oxalate decarboxylase [ J]. Journal of bacteriology , 2000, 182: 5271-5273
    209. 王爱荣,张春华,鲁国东,等.草酸对拟南芥的毒性及其在筛选拟南芥突变体中的应用 [J].植物病理学报,2005,35(zk):159-161
    210. Zhou F S, Zhang Z G, Gregersen P L, et al. Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus[J].Plant Physiol. 1998,117:33-41
    211. Levine A , Tenhaken R , Dixon R, et al . H2O2 from the oxidative burst orchestrates the plant hyper- sensitive disease resistance response [J]. Cell , 1994 , 79 : 583 -593.
    212. 李师翁,薛林贵,冯虎元,等.植物中的H2O2信号及其功能[J]. 中国生物化学与分子生物学报, 2007 ,23 (10) :804-810
    213. Yang Y H, Dudoit S, Luu P ,et al. Normalization for cDNA microarray data : a robust composite method addressing single and multiple slide systematic variation [J] Nucleic Acids Res.,2002,30:e15
    214. Tusher V G, Tibshirani R and Chu G. Significance analysis of microarrays applied to the ionizing radiation response[J]. PNAS, 2001, 98: 5116-5121
    215. Turner J G, Ellis C and Devoto A. The jasmonate signal pathway [J]. The Plant Cell , 2002 (supple-ment) : S153-S164
    216. 薛仁镐,金圣爱.茉莉酸甲酯:一种重要的植物信号转导分子[J].生物技术通讯.2006,17(6): 985-988
    217. 梅伏生, 孟祥高, 赵显珍,等.脂氧合酶-植物抗胁迫响应的关键酶[J].华中师范大学学报(自然科学版), 2005,39(3):346-351
    218. 雷韬, 袁澍, 刘文娟,等.交替氧化酶结构和功能研究进展[J].西北植物学报,2006,26 (3) : 0649 -0654
    219. 吴文华, 潘瑞炽. 茉莉酸甲酯对水稻幼苗光合作用的影响[J ]. 植物学报, 1998, 40 (3) : 256-262.
    220. Reinbothe S, Mollenhauer B and Reinbothe C. JIPs and RIPs: The regulation of plant gene express- ion by jasmonates in response to environmental cues and pathogens[J].The Plant Cell,1994, 6: 1197-1209
    221.魏源文,胡春锦,李杨瑞.乙烯在植物应答水分胁迫和病原菌浸染中的作用[J]. 植物生理学通讯, 2006, 42 (5): 981-985
    222.李占杰,师金鸽,杨铁钊.水杨酸介导的植物系统获得抗性信号的传导途径[J]. 中国农学通报, 2006,22(12):84-89
    223.刘悦萍, 宫飞, 赵晓萌.水杨酸介导的信号转导途径与植物抗逆性[J].中国农学通报,2005, 21 (7): 227-230
    224. 张红志,蔡新忠.病程相关基因非表达子1( NPR1):植物抗病信号网络中的关键节点[J].生物工程学报,2005, 21(4): 511-515
    225. 周莹,寿森炎,贾承国,等.水杨酸信号转导及其在植物抵御生物胁迫中的作用[J].自然科学进展.2007,17(3):305-312
    226. 彭金英,黄勇平. 植物防御反应的两种信号转导途径及其相互作用[J].植物生理与分子生物学学报,2005, 31(4): 347-353
    227. Durrant W E and Dong X. Systemic acquired resistance[J]. Annu.Rev. Phytopathol., 2004, 42:185- 209.
    228. 孙海燕,罗兵,喻德跃.次生代谢抗虫基因工程研究进展[J]. 安徽农业科学,2005,33(8):1906-1907
    229. 田云,卢向阳,彭丽莎,等.植物 WRKY 转录因子结构特点及其生物学功能[J].遗传,2006, 28(12):1607-1612
    230. 戴素明,周程爱, 谢丙炎,等.细胞色素 P450 表达在植物防御反应中的作用[J].石河子大学学报(自然科学版), 2004, 22 (zk):184-187
    231. Zhou N, Tootle T L, Glazebrook J. Arabidopsis PAD3, a gene required for camalexin biosynthesis , encodes a putative cytochrome P450 monooxygenase [J]. Plant Cell. 1999 ,11 ,2419-2428
    232. Thomson J M, Parker J, Perou C M, et al. A custom microarray platform for analysis of microRNA gene expression. Nat.Methods [J] .2004, 1, 47-53
    233. Huiling He, Krystian Jazdzewski, Wei Li ,et al. The role of microRNA genes in papillary thyroid carcinoma [J]. PNAS, 2005. 102,19075–19080

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700