FSH、GnRH在大鼠海马的表达及其对缺血再灌注损伤的保护性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
促性腺激素释放激素(GnRH)是由下丘脑神经元分泌的十肽小分子,促性腺激素释放激素受体(gonadotropin-releasing hormone receptor, GnRHR)属于七次跨膜的G蛋白耦联受体超家族。GnRH与GnRHR结合后,调节促性腺激素细胞分泌黄体生成素(luteining hormone ,LH)和卵泡刺激素( follicle-stimulating hormone ,FSH),在生殖过程中发挥重要作。促性腺激素包括FSH和LH,他们都是由α,β亚单位构成的二聚体糖蛋白。FSHR和LHR都是具有7个跨膜结构的G蛋白耦联受体。FSH和LH的分泌都受到下丘脑分泌的GnRH的调控。近年来的研究发现,GnRH及其受体还存在于下丘脑-垂体-性腺轴以外的脑组织、消化道、颌下腺、胰腺等消化器官以及前列腺癌等肿瘤细胞中,其功能也超出了生殖范畴。作为雌激素上游激素的GnRH及其受体在海马内也广泛存在,但未见有对其在缺血损伤下表达变化的报道。除垂体外,多种组织内均有FSH的存在。生殖系统中FSH可存在于前列腺,乳腺,睾丸,以及胎盘。在非生殖系统内可存在于胃的壁细胞,其功能也超出了生殖调控的范畴。FSHR除了在性腺中表达之外,也表达于输卵管上皮和子宫颈等部位。近年的研究发现,大鼠海马神经元中存在许多激素及其受体,其中包括作为生殖激素的GnRH、LH及它们的受体,但未见有存在FSH及其受体的报道。脑缺血再灌注损伤可以引发选择性的、延迟的神经元死亡,这种死亡主要是通过神经元的凋亡所引起的。近年来的研究已经表明,雌激素对海马CA1区缺血引起的神经元损伤和神经元凋亡具有保护作用,并且这种保护性作用是通过海马内的雌激素受体实现。GnRH及FSH是雌激素的上游激素,关于GnRH及FSH对海马神经元缺血再灌注损伤的保护性研究未见报道。
     由此我们进行了以下研究:应用原位杂交及免疫组织化学方法,结合图像分析系统,观察了缺血再灌注损伤后大鼠海马CA1区神经元GnRH及其受体的表达变化;应用原位杂交方法观察了FSH在大鼠海马的表达;应用免疫荧光组织化学双标记方法,在激光共聚焦显微镜下进行了大鼠海马FSH及其受体的共定位研究;应用免疫组织化学邻片双标记方法进行了大鼠海马FSH与GnRHR的共定位研究;通过制作大鼠MCAO模型、进行TUNEL染色的体内实验及制作大鼠海马神经元OGD模型、进行流式细胞仪Annexin V/PI双染色法检测的体外实验进行了FSH、GnRH对大鼠海马神经元缺血再灌注损伤的保护性研究。
     通过实验得到主要研究结果如下:大鼠海马CA1区神经元GnRH及GnRH mRNA的表达量随缺血再灌注损伤时间的延长而减少,阳性细胞数也随损伤时间延长而迅速减少。GnRHR及GnRHR mRNA的表达量随缺血再灌注损伤时间的延长先增加后减少,阳性细胞数随损伤时间延长而减少。损伤后3d, CA1区多型层及辐射层出现较多GnRH、GnRHR免疫反应及GnRH、GnRHR mRNA杂交信号弱阳性细胞;海马CA1至CA4区及齿状回的神经元呈FSH免疫反应阳性,同时也显示FSH mRNA阳性杂交信号,海马CA1至CA4区及齿状回的神经元呈FSHR免疫反应阳性,FSH和FSHR共定位于海马的同一神经元,FSH和GnRHR共定位于同一海马神经元;缺血再灌注损伤后72h,FSH干预组和GnRH干预组CA1区TUNEL染色阳性神经元平均灰度值大于对照组,即FSH干预组和GnRH干预组TUNEL染色阳性产物少于对照组。缺血再灌注损伤后72h,FSH干预组和GnRH干预组CA1区TUNEL染色阳性神经元数量比对照组少;FSH干预组、GnRH干预组与对照组相比,凋亡神经元百分比增加,存活神经元百分比减少。FSH干预组、GnRH干预组与无干预组相比,凋亡细胞百分比减少,存活细胞百分比增加。
     综上所述,本研究结果表明:缺血再灌注损伤后,大鼠海马CA1区神经元GnRH及GnRHR的表达发生变化,GnRH可能参与CA1区脑组织损伤后修复过程的调节;海马能表达FSH,海马的FSH神经元也是FSH作用的靶细胞。海马神经元产生的FSH可能通过旁分泌和自分泌途径对海马的功能进行调节,海马产生的GnRH也可能通过其受体对FSH神经元进行调节;预先给予一定浓度的FSH及GnRH干预,可以减少海马CA1区缺血再灌注损伤所引起的神经元凋亡。FSH及GnRH对神经元缺血再灌注损伤具有保护性作用。
The gonadotropin-releasing hormone (GnRH), also called luteinizing hormone-releasing hormone (LHRH), is a decapeptide. Gonadotropin-releasing hormone receptor (GnRH receptor) is a member of the seven-transmembrane, G-protein-coupled receptor family. GnRH combined with GnRH receptor to regulate secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and plays an important role in reproductive process.Gonadotropine comprise of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). They are heterodimer glycoproteins composed ofαandβsubunits and have important roles in production of gonadal hormone and regulation of reproductive process. FSH receptor and LH receptor are G protein-coupled receptors. The secretion of FSH and LH are all regulated by GnRH secreted from hypothalamus. Increasing evidence suggests that GnRH and its receptor can also exist in other extrahypothalamic regions, such as gastrointestinal tract, submaxillary gland, pancreas and some malignant tumor cells such as prostate cancer cells. At the same time, the function of GnRH is beyond reproduction. GnRH, an upstream hormone of estrogen, which can regulate the secretion of estrogen, also broadly exists in hippocampus with its receptor; but there is no report about the change of expression of GnRH and its receptor in hippocampus with ischemia-reperfusion injury. Many research showed that FSH also exists in other tissues besides pituitary. In reproductive system, FSH exists in prostate, breast, testis and placenta; in non-reproductive system, FSH exists in parietal cells of stomach. Its functions are also beyond reproduction. Besides expressed in gonad, FSH receptor also exists in uterine tubal epithelium and cervix.Recently, research has showed that many hormones and their receptors, including reproductive hormones such as GnRH,LH and their receptors, exist in hippocampal neurons. However, whether FSH and its receptor also exist in hippocampal neurons remained unknown yet. Global ischemia-reperfusion injury elicits selective, delayed neuronal death, and the main reason is apoptosis. Many researches have showed that estrogen can protect neuron injury and neuron apoptosis in hippocampal CA1 region during ischemia and this protection is mediated by estrogen receptors in hippocampus. GnRH and FSH are upstream hormones of estrogen, but there is no report about their protection of ischemia-reperfusion injury in rat hippocampus.
     On the base of our previous research, we did the following experiments: combined with image analysis system, Immunohistochemistry and in situ hybridization method were used to observe the change of expression of GnRH and its receptor in neurons of CA1 region in rat hippocampus after ischemia-reperfusion injury; in situ hybridization method was used to observe the expression of FSH in rat hippocampus; double label immunofluorescence histochemical staining and confocal laser-scanning microscope were used to study the colocalization of FSH and FSHR in rat hippocampus; in vivo study of middle cerebral artery occlusion model building and TUNEL staining was made and in vitro study of oxygen-glucose deprivation model building and double staining of Annexin V/PI with flow cytometer was made to study the protection of ischemia-reperfusion injury by FSH and GnRH in rat hippocampus.
     Through these experiments, the results are as follows: the expression of GnRH and GnRH mRNA in CA1 reagion of rat hippocampus decreased with time after ischemia-reperfusion injury. the number of positive cells also decreased with time after injury. The expression of GnRHR and GnRHR mRNA in CA1 reagion of rat hippocampus increased at first and then decreased at last with time after ischemia-reperfusion injury. The number of positive cells decreased with time after injury. Three days after ischemia-reperfusion injury, not only GnRHR positive cells but also GnRH positive cells appeared at stratum oriens and stratum radiatum. Hippocampal neurons from CA1 to CA4 region and dentate gyrus showed both FSH immunoreactivity and FSH mRNA hybridization signal. Hippocampal neurons from CA1 to CA4 region and dentate gyrus showed FSHR immunoreactivity. FSH and FSHR co-located in the same hippocampal neurons. FSH and GnRHR co-located in the same hippocampal neurons. 72h after ischemia-reperfusion injury, mean grey levels of TUNEL stain positive neuron in CA1 region of rat hippocampus in FSH interfere group and GnRH interfere group were higher than that of control group, namely the TUNEL positive product in FSH interfere group and GnRH interfere group were less than that of control group.The number of TUNEL stain positive neuron in FSH interfere group and GnRH interfere group were less than that of control group. Compared with that of control group, the percent of apoptosis neuron in FSH interfere group and GnRH interfere group were increased while the percent of survival neuron decreased. Compared with that of no interfere group, the percent of apoptosis neuron in FSH interfere group and GnRH interfere group were decreased while the percent of survival neuron increased.
     In conclusion, our research found that the expression of GnRH and GnRHR in CA1 region of rat hippocampus make change after ischemia-reperfusion injury.GnRH might participate in the regulation of brain repair process at CA1 region after injury. Rat hippocampus can express FSH. FSH positive hippocampal neurons were also the FSH target cells. FSH secreted by hippocampal neurons might regulate the function of hippocampus through paracrine or autocrine. GnRH secreted by hippocampal neurons might regulate the FSH positive hippocampal neurons through GnRH receptor. Interfere with certain concentration of FSH or GnRH before ischemia-reperfusion injury can reduce the neuron apoptosis at CA1 region of rat hippocampus.FSH and GnRH have protective effect on neuron ischemia-reperfusion injury.
引文
[1] Huang W, Yao B, Sun L, Pu R, Wang L, Zhang R. Immunohistochemical and in situ hybridization studies of gonadotropin releasing hormone (GnRH) and its receptor in rat digestive tract. Life Sci, 2001, 68: 1727–1734.
    [2] 金花淑, 黄威权, 张金山, 文永植, 张崇礼. 大鼠颌下腺 GnRH 及其受体的免疫组织化学双标记和年龄变化. 解剖学报, 1998, 1: 94–97.
    [3] 黄威权, 向正华, 孟琳. 促性腺激素释放激素 mRNA 阳性细胞在大鼠胃肠胰系统的分布. 解剖学报, 1996, 27: 189–191.
    [4] Chen HF, Jeung EB, Stephenson M, Leung PC. Human peripheral blood mononuclear cells express gonadotropin-releasing hormone (GnRH), GnRH receptor, and interleukin-2 receptor gamma-chain messenger ribonucleic acids that are regulated by GnRH in vitro. J Clin Endocrinol Metab, 1999, 84:743–750.
    [5] Harris N, Dutlow C, Eidne K, Dong KW, Roberts J, Millar R. Gonadotropin-releasing hormone gene expression in MDA-MB-231 and ZR-75-1 breast carcinoma cell lines. Cancer Res, 1991, 51: 2577–2581.
    [6] Isachenkov VA, Krivosheev OG, Badosov EP, Nabatchikova NA. Extrapituitary localization of luteinizing hormone in rats. Vopr Med Khim, 1981, 27: 527–534.
    [7] Hostetter G, Eaton A, Carnes M, Gildner J, Brownfield MS. Immunocytochemical distribution of luteinizing hormone in rat central nervous system. Neuroendocrinology, 1987, 46: 185–93.
    [8] Shirasawa N, Shiino M, Shimizu Y, Nogami H, Ishii S. Immunoreactive luteinizing hormone (ir-LH) cells in the lung and stomach of chick embryos. Cell Tissue Res, 1996, 283: 19–27.
    [9] Chappel, S.C., Ulloa-Aguirre, A. and Coutifaris, C. Biosynthesis and secretion of follicle-stimulating hormone. Endocr. Rev, 1983, 4: 179–211.
    [10] Ulloa-Aguirre, A. and Conn, P.M. G protein-coupled receptors and the G protein family. In Conn, P.M. (ed.), Handbook of Physiology–Endocrinology: Section 7, Cellular Endocrinology. New York: Oxford University Press, 1998. 87–124.
    [11] Simoni, M., Gromoll, J. and Nieschlag, E. The follicle-stimulatinghormone receptor: biochemistry, molecular biology, physiology, pathophysiology. Endocr. Rev, 1997, 18: 739–773.
    [12] Combarnous, Y. Molecular basis of the specificity of binding of glycoprotein hormones to their receptors. Endocr. Rev, 1992, 13: 670–691.
    [13] Pierce, J.G. and Parsons, T.F. Glycoprotein hormones: structure and function. Annu. Rev. Biochem, 1981, 50: 465–495
    [14] Pierce, J.G., Bahl, O.P., Cornell, J.S. and Swaminathan, N. Biologically active hormones prepared by recombination of the alpha chain of human chorionic gonadotropin and the hormone-specific chain of bovine thyrotropin or of bovine luteinizing hormone. J. Biol. Chem, 1971, 246: 2321–2324.
    [15] Gharib, S.D., Wierman, M.E., Shupnik, M.A., Chin, W.W. Molecular biology of the pituitary gonadotropins. Endocr. Rev, 1990, 11: 177–199.
    [16] Naylor, S.L., Chin, W.W., Goodman, H.M. et al. Chromosome assignment of genes encoding the alpha and beta subunits of glycoprotein hormones in man and mouse. Somatic Cell. Genet, 1983, 9: 757–770.
    [17] Boothby, M., Ruddon, R.W., Anderson, C. et al. A single gonadotropin alpha-subunit gene in normal tissue and tumor-derived cell lines. J. Biol. Chem, 1981, 256: 5121–5127.
    [18] Fiddes, J.C.and Talmadge, K. Structure, expression, and evolution of the genes for the human glycoprotein hormones. Recent Prog. Horm. Res, 1984, 40: 43–78.
    [19] Chin, W.W., Maizel Jr, J.V. and Habener, J.F. Difference in sizes of human compared to murine alpha-subunits of the glycoprotein hormones arises by four-codon genedeletion or insertion. Endocrinology, 1983, 112: 482–485.
    [20] Ryan, R.J., Keutmann, H.T., Charlesworth, M.C. et al. Structure–function relationship of gonadotropins. Rec. Prog. Horm. Res, 1987, 43: 383–429.
    [21] Jameson, J.L., Jaffe, R.C., Gleason, S.L. and Habener, J.F. Transcriptional regulation of chorionic gonadotropin alpha- and beta-subunit gene expression by 8-bromo-adenosine 3’,5’ monophosphate. Endocrinology, 1986, 119: 2560–2567.
    [22] Deutsh, P.J., Hoeffler, J.P., Jameson, J.L. et al. Structural determinants for transcriptional activation by cAMP-responsive elements. J. Biol. Chem, 1988, 263: 18466–18472.
    [23] Keri, R.A., Andersen, B., Kennedy, G.C. et al. Estradiol inhibits transcription of human glycoprotein hormone alpha subunit gene despite the absence of a high affinity binding site for estrogen receptor. Mol. Endocrinol, 1991, 5: 725–733.
    [24] Kim, K.E., Gordon, D.F. and Maurer, R.A. Nucleotide sequence of the bovine gene for follicle-stimulating hormone beta-subunit. DNA, 1988, 7: 227–233.
    [25] Fujiki, Y., Rathnam, P. and Saxena, B.B. Studies on the disulfide bonds in human pituitary follicle-stimulating hormone. Biochim. Biophys. Acta, 1980, 624: 428–435.
    [26] Huth, J.R., Perini, F., Lockridge, O. et al. Protein folding and assembly in vitro parallel intracellular folding and assembly. Catalysis of folding and assembly of the human chorionic gonadotropin alpha beta dimer by protein disulfide isomerase. J. Biol. Chem, 1993, 268: 16472–16482.
    [27] Bousfield, G.R., Perry, M.W. and Ward, D.M. Gonadotropins. Chemistry and biosynthesis. In Knobil, A. and Neill, J.D. (eds), The Physiology of Reproduction. New York: Raven Press, 1994. 1749–1792.
    [28] Lapthorn, A.J., Harris, D.C., Littlejohn, A. et al. Crystal structure of human chorionic gonadotropin. Nature, 1994, 369: 455–461.
    [29] Dighe, R.R., Murthy, G.S., Kurkalli, B.S. and Moudgal, N.R. Conformation of thealpha-subunit of glycoprotein hormones: a study using polyclonal and monoclonal antibodies. Mol. Cell. Endocrinol, 1990, 72: 63–70.
    [30] Furuhashi, M., Suzuki, S. and Suganuma, N. Disulfide bonds 7–31 and 59–87 of the alpha-subunit play a different role in assembly of human chorionic gonadotropin and lutropin. Endocrinology, 1996, 137: 4196–4200.
    [31] Matzuk, M.M. and Boime, I. The role of the asparagine-linked oligosaccharides of the a subunit in the secretion and assembly of human chorionic gonadotropin. J. Cell Biol, 1988, 106: 1049–1059.
    [32] Baenziger, J.U. and Green, E.D. Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim. Biophys. Acta, 1988, 947: 287–306.
    [33] Bousfield, G.R., Butnev, V.Y., Gotschall, R.R. et al. Structural features of mammalian gonadotropins. Mol. Cell. Endocrinol, 1996, 125: 3–19.
    [34] Ulloa-Aguirre, A., Midgley, A.R., Beitins, I.Z. and Padmanabhan, V. Follicle-stimulating isohormones: characterization and physiological relevance. Endocr. Rev, 1995, 16: 765–787.
    [35] Valove, F.M., Finch, C., Anasti, J.N. et al. Receptor binding and signal transduction are dissociable functions requiring different sites on follicle-stimulating hormone. Endocrinology, 1994, 135: 2657–2661.
    [36] Parsons, T.F., Bloomfield, G.A. and Pierce, J.G. Purification of an alternate form of the a subunit of the glycoprotein hormones from bovine pituitaries and identification of its O-linked oligossacharide. J.Biol. Chem, 1983, 258: 240–244.
    [37] Boime, I., Boothby, M., Hoshina, M. et al. Expression and structure of human placental hormone genes as a function of placental development. Biol. Reprod, 1982, 26: 73–91.
    [38] Smith, P.L. and Baenzinger, J.U. A pituitary N-acetylgalactosamine transferase that specifically recognizes glycoprotein hormones. Science, 1988, 242: 930–933.
    [39] Muyan, M., Ryzmkiewiecz, D.M. and Boime, I. Secretion of lutropin and follitropin from transfected GH3 cells: Evidence for separate secretory pathways. Mol. Endocrinol, 1994, 8: 1789 –1797.
    [40] Watkins, P.C., Eddy, R., Beck, A.K. et al. DNA sequence and regional assignment of the human FSH gene to the short arm of the chromosome 11. DNA, 1987, 6: 205–212.
    [41] Gharib, S.D., Roy, A., Wierman, M.E. and Chin, W.W. Isolation and characterization of the gene encoding the beta-subunit of rat follicle-stimulating hormone. DNA, 1989, 8: 339–349.
    [42] Weiss, J., Guendner, M.J., Halvorson, L.M. and Jameson, J.L. Transcriptional activation of the follicle-stimulating hormone beta-subunit gene by activin. Endocrinology, 1995, 136: 1885–1891.
    [43] Shupnik, M.A., Weinmann, C.M., Notides, A.C. and Chin, W.W. An upstream region of the rat luteinizing-hormone beta gene binds estrogen receptor and confers estrogen responsiveness. J. Biol. Chem, 1989, 264: 80–86.
    [44] Albanese, C., Colin, I.M., Crowley, W.F. et al. The gonadotropin genes: evolution of distinct mechanisms for hormonal control. Recent Prog. Horm. Res, 1996, 51: 23–61.
    [45] Heikoop, J.C., van den Boobart, P., Mulders, J.W. and Grootenhuis, P.D. Structure-based design and the protein engineering of intersubunit disulfide bonds in gonadotropins. Nat. Biotechnol., 1997, 15: 658–662.
    [46] Azuma, C., Miyai, K., Saji, F. et al. Site-specific mutagenesis of human chorionic gonadotrophin (hCG)-beta subunit: influence of mutation on hCG production. J. Mol. Endocrinol, 1990, 5: 97–102.
    [47] Xia, H., Fernandez, L.M. and Puett, D. Replacement of the invariant tyrosine in the CAGY region of the human chorionic gonadotropin beta subunit. Mol. Cell. Endocrinol, 1993, 92: R1–R5.
    [48] Nakamura, H. and Nakao, K. Mechanism of regulation of TSH–biosynthesis andsecretion. Nippon Rinsho, 1993, 51: 2611–2617.
    [49] Kurosky, A., Markel, D.E., Peterson, J.W. and Fitch, W.M. Primary structure of cholera toxin beta chain: a glycoprotein hormone analog? Science, 1977, 195: 299–301.
    [50] Matzuk, M.M. and Boime, I. Site-specific mutagenesis defines the intracellular role of the asparagine-linked oligosaccharides of chorionic gonadotropin b subunit. J. Biol. Chem, 1988, 263: 17106–17111.
    [51] Ying, S-Y. Inhibins, activins and follistatins: gonadal proteins modulating secretion of FSH. Endocr. Rev, 1988, 9: 267–293.
    [52] Petraglia, F., Sawchenko, P., Lim, A.T. et al. Localization, secretion, and action of inhibin in human placenta. Science, 1987, 237: 187–189.
    [53] Rivier, C., Rivier, J. and Vale, W. Inhibin mediated feedback control of follicle-stimulating hormone secretion in the female rat. Science, 1986, 234: 645–648.
    [54] Culler, M.D. Role of the Leydig cells and endogenous inhibin in regulating pulsatile gonadotropin secretion in the adult male rat. Endocrinology, 1990, 127: 2540–2550.
    [55] Tsujii, T., Ishizaka, K. and Winters, S.J. Effects of pituitary adenylate cyclase-activating polypeptide on gonadotropin secretion and subunit messenger ribonucleic acids in perifused rat pituitary cells. Endocrinology, 1994, 135: 826–833.
    [56] Besecke, L.M., Guendner, M.J., Schneyer, A.L. et al. Gonadotropin-releasing hormone regulates follicle-stimulating hormone-beta gene expression through an activin/follistatin autocrine or paracrine loop. Endocrinology, 1996, 137: 3667–3673.
    [57] Rhea, M.A., Marshall, G.R., Weinbauer, C.F. and Nieschlag, E. Testosterone mantains pituitary and serum FSH and spermatogenesis in GnRH antagonist suppressed rats. J. Endocrinol, 1986, 108: 101–107.
    [58] Wierman, M.E., Gharib, S.D., Rovere, J.M.V. et al. Selective failure of androgens to regulate follicle-stimulating hormone bmRNA levels in male rat. Mol. Endocrinol,1989, 2: 492–498.
    [59] Markkula, M., H?m?l?inen, T., Loune, E. and Huhtaniemi, I. The follicle-stimulating hormone (FSH) beta- and common alpha-subunits are expressed in mouse testis, as determined in wild-type mice and those transgenic for the FSH beta-subunit/herpes simplex virus thymidine kinase fusion gene. Endocrinology, 1995, 136: 4769–4775.
    [60] Ji, I., Murdoch, W.J. and Ji, T.H. Activation of membrane receptors. Endocrine, 1995, 3: 187–194.
    [61] Simoni, M., Gromoll, J. and Nieschlag, E. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, pathophysiology. Endocr. Rev, 1997, 18: 739–773.
    [62] Baldwin, J.M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J, 1993, 12: 1693–1703.
    [63] Probst, W.C., Snyder, L.A., Schuster, D.I. et al. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol, 1992, 11: 1–20.
    [64] Rousseau-Merck, M.F., Misrahi, M., Atger, M. et al. Localization of the human LH (luteinizing hormone) receptor gene to chromosome 2p21. Cytogenet. Cell. Genet, 1990, 54: 77–79.
    [65] Minegishi, T., Nakamura, K, Takakura, Y. et al. Cloning and sequencing of human FSH receptor cDNA. Biochem. Biophys. Res. Commun, 1991, 175: 1125–1130.
    [66] Braun, T., Schofield, P.R. and Sprengel, R. Amino-terminal leucine-rich repeats in gonadotropin receptors determine hormone selectivity. EMBO J, 1991, 10: 1885–1890.
    [67] Kobe, B. and Deisenhofer, J. A structural basis of the interactions between leucin-rich repeats and protein ligands. Nature, 1995, 374: 183–186.
    [68] Dattatreyamurty, B. and Reichert Jr, L.E. A synthetic peptide corresponding to aa 9–30 of the extracellular domain of the follitropin (FSH) receptor specifically binds FSH. Mol. Cell. Endocrinol, 1992, 87: 9–17.
    [69] El Tayar, N. Advances in the molecular understanding of gonadotropin–receptors interaction. Mol. Cell. Endocrinol, 1996, 125: 65–70.
    [70] Quintana, J., Wang, H. and Ascoli, M. The regulation of the binding of the luteinizing hormone/choriogonadotropin receptor by sodium ions is mediated by a highly conserved aspartate located in the second transmembrane domain of G protein-coupled receptors. Mol. Endocrinol, 1993, 7: 767–775.
    [71] Davis, D., Liu, X. and Segaloff, D.L. Identification of the sites of N-linked glycosylation on the follicle-stimulating hormone (FSH) receptor and assessment of their role in FSH receptor function. Mol. Endocrinol, 1995, 9: 159–170.
    [72] Tapanainen, J.S., Bo, M., Dunkel, L. et al. Deglycosylation of the human luteinizing hormone receptor does not affect ligand binding and signal transduction. Endocr. J, 1993, 1: 219–225.
    [73] Yarney, T.A., Jiang, L. Khan, H. et al. Molecular cloning, structure, and expression of a testicular follitropin receptor with selective alteration in the carboxy terminus that affects signaling function. Mol. Reprod. Dev, 1997, 48: 458–470.
    [74] Sairam, M.R., Jiang, L.G., Yarney, T.A. and Khan, H. Follitropin signal transduction: alternative splicing of the FSH receptor gene produces a dominant negative form of the receptor which inhibits hormone action. Biochem. Biophys. Res. Commun, 1996, 226: 717–722.
    [75] Sairam, M.R., Jiang, L.G., Yarney, T.A. and Khan, H. Alternative splicing converts the G-protein coupled follitropin receptor gene into a growth factor type I receptor: implications for pleiotropic actions of the hormone. Mol. Reprod. Dev, 1997, 48: 471–479.
    [76] Okamoto, T. and Nishimoto, I. Detection of F protein-activator regions in M4 subtype muscarinic, cholinergic and a2-adrenergic receptors based upon characteristics of primary structure. J. Biol. Chem, 1992, 267: 8342–8346.
    [77] Sprang, S.R. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem, 1997, 66: 639–678.
    [78] Hipkin, R.W., Sanchez-Yague, J. and Ascoli, M. Agonist-induced phosphorylation of the luteinizing hormone/choriogonadotropin (LH/CG) receptor expressed in a stably transfected cell line. Mol. Endocrinol, 1993, 7: 823–832.
    [79] Selvaraj, N. and Amsterdam, A. Modulation of FSH receptor phosphorylation correlates with hormone-induced coupling to the adenylate cyclase system. Endocrine, 1997, 6: 179–185.
    [80] Arey, B.J., Stevis, P.E., Deecher, D.C. et al. Induction of promiscuous G protein coupling of the follicle-stimulating hormone (FSH) receptor: a novel mechanism for transducing pleiotropic actions of FSH isoforms. Mol. Endocrinol, 1997, 11: 517–526.
    [81] Herrlich, A., Kühn, B. and Gorsse, R. Involvement of Gs and Gi proteins in dual coupling of the luteinizing hormone receptor to adenylyl cyclase and phospholipase C. J. Biol. Chem, 1996, 271: 16764–16772.
    [82] Grasso, P., Deziel, M.R. and Reichert L.E. Synthetic peptides corresponding to residues 551 to 555 and 650 to 653 of the rat testicular follicle-stimulating hormone (FSH) receptor are sufficient for post-receptor modulation of Sertoli cell responsiveness to FSH stimulation. Reg. Pept, 1995, 60: 177–183.
    [83] Grasso, P., Leng, N. and Reichert Jr, L.E. A synthetic peptide corresponding to residues 645–653 in the carboxyl terminal cytoplasmic domain of the rat testicular follicle stimulating hormone receptor modulates G protein-coupledreceptor signaling in rat testis membranes and in intact cultured rat Sertoli cells. Mol. Cell. Endocrinol, 1995, 108: 43–50.
    [84] Zhu, H., Wang, H. and Ascoli, M. The lutropin-choriogonadotropin receptor is palmitoylated at intracellular cysteine residues. Mol.Endocrinol, 1995, 9: 141–150.
    [85] Gromoll, J., Simoni, M. and Nieschlag, E. An activating mutation of thefollicle-stimulating hormone receptor autonomously sustains spermatogenesis in a hypophysectomized man. J. Clin. Endocrinol. Metab, 1996, 81: 1367–1370.
    [86] Tapanainen, J.S., Aittom?ki, K., Min, J. et al. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat. Genet, 1997, 15: 205–206.
    [87] Parma, J., Duprez, L., Sande, J.V. et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 1993, 365: 649–651.
    [88] 初晨宇, 吕葆真, 孙岚, 黄威权, 王世鄂, 付建芳. 卵泡刺激素对大鼠胰岛素和胰高血糖素分泌影响的体外研究. 解剖学报, 2005, 36: 555-557.
    [89] 于辉, 唐旭, 黄威权, 吕葆真, 赵洁. 卵泡刺激素注入胃腔对大鼠胃泌素分泌的影响. 2006, 37: 460-462.
    [90] Sealfon S, Weistein H, Miller R. Molecularmechanisms of ligand interaction with the gonadotropin2releasing hormone receptor. Endoc Rev, 1997, 18: 180–205.
    [91] Amoss, M., Burgus, R., Blackwell, R., Vale, W., Fellows, R.,Guillemin, R., 1971. Purification, amino acid composition and nterminusof the hypothalamic luteinizing hormone releasing factor(lrf) of ovine origin. Biochem. Biophys. Res. Commun. 44, 205–210.
    [92] Gorbman A, Sower SA. Evolution of the role of GnRH in animal (Metazoan) biology.Gen Comp Endocrinol. 2003; 134: 207–213.
    [93] Millar R. Recent data on GnRH receptors Ann Urol (Paris). Suppl 2005, 39(3): 32–36.
    [94] Schwanzel-Fukuda, M., Pfaff, D.W. Origin of luteinizing hormone-releasing hormone neurons. Nature , 1989, 338, 161–164.
    [95] Clarke IJ, Pompolo S. Synthesis and secretion of GnRH.Anim Reprod Sci. 2005, 88: 29–55.
    [96] Urbanski HF, White RB, Fernald RD, Kohama SG, Garyfallou VT, Densmore VS.Regional expression of mRNA encoding a second form of gonadotropin-releasinghormone in the macaque brain.Endocrinology. 1999, 140: 1945–1948.
    [97] Gestrin ED, White RB, Fernald RD. Second form of gonadotropin- releasing hormone in mouse: immunocytochemistry reveals hippocampal and periventricular distribution.FEBS Lett. 1999, 448: 289–291.
    [98] Millar RP. GnRH II and type II GnRH receptors.Trends Endocrinol Metab. 2003, 14: 35–43.
    [99] Neill JD, Musgrove LC, Duck LW. Related Articles, Links Newly recognized GnRH receptors: function and relative role.Trends Endocrinol Metab. 2004, 15: 383–392.
    [100] Rance NE, Uswandi SV. Gonadotropin-releasing hormone gene expression is increased in the medial basal hypothalamus of postmenopausal women. J Clin Endocrinol Metab. 1996, 81: 3540–3546.
    [101] Meethal SV, Smith MA, Bowen RL, Atwood CS. The gonadotropin connection in Alzheimer's disease. Endocrine. 2005, 26: 317–326.
    [102] Kakhovskii EA, Alamdarov IN. Hormonal changes in transient cerebral ischemia in young women. Klin Med (Mosk). 1991, 69: 86–88.
    [103] Kovalenko AN, Kostiuchenko VG. Gonadal and gonadotropic function of late middle-aged men and women with sequelae of ischemic stroke. Zh Nevropatol Psikhiatr Im S S Korsakova, 1987, 87: 29–33.
    [104] Limonta P, Moretti RM, Marelli MM & Motta M. The biology of gonadotropin hormone-releasing hormone: role in the control of tumor growth and progression in humans.Frontiers in Neuroendocrinology 2003, 24 279–295.
    [105] La Rosa S, Celato N, Uccella S, Capella C. Detection of gonadotropin-releasing hormone receptor in normal human pituitary cells and pituitary adenomas using immunohistochemistry.Virchows Arch. 2000, 437: 264–269.
    [106] van Groeninghen JC, Kiesel L, Winkler D & Zwirner M. Effects of luteinising-hormone-releasing hormone on nervoussystem tumours. Lancet, 1998,352: 372–373.
    [107] 方舒东, 朱也森. 脑缺血再灌注损伤的病理生理研究进展. 医学综述, 2006, 12: 1114–1116.
    [108] Wei J, Quast MJ. Effect of nitric oxide synthesis inhibitor on a hyperglycemia rat model of reversible focal ischemia: detection of excitatory amino acids release and hydroxyl radica1 formation. Brain Res, 1998, 791: 146–156.
    [109] Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci, 2001, 69: 369–381.
    [110] Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. Neurotrauma,2000, 17: 871–890.
    [111] Iadecola C, Alexander M. Cerebral ischemia and inflammation. Curr Opin Neurol, 2001, 14(1): 89–94.
    [112] 马国春, 翟凤国. 脑缺血性损伤与细胞凋亡. 牡丹江医学院学报, 2005, 26: 52–54.
    [113] 曾小鲁, 辜清. 海马的形态结构与生理功能. 生物学通报, 1996, 31: 1–3.
    [114] 张辉, 隋鸿锦. 海马结构的细胞构筑. 医学综述, 2003, 9: 683–686.
    [115] 隋鸿锦, 张万琴, 洪昭雄. 海仁酸诱导癫痫模型海马的形态学改变. 解剖科学进展, 1997, 3: 103–108.
    [116] Comb M, Kobiemkil J, Chu HM. Regulation of opioid gene expression: a model to understand neural plasticity. NIDA Rea Monogr, 1992, 126: 98–112.
    [117] 覃桂林. 雌激素对脑缺血的神经保护作用机制. 中华医学实践杂志, 2005, 4: 538–540.
    [118] White RE, Darkon DJ, Lang JL. Estrogen relaxes coronary arteries by open Bkca channels through a cGMP–dependent mechanism. Circ Res, 1995, 77: 936–942.
    [119] Tomimoto H, Akigochi I, Wakita H. Ultrastructural localization of APP in normal and postisehemic gerbil brain. Brain Res, 1995, 672: l87–l95.
    [120] 张馨,周建军,徐运. 雌激素保护缺血性脑损害的分子机制.国外医学脑血管疾病分册, 2005, 13: 39–42.
    [121] AIkayed NJ, Goto S, SugoN. Estrogen and Bcl-2: gene induction and effect of transgene in experental stroke. J Neurosci, 2001, 2l: 7543–7550.
    [122] Saravia F, Rovsin Y, Lux–Lantos V. Oestradinl restores cell proliferation in dentate gyrus and subventricular zone of streptozotocin–diabetic mice. Neur oendocrinol, 2004, l6: 704–7l0.
    [123] Wang L, Andersson S, Warner M. Estrogen receptor(ER)βknockout mice reveal a role for ERβin migration of cortical neurons in the developing brain. Proc Natl Acad Sci USA, 2003, l00: 703–708.
    [124] Sortino MA, Chisari M, Merlo S. Glia mediates the neuroprotective action of estradiol on β –amyloid–induced neuronal death. Endocrinology, 2004, 145: 5080–5086.
    [125] Lu A, Ran RQ, Clark J. 17–β–estradiol induces heat shock proteins in brain arteries and potentiates ischemic heat shock protein induction in glia and neurons. J Cereb Blood Flow Metab, 2002, 22: l83–l95.
    [126] Santizo RA, Anderson S, Ye S. Effects of estrogen on leukocyte adhesion after transient forebrain ischemia. Stroke, 2000, 3l: 223l–2235.
    [127] Soares R, Guo S, Russo J. Role of the estrogen antagonist ICIl82,780 in vessel assembly and apoptosis of endothelial ceIts. U1trastruct Pathol, 2003, 27: 33–39.
    [128] Jesmin S, Sakuma I, Hattori Y. Regulatory molecules for coronary expressions of VEGF and its angiogenic receptor KDR in hypoestrogenic middle–aged female rats. Mol Cell Biochem, 2004, 259: l89–l96.
    [129] 吴浩, 苏万东, 吉训明, 凌锋. 大鼠局灶性脑缺血模型建立的研究进展. 中国脑血管病杂志, 2005,2: 237–240.
    [130] 沈顺姬, 陈嘉峰. 大鼠局灶性脑缺血模型的建立. 中风与神经疾病杂志, 2002, 19:246–247.
    [131] Kuge Y, Minematsu K, Yamaguchi T. Nylon monofilament for intraluminal middle cerebral artery occlusion in rats. Stroke, 1995, 26: 1655–l657.
    [132] Fujii, S, Sato, S, Fukui, A, Kimura, H., Kasai, G, Saito, Y. Continuous administration of gonadotrophin-releasing hormone agonist during the luteal phase in IVF. Human Reproduction, 2001, 16: 1671–1675.
    [133] Weissman, A., Shoham, Z. Favourable pregnancy outcome after administration of a long-acting gonadotrophin-releasing hormone agonist in the mid-luteal phase. Human Reproduction, 1993, 8: 496–497.
    [134] Neill JD, Musgrove LC, Duck LW. Newly recognized GnRH receptors: function and relative role. Trends Endocrinol Metab. 2004, 15: 383-92.
    [135] Huang, W., Yao, B., Sun, L., Pu, R., Wang, L., Zhang, R.. Immunohistochemical and in situ hybridization studies of gonadotropin releasing hormone (GnRH) and its receptor in rat digestive tract. Life Science, 2001, 68: 1727–1734.
    [136] Yao, B., Huang, W., Huang, Y., Chui, Y., Wang, Y., Li, H., Pu, R., Wan, L., Zhang, R. A study on the localization and distribution of GnRH and its receptor in rat submaxillary glands by immunohistochemical, in situ hybridization and RTPCR. Life Science, 2003, 72: 2895–2904.
    [137] Wang, L., Xie, L.P., Huang, W.Q., Yao, B., Pu, R.L., Zhang, R.Q.. Presence of gonadotropin-releasing hormone (GnRH) and its mRNA in rat pancreas. Molecular and Cellular Endocrinology, 2001, 172: 185–191.
    [138] Lau, H.L., Zhu, X.M., Leung, P.C., Chan, L.W., Chen, G.F., Chan, P.S., Yu, K.L., Chan, F.L.. Detection of mRNA expression of gonadotropin-releasing hormone and its receptor in normal and neoplastic rat prostates. International Journal of Oncology, 2001, 19: 1193–1201.
    [139] Chen L, Sun XD, Zhao J, Yang AG, Huang WQ. Distribution, cloning and sequencingof GnRH, its receptor, and effects of gastric acid secretion of GnRH analogue in gastric parietal cells of rats. Life Sci. 2005, 76: 1351–1365.
    [140] Mizutani T, Sugihara A, Nakamuro K, Terada N. Suppression of cell proliferation and induction of apoptosis in uterine leiomyoma by gonadotropin-releasing hormone agonist (leuprolide acetate). J Clin Endocrinol Metab. 1998, 83: 1253–1255.
    [141] Jennes L, Eyigor O, Janovick JA, Conn PM. Brain gonadotropin releasing hormone receptors: localization and regulation. Recent Prog Horm Res, 1997, 52: 475–490.
    [142] Leblanc P, Crumeyrolle M, Latouche J, Jordan D, Fillion G, L'Heritier A, Kordon C, Dussaillant M, Rostene W, Haour F. Characterization and distribution of receptors for gonadotropin-releasing hormone in the rat hippocampus. Neuroendocrinology. 1988, 48: 482–488.
    [143] Merchenthaler I, Gorcs T, Setalo G, Petrusz P, Flerko B. Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain. Cell Tissue Res. 1984, 237: 15–29.
    [144] Lu F, Yang JM, Wu JN, Chen YC, Kao YH, Tung CS, Yang SN. Activation of gonadotropin-releasing hormone receptors produces neuronal excitation in the rat hippocampus. Chin J Physiol. 1999, 42: 67–71.
    [145] Palovcik RA, Phillips MI. A biphasic excitatory response of hippocampal neurons to gonadotropin-releasing hormone. Neuroendocrinology. 1986, 44: 137–141.
    [146] Tanaka H, Grooms SY, Bennett MV, Zukin RS. The AMPAR subunit GluR2: still front and center-stage. Brain Res. 2000, 886: 190–207.
    [147] Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000, 10: 381–391.
    [148] Jover T, Tanaka H, Calderone A, Oguro K, Bennett MV, Etgen AM, Zukin RS. Estrogen against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J Neurosci, 2002, 22:2115–2124.
    [149] Miller NR, Jover T, Cohen HW, Zukin RS, Etgen AM. Estrogen can act via estrogen receptor alpha and beta to protect hippocampal neurons against global ischemia-induced cell death. Endocrinology. 2005, 146: 3070–3079.
    [150] Huang WQ, Sun L, Zhong CL. Preparation and identification of GnRH anti-idiotypic antibody. Chin J Anatom. 1994, 17: 353–356.
    [151] Brookes ZL, Kaufman S. Effects of atrial natriuretic peptide on the extrasplenic microvasculature and lymphatics in the rat in vivo. J Physiol, 2005, 565: 269–277.
    [152] Takahashi N, Tonchev AB, Koike K, Murakami K, Yamada K, Yamashima T, Inoue M. Expression of estrogen receptor-beta in the postischemic monkey hippocampus. Neurosci Lett. 2004, 369: 9–13.
    [153] Coss D, Jacobs SB, Bender CE, et al. A novel AP-1 site is critical for maximal induction of the FSHbeta gene by GnRH. J Biol Chem, 2004, 279:152–162.
    [154] Gromoll J, Pekel E, Nieschlag E. The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene. Genomics, 1996, 35: 308–311.
    [155] Baccetti B, Collodel G, Costantino-Ceccarini E, et al. Localization of human follicle-stimulating hormone in the testis. FASEB J, 1998, 12: 1045–1054.
    [156] Findlay JK, Drummond AE. Regulation of the FSH Receptor in the Ovary. Trends Endocrinol Metab, 1999, 10: 183–188.
    [157] Shah MG, Hurkadli KS, Garde SV, et al. Prostate--a novel target for evaluation of FSH modulating peptides. Indian J Exp Biol, 1991, 29:101–104.
    [158] Garde SV, Sheth AR, Joseph R. Occurrence and de novo biosynthesis of follicle stimulating hormone (FSH) in benign and malignant conditions of human breast. Cancer Lett, 1993, 75: 1–9.
    [159] Baccetti B, Collodel G, Costantino-Ceccarini E. Localization of human follicle-stimulating hormone in the testis. FASEB J, 1998, 12: 1045–1054.
    [160] Al-Timimi A, Fox H. Immunohistochemical localization of follicle-stimulating hormone, luteinizing hormone, growth hormone, adrenocorticotrophic hormone and prolactin in the human placenta. Placenta, 1986, 7: 163–172.
    [161] Mandrekar PS, Sheth AR, Doctor VM, et al. Immunocytochemical localization of follicle stimulating hormone in normal human stomach. Anat Rec, 1990, 227: 334–339.
    [162] Zheng W, Magid MS, Kramer EE, et al. Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube. Am J Pathol, 1996, 148: 47–53.
    [163] Mizrachi D, Shemesh M. Follicle-stimulating hormone receptor and its messenger ribonucleic acid are present in the bovine cervix and can regulate cervical prostanoid synthesis. Biol Reprod, 1999, 61: 776–784.
    [164] Lathe R. Hormones and the hippocampus. J Endocrinol. 2001, 169: 205–231.
    [165] Huang W, Sun L, Lu B, Wang W, Pu R, Chen L, Xia Y. Localization and in situ quantification of 5-hydroxytryptamine and its receptor in rat submaxillary gland. J Mol Histol. 2004, 35: 47–53.
    [166] Leblanc P, Crumeyrolle M, Latouche J, Jordan D, Fillion G, L'Heritier A, Kordon C, Dussaillant M, Rostene W, Haour F. Characterization and distribution of receptors for gonadotropin-releasing hormone in the rat hippocampus. Neuroendocrinology. 1988, 48: 482–488.
    [167] Hostetter G, Gallo RV, Brownfield MS. Presence of immunoreactive luteinizing hormone in the rat forebrain. Neuroendocrinology. 1981, 33: 241–245.
    [168] Lu F, Yang JM, Wu JN, Chen YC, Kao YH, Tung CS, Yang SN. Activation of gonadotropin-releasing hormone receptors produces neuronal excitation in the rat hippocampus. Chin J Physiol. 1999, 42: 67–71.
    [169] Palovcik RA, Phillips MI. A biphasic excitatory response of hippocampal neurons togonadotropin-releasing hormone. Neuroendocrinology. 1986, 44: 137–141.
    [170] Lei ZM, Rao CV. Neural actions of luteinizing hormone and human chorionic gonadotropin. Semin Reprod Med. 2001, 19: 103–109.
    [171] Merchenthaler I, Gorcs T, Setalo G, Petrusz P, Flerko B. Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain. Cell Tissue Res. 1984, 237: 15–29.
    [172] Lei ZM, Rao CV, Kornyei JL, Licht P, Hiatt ES. Novel expression of human chorionic gonadotropin/luteinizing hormone receptor gene in brain. Endocrinology. 1993, 132: 2262–2270.
    [173] Lundstrom L, Elmquist A, Bartfai T, Langel U. Galanin and its receptors in neurological disorders. Neuromolecular Med. 2005, 7: 157–180.
    [174] Mehra RD, Sharma K, Nyakas C, Vij U. Estrogen receptor alpha and beta immunoreactive neurons in normal adult and aged female rat hippocampus: a qualitative and quantitative study. Brain Res. 2005, 1056: 22–35.
    [175] von Schassen C, Fester L, Prange-Kiel J, Lohse C, Huber C, Bottner M, Rune GM. Oestrogen synthesis in the hippocampus: role in axon outgrowth. J Neuroendocrinol. 2006, 18: 847–856.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700