苎麻UDPGDH基因cDNA的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苎麻(Boehmeria nivea)在我国有着悠久的栽培历史,是一种重要的纤维作物。为达到纺织要求,必须经过脱胶过程将苎麻韧皮中以果胶、半纤维素、木质素等为代表的胶质成分去除,不仅提高了生产成本,也容易对环境造成显著污染。因此,研究苎麻半纤维素和果胶合成的分子机理,从分子水平改善纤维作物的胶质成分,具有非常重要的理论意义和应用价值。
     前人的研究表明,尿苷二磷酸葡萄糖脱氢酶(UDPGDH)是半纤维素、果胶合成代谢途径中的关键酶之一。在本研究中,采用现代分子生物学技术,克隆了苎麻UDPGDH全长cDNA;运用植物转基因技术,实现了苎麻UDPGDH基因在异源植株中的表达,并分析了其功能;初步建立了苎麻离体培养体系和遗传转化技术,为苎麻分子育种的深入研究奠定了基础。
     主要研究结果:
     根据对已知的UDPGDH基因序列同源性分析,设计简并PCR引物,以由湘苎三号中提取的总RNA反转录所得的cDNA为材料,扩增得到苎麻UDPGDH基因片段,运用RACE技术,获得总长度为1837 bp的UDPGDH全长cDNA序列(Gene Bank No.EF178294),其读码框编码的蛋白质含有480个氨基酸残基。
     采用生物信息学方法,对所获得的苎麻UDPGDH全长cDNA以及其所编码的蛋白质进行分析,结果表明,该基因及其所编码的蛋白质与已知的多种植物UDPGDH具有高度的同源性,其蛋白质结构中含有UDPGDH所特有的功能性结构域、酶活性部位关键残基及修饰位点,初步说明该基因为苎麻的UDPGDH全长cDNA。
     将所获得的基因克隆到质粒pET32和pMAL中,在大肠杆菌中表达获得该基因所编码的蛋白质,生物学活性研究表明,该蛋白质具有UDPGDH酶活性,从而证实所获得的基因序列为苎麻UDPGDH全长cDNA序列。
     为了研究UDPGDH基因的表达和纤维形成的关系,运用RT-PCR技术对苎麻UDPGDH基因在苎麻不同组织中的表达进行了半定量分析。结果表明,在苎麻根、茎、叶、皮中均可以检测到UDPGDH基因的表达,其表达水平按茎、皮、叶、根的顺序呈下降趋势,与上述组织中纤维成分的相对含量呈正相关。
     运用分子克隆的手段构建了苎麻UDPGDH基因的干扰、反义、正义表达载体,以农杆菌介导将其转化模式植物烟草(WS38),PCR检测结果表明转化阳性率分别达到了100%、90%、70%,证实外源UDPGDH基因片段已经整合到烟草基因组中,酶活性分析同样证实了苎麻UDPGDH基因在转基因植物中的表达。初步的组织学分析表明,反义和干扰表达的转基因植株中,茎段与叶横切面细胞结构较为松散,基本组织细胞间隙增大,而在UDPGDH基因过量表达的转基因植株中则观察到相反的现象,进一步证实UDPGDH基因在苎麻半纤维素和果胶合成中所具有的重要作用。
     以苎麻叶片为外植体,初步建立了苎麻的离体培养体系。湘苎三号形成优良愈伤组织的较优激素组合为:TDZ 0.3mg/L+2,4-D 0.01-0.03 mg/L,城步青麻为:TDZ 0.45 mg/L+2,4-D 0.03 mg/L、湘苎二号为:TDZ 0.15 mg/L+2,4-D 0.03 mg/L。湘苎三号诱导芽分化较优激素组合为TDZ 1 mg/L+2,4-D 0.1 mg/L,城步青麻品种为TDZ 0.5 mg/L+2,4-D 0.3 mg/L,湘苎二号为TDZ 0.75 mg/L+2,4-D0.3 mg/L。同时采用叶盘法并对苎麻进行了遗传转化,获得了较多的PCR检测阳性苎麻植株。这些工作将为下一步苎麻分子育种研究打下了基础。
Ramie (Boehmeria nivea) is one of the most important fiber crops in China. In textile industry, a pretreatment procedure of degumming is always required to get rid of the non-cellulose materials such as pectin, hemicellulose, lignin, et al. This pretreatment procedure, not only increases the cost, but also polutes the environment. Therefore, it is of great importance to investigate the molecular mechanism(s) of pectin, hemicellulose biosynthesis and improve the molecular composition of the fiber crops.
     Previous research results suggested that UDP-glucose dehydrogenase (UDPGDH) plays a critical role in the regulation of the biosynthesis of pectin and hemicellulose. In this study, the full length ramie UDPGDH cDNA was cloned. The cloned ramie cDNA was expressed in exogenous plants using transgenic technologies and the functions were analyzed. A in vitro ramie culture system was established whereas a genetic transformation technique was developed. These results will greatly facilitate the further study of the molecular breeding of ramie.
     The major research results presented in this study are briefly summarized as following:
     Based on the homology comparision of the known UDPGDH genes, a pair of degenerate PCR primers were designed. Using the cDNA synthesis from the total RNA isolated from ramie strain Xiangzhu No. 3, a fragment of ramie UDPGDH gene was amplified. The RACE procedure was carried out to obtain the full length ramie cDNA, the resulted cDNA contains 1837 bp (Gene Bank No. EF178294), which contains an open reading frame that encodes a protein of 480 amino acid residues.
     Bioinformatic analysis was performed on the obtained ramie full length UDPGDH cDNA and the deduced protein. The results demonstrated that the gene is highly homologous to the known plant UDPGDH genes.. The deduced protein contains all the functional domains of UDPGDH, the critical amino acid residues of the enzyme activity core and important modification sites are also presented in the deduced protein.
     The obtained ramie UDPGDH gene was cloned inton vectors pET32 and pMAL and expressed in E. coli. The expressed protein clearly demonstrated the UDPGDH enzyme activity in vitro. In combination with the bioinformatic analysis, it was concluded that the full length ramie UDPGDH cDNA was successfully cloned in this study.
     To investigate the relationship of the expression level of UDPGDH gene and the formation of fiber, the expression levels of UDPGDH in different ramie tissues were examined using semi-quantitative RT-PCR. The results suggested that in ramie, UDPGDH gene is expressed in stem, phloem, leaf, and root. The expression level of UDPGDH gene in ramie decreases in different tissues in the sequence decribed above.
     The core region of UDPGDH was cloned into the binary expression vectors (pFGC5941, pWM101) and transformed into tobacco via leaf disc infection with Agrobacterium tumefaciens system. The result demonstrated that UDPGDH gene was successfully integrated into tobacco genome. Tissue analysis indicated that three expression vectors in the tobacco may effect hemicelluloses and pectin synthesis. The cells in cross-section of leaf and stem become swollen and intercellular space of the ground tissue increass when the expression of UDPGDH gene was inhibited in tobacco. When UDPGDH gene was over expresed, opposite physiological changes were observed. These results further suggested that UDPGDH gene may play an important role in the synthesis of pectin and hemicelluloses in ramie.
     Using ramie leaves as explant, a in vitro culture system of ramie was established. Xiang Zhu No. 3 in MS supplemented with TDZ 0.3 mg/L + 2,4-D 0.01-0.03 mg/L, Cheng Bu Qing Ma in MS with TDZ 0.45 mg/L + 2,4-D 0.03 mg/L, Xiang Zhu No. 2 in MS with TDZ 0.15 mg/L + 2,4-D 0.03 mg/L, they formed the fine callus on the hormone combinations. Induced high frequency shoots of Xiang Zhu No. 3 in MS with TDZ 1 mg/L + 2,4-D 0.1 mg/L, and the Cheng Bu Qing Ma in MS with TDZ 0.5 mg/L + 2,4-D 0.3 mg/L, Zhu Xiang No. 2 in MS with TDZ 0.75 mg/L + 2,4-D0.3 mg/L. PCR positive plants were obtained with leaves disk transformation. The further molecular breeding research of ramie might be carried out based on the results presented in this work.
引文
[1]李宗道,胡久清.麻类形态学[M].北京:科学出版社,1987.
    
    [2]卢浩然.中国麻类作物栽培学[M].北京:农业出版社,1993.
    
    [3]彭源德,唐守伟,杨喜爱,等.超临界CO_2介质中苎麻脱胶酶的影响因素[J].纺织 学报,2007,28(5):74-76.
    
    [4]晏春耕.苎麻韧皮纤维超微结构的研究[J].湖南农业大学学报(自然科学版), 2000,26(1):31-33.
    
    [5]郑长清.苎麻品种原麻总含胶量的研究[J].中国麻作,1995,(4):16-19.
    
    [6]肖丽,王贵学,陈国娟.苎麻酶法脱胶的研究进展.微生物学通报[J].2004,31(5): 101-105.
    
    [7] Ishii.Structure and function of feruloylated polysaccharides [J]. Plant Sci., 1997,127:111-127.
    
    [8] Ridley et al.Pectins structure biosynthesis and oligogalacturoniderelated signaling[J].Phytochemistry, 2001, 57:929-967.
    
    [9] Darvill et al . Structure of plant cell walls. Ⅷ. A new pectic polysaccharide[J]. Plant Physiol, 1978, 62:418-422.
    
    [10] Vidal et al.Structural characterization of the pectic polysacchariderhamnogalacturonan Ⅱ : evidence for the backbone location of the aceric acid -containing oligoglycosyl side chain [J]. Carbohydr. Res., 2000,326:277-294.
    
    [11] Glushka et al . Primary structure of the 2-O-methyla-L-fucose-containing sidechain of the pectic polysaccharide rhamnogalacturonan Ⅱ [J].Carbohydr.Res.,2003,338: 341-352.
    
    [12] Kobayashi et al.Two chains of rhamnogalacturonanⅡ are cross-linked byborate-diol ester bonds in higher plant cell walls [J].PPhysiol.,1996, 119:199-203.
    
    [13] ONeill et al, Rhamnogalacturonan Ⅱ , a pectic polysaccharide in the walls ofgrowing plant cells , forms a dimer that is cross-linked by a borate ester-in vitroconditions for the formation and hydrolysis of the dimmer [J].J BiolChem., 1996,271: 22923-22930.
    
    [14] Ishii and Ono,NMR spectroscopic analysis of the borate diol esters of methyl-apiofuranosides [J].Carbohydr. Res., 1999, 321:257-260.
    [15] Hu et al,Species variability in boron requirement is correlated with cell wall pectin [J].J Exp Bot., 1996,47:227-232.
    [16] Pellerin and O Neill.The interaction of the pectic polysaccharide rhamnogalacturonan II with heavy metals and lanthanides in wines and fruit juices [J].Analysis,1998,26:32-36.
    [17] Shin, K.S., Kiyohara, H. , Matsumoto,T. , Yamada, H. . Rhamnogalacturonan II dimers cross-linked by borate diesters from the leaves of Panax ginseng C.A. Meyer are responsible for expression of their IL-6 production enhancing activities [J ]. Carbohydr. Res., 1998 , 307:97-106.
    
    [18] Sun,R.C.,Lawther. J. M. , Banks, W. B.. Fractional and structural characterization of wheat straw hcmicclluloscs [J]. Carbohydrate Polymers, 1996, 29(4): 325-331.
    [19] CaL Z.S.,Paszncr,L.Salt catalyzed wood bonding with hemiccllulose[J]. Holforschung, 1998,42(I): 11-20.
    [20] Sun,R.C.,Tomkinson,J.,Liu,J.C.,et al,Oleoylation of wheat straw hemcelluloses in new homogeneous system [J].Polymer Journal, 1999, 31(10): 857-863.
    [21] Ibrahim, M.,Glasser,W.G.. Steam-assisted biomass fraction. Part III: a quantitative evalunation of the"clean fraction"concept [J].Bioresource Technology, 1999, 70(2):181-192.
    [22] N' Diaye, S., Rigel, L., Laroque. P., et al, Extract ion of hemicelluloses from Populus tremuloieds, using an extruder-type twin-screw reactor: A feaxibility study [J]. Hiaresource Technology, 1996, 57(1): 61-67.
    [23] Ebringerove.A,Hromadkova,Z. Xylans of industral and biomedical importance [J]. Biotechnology and Genetic Engineering Reviews, 1999, 16: 325-346.
    [24] Sun,R.C.,Tomk inson , J..Comparative study of lignins isolated by alkai and ultrasound-assisted alkali extractions from wheat straw [J].Ultrasonics Sonochemistry, 2002, 9(2): 85-93.
    [25] DEYP.M.,Binson.K..Plant cell-walls [J] . Advances in Carbohydrate Chemistry and Biochemistry, 1984,42: 265-382.
    [26] McNeil M., Darvill AG.,Fry S.,et al.Structure and function of the primary cell walls of plants.. Annu Rev Biochem., 1984, 53:625-663.
    [27] Brett C.,Walaron.K..Control of cell wall extensibility [J].In:Black M, Chapman J(eds) Physiology and Biochemistry Plant Cells Walls, London :Unwin Hyman, 1990,101-113.
    [28] Deboraha.Samac Lynn Litterer.Expression of UDP-GlucoseDehydrogenase Reduces Cell-Wall Polysaccharide Concentration and Increases Xylose Content in Alfalfa Stems [J]. Applied Biochemistry and Biotechnology, 2004,116:1167- 1182.
    
    [29] Raimund Tenhaken,Oliver Thulke. Cloning of an Enzyme That Synthesizes a Key Nucleotide-Sugar Precursor of Hemicellulose Biosynthesis from Soybean: UDP-Glucose Dehydrogenase [J]. Plant Physiology, 1996,112:1127-1134.
    [30] Henrik Johansson.Molecular cloning and characterization of a cDNA encoding poplar UDP-glucose dehydrogenase, a key gene of hemicellulose/pectin formation [J]. Biochimicaet Biophysica Acta, 2002,1576:53—58.
    [31] Beate Seitz,Christoph Klost,Marita Wurm.Matrix polysaccharide precursors in Arabidopsis cell walls are synthesized by alternate pathways with organ-specific expression patterns [J].The Plant Journal, 2000,21: 537-546.
    [32] Turner SR, Somerville CR. Collapsed xylem phenotype of Arabidopsis identifiesmutants deficient in cellulose deposition in the secondary cell wall [J]. Plant Cell, 1997, 9(5): 689-701.
    [33] Scheible W-R,Eshed R, Richmond T et al.Modifications of cellulose synthase confer resistances to isoaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants [J]. Proc Natl Acad Sci USA, 2001,98: 10079-10084.
    [34] Arioli T, Peng L, Betzner A S et al. Molecular analysis of cellulose biosynthesis in Arabidopsis [J].Science, 1998,27: 717-720.
    [35] Beeckman T,Przemeck G K, Stamatiou G, Lau R, Terryn N, De Rycke R, Inze D, Berleth T. Genetic complexity of cellulose synthase a gene function in Arabidopsis embryogenesis [J]. Plant Physiol, 2002,130(4): 1883-1893.
    [36] Taylor NG, Scheible WR, Cutler S et al. The irregular xylem 3 locus of Arabidopsis encodes a cellulose synthase catalytic subunits are required for secondary cell wall synthesis [J]. Plant cell, 1999,11: 769-779.
    [37] Richard E, Williamson, Joanne E. Burn, Charles H. hocart. Towards the mechanism of cellulose synthesis [J]. Trends in Plant Sci, 2002, 10: 461-467.
    [38] Fagard M, Hofte H, Vernhettes S.Cell wall mutants [J].Plant Physiol Biochchem, 2000, 38:15-25.
    
    [39] Williamson RE,Burn JE, Birch R, Baskin TI, Arioli T, Betzner AS. Morphology of rswl,a cellulose-deficient mutant of Arabidopsis thaliana [J]. Protoplasma, 2001,215 (1):116-127.
    [40] Hwei-Ling Peng, Ming-Der Lou,May-Ling Chang,Hwan-You Chang.cDNA Cloning and Expression Analysis of the Human UDPglucose Dehydrogenase [J]. Natl.Sci.Counc. ROC(B), 1998,22:166-172.
    [41] Cara L.GriffithJ.Stacey Klutts,Lijuan Zhang, Steven B.Levety,and Tamara L.Doering. UDP-glucose Dehydrogenase Plays Multiple Roles in the Biology of the Pathogenic Fungus Cryptococcus neoformans [J]. The Joutnal Of Biological Chemistry, 2004,279:51669-51676.
    [42] Carlos Arrecubieta,Ernesto Garcia, Rubens Lopez.Demonstration of UDP-Glucose Dehydrogenase Activity in Cell Extracts of Escherichia coli Expressing the Pneumococcal cap3A Gene Required for the Synthesis of Type 3 Capsular Polysaccharide [J]. Joutnal of Biological, 1996,178: 2971-2974.
    [43] Marc C.Laus, Trudy J.Logman et.al, Involvement of exo5 in Production of Surface Polysaccharides in Rhizobium leguminosaru and Its Role in Nodulation of Vicia stiva subsp Nigra [J]. Joutnal of Bacteriology, 2004,186:6617-6625.
    [44] Xue Gel,Lisa C,Penney, Ivovande Rijn and Martin E.Tanner. Active site residues and mechanism of UDP-glucose dehydrogenase, Eur.J.Biochem., 2004, 271:14-22.
    [45] Yannick Bontemps,Francois-Xavier Maquart, and Yanusz Wegrowski, Human UDP-Glucose Dehydrogenase gene:Complete Cloning and Transcription Start Mapping [J].Biohemical and biophysical Research Communications, 2000, 275: 981-985.
    
    
    [46] Jaya Vatsyayan,l Shiou-Ju Lee,and Hwan-You Chang.Effects of Xenobiotics and Peroxisome Proliferator-Activated Receptor-a on the Human UDPglucose Dehydrogenase Gene Expression [J].Biochem Molecylar Toxicology, 2005,19:278-288.
    
    [47]李颢王,玲燕徐桂云,陈阳,姜蓉,李元.链霉菌UDP-葡萄糖脱氢酸编码基因Ste6 的克隆表达和性质研究[J].遗传学报,2005,32(11):1213-1220.
    
    [48] John S.Gunn, William J.Belden &Samuel I.Miller.Identification of PhoP-PhoQactivated genes within a duplicated region of the Salmonell--a typhimuriumchromosome [J]. Microbial Pathogenesi, 1998,25:77-90.
    
    [49] Dorit Landstein,Michael V.Graves, Dwight E. Burbank,Paul DeAngelis,andJames L Van Etten .Chlorella Virus PBCV-1 Encodes Functional Glutamine:Fructose-6-Phosphate Amidotransferase and UDP-Glucose DehydrogenaseEnzymes [J]. Virology, 1998,250:388-396.
    
    [50] Ling-yan Wang,Shi-tao Li,Yuan Lo,Identification of a cis-Acting ElementRespondible for Negative Regulation of the human UDP-Glucose dehydrogenasegene expression [J].FEMS Microbiology Letters, 2003,22:21-27.
    
    [51] Corbier C, DellaS F, etal.A new chemical mechanism catalyzed by a mulatedaldehyde dehydrogenase [J]. Biochemistry, 1992, 31:12532-12535.
    
    [52] Robert E.Campbell, Rafael F., Sala.Properties and Kinetic Analysis ofUDP-glucose Dehydrogenase frome Group A Streptococci [J].The journal ofbiological chemistry, 1997, 6:3416-3422.
    
    [53] J.EILa-Mei, SONG Li-Rong.Cloning and Characterization of the Gene for UDP-Glc Dehydrogenase from the Cyanobacterium,Microcystis aeruginosa FACHB 905 [J]. Planta, 2004,11:1373-1382.
    
    [54] Anna KArk Onen.UDP-glucose dehydrogenases of maize:a role in cell wallpentose biosynthesis [J] .Biochemistry, 2005, 391: 409-415.
    
    [55] Laurence V.Bindschedler. Characterisation and expression of the pathway from UDP-glucose to UDP-xylose in dierentiating tobacco tissue [J]. Plant Molecular Biology, 2005, 57:285-301.
    
    [56] Xue Ge,Lisa C.Penney.Active site residues and mechanism of UDP-glucose??dehydrogenase [J]. Eur.Biochemistry, 2004,271:14-22.
    
    [57] Robertson D, Smith C, Bolwell GP Inducible UDP-glucose dehydrogenase from French bean (Phaseolus vulgaris L.) locates to vascular tissue and has alcohol dehydrogenase activity [J]. Biochem J., 1996, 313:311-317.
    
    [58] Anna Karkonen , Stephen C. Fry .Novel characteristics of UDP-glucose dehydrogenase activities in maize: non-involvement of alcohol dehydrogenases in cell wall polysaccharide biosynthesis [J]. Planta, 2006,223:858-870.
    
    [59] Diaz-De-Leon F,Klotz L.K,Lagrimini L. M.Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene. Plant Physiology, 1993,101: 1117-1118.
    
    [60]陈启龙.RACE技术的研究进展及其应用[J].黄山学院学报,2006,(3):23-26.
    
    [61]韩婧.RACE技术及其研究进展[J].沧州师范专科学校学报,2005,(2):42-44.
    
    [62] Wang X, Brownstein M J, Young W S. PG25, a pineal -specific cDNA, cloned by differential display PCR ( DDPCR) and rapid amplification of cDNA ends (RACE) [J] JNeurosci Methods, 1997, 73(2): 187-191.
    
    [63] Matz M, Shagin D, Bogdanova E, Britanova O, Lukyanov S,Diatchenko L, Chenchik A. Amplification of cDNA ends based on template-switching effect and step-out PCR [J].Nucleic Acids Res, 1999,27(6): 1558-1560
    
    [64]陶士珩生物信息学[M].科技出版社.2007.
    
    [65]陈建康,,邹万忠.半定量RT--PCR方法在基因表达研究中的应用[J].北京医 科大学学报,1996,(2):28-32.
    
    [66]兰海燕,李立会.蛋白质凝胶电泳技术在作物品种鉴定中的应用[J].中国农业 科学,2002,(3):10-13.
    
    [67]石继红,赵永同.SDS—聚丙烯酰胺凝胶电泳分析小分子多肽[J].第四军医大 学学报,2000,(1):41-43.
    
    [67] Chen S, Rao Q, Wang JX. Construction and expression of single chain variable fragments (ScFv) against human CD 19 antigen [J]. Chinese Journal of Biotechnology, 2005,21(5): 686-691.
    
    [68] Hwei-Ling Peng,Ming-Der Lou,May-Ling Chang,Hwan-You Chang.cDNA Cloning and Expression Analysis of the Human UDPglucose Dehydrogenase [J].??Natl.Sci.Counc. ROC(B), 1998,22:166-172.
    
    [69] Yannick Bontemps ,Francois-Xavier Maquart, and Yanusz Wegrowski, HumanUDP-Glucose Dehydrogenase gene:Complete Cloning and Transcription StartMapping [J].Biohemical and biophysical Research Communications, 2000, 275:981-985.
    
    [70] Duncan Robertson, Iwona Beech,G.Paul Bolwell,Regulation of the Eenzymesof UDP-suger Metabolism during Differentiation of French Bean [J].Vhytochemistry, 1995,39: 21-28.
    
    [71] Cara L.GriffithJ.Stacey Klutts,Lijuan Zhang, Steven B.Levety,and TamaraL.Doering. UDP-glucose Dehydrogenase Plays Multiple Roles in the Biology ofthe Pathogenic Fungus Cryptococcus neoformans [J].The Joutnal Of BiologicalChemistry, 2004, 279:51669-51676.
    
    [72] Carlos Arrecubieta,Ernesto Garcia, Rubens Lopez.Demonstration ofUDP-Glucose Dehydrogenase Activity in Cell Extracts of Escherichia coliExpressing the Pneumococcal cap3 A Gene Required for the Synthesis of Type 3Capsular Polysaccharide [J] Joutnal Of Biological, 1996,178: 2971-2974.
    
    [73] Hutvagner G, Zamore PD,Cuur Opin Genetics & Development, 2002,12:225-232.
    
    [74] Nykanen A.Haley B,.Zanmore PD, et al. Cell, 2001,107: 309-321.
    
    [75] Dzitoyeva S, Dinitrijevic N,Manev H.Mol Psychiatry, 2001, 6(6): 665-670.
    
    [76] Lipardi C, Wei Q, Paterson BM, et al. Cell, 2001,107:297-307.
    
    [77] Ketting RF,Havetkamp TH, Van Luenen HG, et al. Cell, 1999,99:133-141.
    
    [78] Gtishok A, Pasquinelli AE, Conte D, et al. Cell, 2001,106: 23-24.
    
    [79] Hutvagner G, Melashlan J, Pasquinelli AE, et al. Science, 2001, 293(5531):843-838.
    
    [80] Elbashir SM, Harborbrth J, Lendeckel W, et al. Naturre, 411:494-498.
    
    [81]周跃钢.反义RNA技术在植物基因工程领域中的应用[J].生物化学与生物物 理进展,1996,4:297-301.
    
    [82]白新祥,戴思兰.反义RNA技术在花色育种中的应用[J].植物学通报,2005, 22(3):284-291.
    
    [83]郭庆勋,陈柏杰,秦智伟.反义RNA技术在培育延熟保鲜蔬菜新品种上应用[J]. 北方园艺,2004,3:88-89.
    
    [84]郭清泉,胡日生,孙焕良.苎麻胶质的基因型差异与成因及育种中利用研究(Ⅰ) [J].湖南农业大学学报(自然科学版),2000,5:341-342.
    
    [85]郭清泉,胡日生,孙焕良.苎麻胶质的基因型差异与成因及育种中利用研究(Ⅱ) [J].湖南农业大学学报(自然科学版),2000,6:421-424.
    
    [86]郭清泉,胡日生,孙焕良.苎麻胶质的基因型差异与成因及育种中利用研究(Ⅲ) [J].湖南农业大学学报(自然科学版),200 1,4:268-230.
    
    [87]陈建荣,郭清泉,张学文.苎麻CCoAOMT基因全长cDNA克隆与序列分析.中国 农业科学,2006,5:1058-1063
    
    [88]潘昌立,李树川,李育君,等.苎麻体细胞植株再生及其影响因素的研究[J].中 国麻作,1995,17(1):1-6.
    
    [89]刘瑛,黄小英,赖小萍,等.苎麻组织培养再生植株主要影响因素的研究[J].江西 农业学报,2002,14(1):11-15.
    
    [90]王晓玲,彭定祥.不同基因型对苎麻愈伤组织诱导及分化的影响[J].长江大学 学报(自科版),2005,2(8):64-66.
    
    [91]郭运玲,郭安平,刘恩平,等.苎麻茎尖的组织培养及其诱导植株的再生[J].热带 植物学报,2006,27(1):73-75.
    
    [92]王晓玲,彭定祥.基本培养基对苎麻不同外植体愈伤诱导及分化的影响[J].华 中农业大学学报,2003,22(5):431-435.
    
    [93]王晓玲,彭定祥.三种细胞分裂素对苎麻愈伤组织诱导及分化的影响[J].湖北 农业科学,2005,(1):17-19.
    
    [94]李浚明.植物组织培养教程[M].北京:中国农业大学出版社,2001
    
    [95] Armst rong C L,Green C E. Establishment andmaintenance of friable , embryogenic maize callus and the involvement of L-pro-line [J]. Planta, 1985, 164: 207-214.
    
    [96]汪波,彭定祥.苎麻组织培养及遗传转化研究进展[J].中国麻作,2007,9(1): 9-14.
    
    [97] R.S.Nirwan,S.L. Kothari. High copper levers improve callus induction and plant regeneration in Sorghum Bicolor(L.)Moench [J]. Planta, 2003, 39: 161-164.
    [98] H.Y.Seo,Y.J.Kim,T.L. Park. High-frequency plant regeneration via adventitious shoot formation from deembryonated cotyledon explants of Sesamum indicum L[J]. Planta, 2007,43:209-214.
    [99] Shailendra Vyas,Neell Joshi,Kiran Tak. In vitro adventitious shoot bud differentiation and plantlet regeneration in Feronia Limonia L.(Swingle)[J]. Planta, 2005,41: 296-302.
    [100] Ana Sofia Dlqle,Ana Sofia Pires,Dllce Metelo Dos Santos. Efficient somatio embryogenesis and plant regeneration from long-term cell suspension cultures of medicago truncatula CV.jema long [J]. Plant, 2006,42: 270-273.
    [101] R.L.Rehman,M.Israr,P.S. Srivastava. In vitro regeneration of witloof Chicory(Cichorium Intybus L.) from leaf explants and Accumulation of esculin [J]. Plant, 2003, 39:142-146.
    [102] Diva Maria A. Dusi. Transgenic plants of ramie (Boehmeria nivea Gaud.)obtained by Agrobacterium mediated transformation[J]. Plant Cell Reports, 1993,12:625-628.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700