鸡蛋清卵粘蛋白的纯化、增溶及抗感染活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘蛋白是生物机体内最古老的防御体系的重要成分之一,在众多生命活动过程中发挥着极其重要的作用。然而几乎所有粘蛋白目前已知的功能均是在哺乳动物中发现的,对禽蛋中粘蛋白的研究相对较少。本文以鸡蛋蛋清中的粘蛋白(ovomucin)为研究对象,以ovomucin的结构与功能为核心,在纯化出高纯度和高活性蛋白质的基础上,研究了提高ovomucin溶解性的方法,并对其体外抗菌、抗病毒感染的活性与生化机制开展了系列研究工作。主要研究内容和结果如下:
     首先采用分步等电点盐析结合凝胶过滤色谱法从鸡蛋清中分离纯化ovomucin,其过程为:50mmol/L CaCl2溶液制备较高含量的ovomucin,后用50mmol/L MgCl2进一步除去溶菌酶,再经Sephacryl S-300HR凝胶过滤法纯化,进样体积为2mL,洗脱液为含0.05mol/L MgCl2的Tris-HCl (20mmol/L pH8.4),流速为0.5mL/min。质谱鉴定结果表明所得蛋白质为ovomucin,不含其它蛋白质肽段信息。HPLC和SDS-PAGE分析结果显示其纯度为99.13%。采用此方法制备的ovomucin终产率为(57.03±1.22)%,总回收率为(40.87±0.76)%。纯化后的ovomucin对新城疫病毒(NDV)LaSota株的半数抑制浓度(IC50)为5.78±0.09μg/mL.酶联免疫吸附实验(ELISA)结果表明低浓度MgCl2可以显著提高ovomucin对NDV的粘附能力(P<0.05)。氨基酸分析显示获得的ovomucin富含Ala, Thr, Pro和Val,具有典型的粘蛋白特性,同时含有较多硫酸基、唾液酸、糖醛酸和己糖,具有作为抗菌抗病毒研究的潜在结构基础。
     研究了提高ovomucin溶解性的方法与机制。溶解性测定结果表明,水不溶性ovomucin在1mol/L精氨酸中溶解度为(21.14±1.47)%,是其在蒸馏水(1.96%)中的10倍以上。荧光猝灭实验表明精氨酸在低浓度时通过静电作用与ovomucin形成静态复合物,二者在不同温度下结合常数Ka分别为3.282L·mol-1(298K)、2.404L·mol-1(308K)和1.904L·mol-1(313K),结合位点数n分别为1.141(298K)、1.130(308K)和1.118(313K)。电导法和芘荧光探针实验结果发现,精氨酸浓度小30mmol/L时主要通过静电作用与ovomucin结合,未引起ovomucin结构的显著变化;精氨酸浓度在30-100mmol/L时,复合体中出现大量疏水微区。ANS和FT-IR分析结果表明,在精氨酸浓度大于100mmol/L以后,ovomuicn二级结构中的无规则卷曲增加,折叠结构及螺旋结构减少,分子间聚集程度减弱,ovomucin的表面疏水性显著降低。粘附试验结果表明,添加100mmol/L精氨酸并未导致ovomucin对NDV粘附活性的显著降低(P>0.05),因此可以应用精氨酸实现ovomucin的非变性有效增溶。
     测定了ovomucin的抗菌活性及其对环境条件的稳定性。结果表明:ovomucin对大肠杆菌和沙门氏菌最小抑菌浓度分别为0.05mg/mL和0.4mg/mL,相应的抑菌率分别为(61.23±6.5)%和(34.34±4.4)%,而对金黄色葡萄球菌则无明显抑制作用。细菌生长曲线的测定结果发现,0.05mg/mL的ovomucin可以有效抑制大肠杆菌的增殖,但其仅能延缓沙门氏菌的对数生长期。粘附试验结果表明,ovomucin对三种细菌均具有一定的粘附能力,ovomucin浓度由2.5μg/mL增大到30μg/mL时,其对大肠杆菌的粘附率由19.3%升高到64.4%,对沙门氏菌的粘附率由22.1%升高到68.3%,对金黄色葡萄球菌的粘附率由16.3%升高到68.5%,但相同粘度的ovomucin对不同细菌粘附效率之间无显著性差异(P>0.05)。不同pH处理对ovomucin抗菌活性影响显著(P<0.05),在酸性条件下ovomucin对大肠杆菌的抑制率较低,随着pH升高抑菌率增大,在pH7-9条件下对大肠杆菌的抑制效果最好。Ovomucin的抗菌活性对温度具有较好的耐受性,即使经100℃处理10min,ovomucin对大肠杆菌的抑菌率仍可达60%以上。
     在建立ovomucin抗病毒模型的基础上,通过细胞病变程度、细胞存活率、病毒抑制率以及血凝抑制等指标,评价ovomucin对流感病毒H5N1、H1N1以及新城疫病毒LaSota、Ⅴ-4和Ⅳ系的抑制作用,结果发现ovomucin对五株不同毒株均具有一定的抑制效果,与病毒混合后能明显降低病毒感染力,0.25mg/mL的ovomucin对H5N1、H1N1以及新城疫病毒Ⅱ、Ⅴ-4和Ⅳ系的血凝抑制率分别为(72.89±6.02)%、(64.29±7.94)%、(71.15±6.41)%、(60.32±9.16)%和(74.26±7.35)%。细胞实验发现ovomucin对H5N1早期吸附进入细胞的抑制效果最好,0.25mg/mL的ovomucin对H5N1在MDCK细胞上的病毒抑制率为77.85%。不同来源粘蛋白对H5N1的抗病毒活性存在差异,ovomucin的对H5N1的抑制效果高于牛下颌腺粘蛋白,但是略低于猪胃粘蛋白。
     为进一步探讨ovomucin抗H5N1的生化机制,通过改变加药方式,从体外细胞水平的抗病毒作用环节结合直接显微观察探讨ovomucin体外抗流感病毒的作用环节,结果表明ovomucin抗病毒作用是通过抑制病毒感染细胞早期的吸附或进入过程实现的。血凝实验和神经氨酸酶抑制实验结果证明ovomucin主要通过抑制H5N1表面血凝素(HA)识别细胞的过程达到抑制病毒侵染的目的,同时ovomucin也起到一定的保护细胞作用。ELISA和双偏振极化干涉测量(DPI)结果表明ovomucin可以与HA抗原发生有效结合;DPI实验进一步分析ovomucin与H5N1表面HA的相互作用过程,发现二者以嵌入式的方式发生结合。因此ovomucin抗HsN1感染的机制为:ovomucin与HA通过嵌入式结合,抑制HA对MDCK细胞受体的识别,从而影响H5N1侵染早期对宿主细胞的吸附和侵入,进而抑制病毒增殖,在这个过程中还伴随着ovomucin和宿主细胞表面发生相互作用来保护细胞免受病毒侵染的过程。
     采用傅里叶变换红外光谱法和二维相关分析技术研究了ovomucin构象转变与温度之间的关系。结果显示,25-95℃升温过程中ovomucin分子二级结构的变化次序依次为:a-螺旋,p-折叠,p-转角,无规卷曲。Ovomucin构象在pH8.4-9.0之间有中间体存在。红外光谱拟合结果表明低浓度Mg2+与ovomucin糖基结合,未造成ovomucin二级结构的显著改变。而高浓度Mg2+会影响ovomucin的肽骨架及其空间构象,使ovomucin的无规则卷曲结构减少,β-转角和p-折叠结构增加。动态光散射结果表明添加0.1倍质量浓度的Mg2+可以使0.5mg/mL的ovomucin的平均粒度由60.23nm下降到51.39nm,说明Mg2+的加入会使ovomucin的分子结构变得更为紧密。pH诱导ovomucin构象与活性的分析结果表明,随着溶液中p-转角含量由20.7%增加到39%,ovomucin对H5N1血凝的抑制率也相应由53.9%提高到73.1%,Mg2+对ovomucin结构与功能的影响结果发现,加入Mg2+以后,ovomucin二级结构中的p-转角含量由19.11%增加到22.96%,相应的对病毒的粘附率可以由30%左右提高到68.9%。上述结果说明ovomucin结构有序性和紧密程度越高,其抗病毒活性越强。
As an important component of the most ancient defense system, mucus gel performs a critical function in defending the epithelial tissues against pathogenic and environmental challenges under different physiological and pathological states. However, almost all known functions of mucins are found in mammals, and knowledge of ovomucin in eggs is relatively limited. The present thesis focused on the structure and function of ovomucin. A series of experiments related to ovomucin has been performed, utilizing the techniques for protein separation and purification, protein structure analysis and antivirus evaluation. The main research contents and results are as follows:
     An improved procedure comprises a precipitation with0.05mol/L CaCl2followed by precipitation with0.05mol/L MgCl2was developed for the isolation of ovomucin. Gel filtration was then used for further purification,2mL sample with concentration of1mg/mL was applied to a gel filtration system on Sephacry1S-300HR column, eluting with0.02mol/L Tris-HCl buffer (pH8.4) containing0.05mol/L Mg Cl2at a flow rate of1.0mL/min. Ovomucin of high purity (99.13%) was obtained in good yield (302.14mg/100g fresh egg white) via an improved two-step precipitation followed by gel filtration chromatography. The IC50of the preparation for LaSota is5.78±0.09μg/mL and the recovery of the whole process was (40.87±0.76)%. Better adhesion property of ovomucin was observed when low concentration of MgCl2was added in the designed ELASA test, whereas the adhesion property of the pure ovomucin without salts to NDV was lower. Amino acid analysis found that it was rich in Alanine, Threonine and Valine residues, which is confirmed to be a typical mucin. High content of sulfuric acid group, sialic acid, uronic acid and hexose was also detected in the preparation.
     We demonstrate here that addition of L-arginine at1M can dramatically increase ovomucin solubility by up to10folds. Analysis of fluorescence spectra revealed that arginine and ovomucin formed a static complex via electrostatic interactions. The binding constants (Ka) and number (n) at different temperatures were as follows:Ka=3.282L·mol-1, n=1.141(298K); Ka=2.404L·mol-1, n=1.130(308K), Ka=1.904L·mol-1, n=1.118(313K). The conductance and fluorescence measurements employing pyrene as a probe suggest that the structure of ovomucin does not change measurably if small amounts of arginine are added ([arginine]<30mM). As the arginine concentration is increased (30<[arginine]<100mM), ovomucin swells and more arginine is incorporated in the ovomucin-arginine complexes, leading hydrophobic domains formed. The structural investigation by FI-IR and ANS probe indicated an increase in the proportion of random proportion, accompanied by a decrease in the alpha-helix and beta structures when the arginine concentration increased to above100mM. Additionally, such structural perturbations had no adverse effect on the adhesion activity of ovomucin to NDV.
     Ovomucin showed obvious anti-bacterial activity to Escherichia coli and Salmonella, with MIC of0.05mg/mL and0.4mg/mL, respectively, while it had no significant effect on the growth of Staphylococcus aureus. The inhibition rate of ovomucin with0.05mg/mL and0.4mg/mL against Escherichia coli and Salmonella was (61.23±6.5)%and (34.34±4.4)%, respectively. E. coli was significantly inhibited during the whole process of the growth cycle after the addition of0.05mg/mL ovomucin. In contrast, ovomucin showed inhibition activity against Salmonella by retarding the logarithmic growth phase. The adhesion rate to E. coli increased from19.3%to64.4%, when the ovomucin concentration increased from2.5(μg/mL to30μg/mL. And adhesion rate to Salmonella increased from22.1%to68.3%, while adhesion rate to Staphylococcus aureus increased16.3%to68.5%, when the same ovomucin concentration change occurred. However, there is no significant difference in adhesion efficiency between different bacterial for the same ovomucin concentration (P>0.05). Better antibacterial effect to E. coli occurred in neutral and alkaline conditions. A thermal stability of antibacterial activity against E. coli can be seen below100℃. The inhibition rate of ovomucin to E. coli is still more than60%even treated at100℃for10min.
     Antiviral effects against NDV virus (Ⅱ, V-4and Ⅳ strain) and two types of influenza virus were determined. Cytopathic degree of cell, survival rate, and virus inhibition rate and hemagglutination inhibition were used as evaluation index. The anti-viral activity of different mucins was compared as well. It was found that ovomucin had inhibition effect on all of the five tested virus strains. Virus infectivity of the virus can be significantly reduced after be mixed with ovomucin. The hemagglutination inhibition rate of ovomucin with0.25mg/mL against H5N1H1N1, NDV of Ⅱ, V-4and Ⅳ strain was (72.89±6.02)%,(64.29±7.94)%,(71.15±6.41)%,(60.32±9.16)%and (74.26±7.35)%, respectively. Results from cell experiments found that better antivirus activity of ovomucin against H5N1occurred in the early adsorption stage to MDCK. The inhibition rate of ovomucin (0.25mg/mL) to H5N1virus in MDCK cells was77.85%. The inhibitory effect of ovomucin to H5N1is higher than that of bovine submaxillary gland mucin, but slightly lower than that of the porcine stomach mucin.
     We designed an assay to investigate the time course effect of the virus infection at different concentration of ovomucin. Result revealed that it can inactivate H5N1in vitro by inhibiting the virus from infected cells in early adsorption or entry procedure. Antiviral properties were worth further investigated to identify the active sites, using hemagglutination inhibition test and neuraminidase inhibition test. ELISA and DPI results showed that the ovomucin can interacted effectively with hemagglutinin, the surface antigen of H5N1. DPI result also indicated that ovomucin interacted with hemagglutinin of H5N1by embedded mode, thus resulting in the conformational changes of virus hemagglutinin. Thus, the mechanism that ovomucin strongly inhibited the infection of H5N1on MDCK cells can be interpreted as follows:ovomucin can interact with hemagglutination, the surface protein of the virus, by an embedded manner, thus affect the recognition process of virus to MDCK cell receptor, thereby inhibit the virus infection in the early adsorption and invasion to host cells, achieving the inhibition of virus multiplication. In addition, ovomucin interacts with cell surface to protect cells against viral infection was also accompanied in this process.
     The order of secondary structural changes in ovomucin as induced by temperature was α-helix,(β-sheet, β-turn, random coil. The existence of intermediate during pH induced unfolding process implied that the conformational transition of ovomucin does not fit the simple two-state mechanism. Mg2+prefers to coordinate with the carbohydrate moiety of ovomucin without significant changes in the secondary structure of ovomucin at a relatively low Mg2+concentration, which affect the microenvironment of aromatic amino acid residues, causing fluorescence quenching of ovomucin. When Mg2+increases to a higher concentration, it will also interact with the protein moiety of ovomucin, giving rise to changes in secondary structure. The DLS results showed that the average particle size of0.5mg/mL ovomucin (60.23nm) increased by the addition of Mg2+to ovomucin (51.39nm). Results from pH-induced the conformation and antiviral activity of ovomucin showed that with the content of beta-turn from20.7%to39%, he hemagglutination inhibition rate of ovomucin against H5N1corresponding increased from53.9%to73.1%. Results from the impact of Mg2+on the structure and function of ovomucin found that, with content of beta-turn from19.11%to22.96%in the secondary structure of ovomucin, the adhesion rate of ovomucin to virus can increased from30%to68.9%. These results indicated that the antivirus activity of ovomucin was increased with the improvement of the ordered and closely structure.
引文
1陈炅然,胡庭俊.硫酸多糖抗病毒作用研究进展.动物医学进展,2005,26(4):54-57
    2陈国华.药物分子与主体和生物分子相互作用的电化学方法研究.[硕士学位论文].重庆:重庆大学图书馆,2003
    3方军.鸡蛋孵化早期蛋清抗微生物特点及其作用机制.[博士学位论文].武汉:华中农业大学图书馆,2012
    4郭元吉.流行性感冒病毒及其实验技术.北京:中国三峡出版社,1998,249
    5黄保英,王文玲,阮力.广谱流感疫苗研究进展.病毒学报,2008,24(2):155-163
    6金奇.医学分子病毒学.北京:科学出版社,2000.14-17,84-131
    7刘慧娟,李鹏,张亚东.叶酸与人血清白蛋白结合作用的光谱研究.光谱学与光谱分析,2009,29(7):1915-1919
    8罗治彬.肠道粘膜非特异免疫系统的研究进展.国外医学:消化系疾病分册,1997,3:144-146
    9马美湖.禽蛋制品生产技术.北京:中国轻工业出版社,2003.45-46
    10宁正祥,高建华.食品防腐剂的抗菌机理及构效关系.广州食品工业科技,1997,3:1-4
    11庞估.抗病毒天然产物的筛选及其抗病毒活性的评价.[博士学位论文].天津:中国人民解放军军事医学科学院卫生学环境医学研究所图书馆,2009
    12沈星灿,梁宏,何锡文,王新省.圆二色光谱分析蛋白质构象的方法及研究进展.分析化学,2004,32(3):388-394
    13陶令霞,夏铁骑,常慧萍.两种测定固氮菌NT06菌株生长曲线方法的比较.生物学杂志,2007,24(5):57-58
    14王芙蓉,艾辉,雷朝亮,黄文.家蝇幼虫组织匀浆液的抗病毒活性.昆虫知识,2006,43(1):82-85
    15王芙蓉.家蝇幼虫蛋白提取物的抗病毒、抗氧化及护肝作用研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    16王守业,徐小龙,刘清亮,解永树.荧光光谱在蛋白质分子构象研究中的应用.化学进展,2001,13(4):257-260
    17吴梦.乳酸菌和大肠杆菌对固定化犬肠道粘蛋白模型的粘附性研究.[硕士学位论文].成都:四川农业大学图书馆,2008
    18谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究.高等学校化学学报,2003,24(2):226-231
    19徐桂云.糖链在流感病毒侵袭细胞中的作用.化学通报,2000,6:31-34
    20杨典洱,林晓怡,王艳丽,杨照罡,魏群.壳多糖抑制细菌生长的构效关系.高等学校化学学报,2006,27(7):1277-281
    21杨宇红.再生Bombyxmori丝素蛋白在水溶液中结构和性质的研究.[博士学位论文].上海:复旦大学图书馆,2004
    22张红艳,林凯,阎春娟.国内外天然食品防腐剂的研究进展,2004,3:57-60
    23张胜善.蛋品加工学.台北:华香园出版社,1999.88-92
    24赵南明,周海梦.生物物理学.北京:高等教育出版社,2000,275-304
    25赵新淮,徐红华,姜毓君.蛋白质结构与功能性.北京:中国青年出版社,2009
    26钟一鸣,杨宇红,陈新,邵正中.铜离子对水溶液中再生丝素蛋白构象转变的诱导作用.高分子学报,2009,10:1056-1061
    27左娟,马美湖.鸡蛋涂膜保鲜剂中抑菌物质的筛选.食品科学,2010,31(9):20-21
    28 Adachi N, Azuma J, Janado M, Onodera K. Solubilization and characterization of ovomucin without chemical modification. Agric Biol Chem,1973,37(9):2175-2180
    29 Alizadeh-Pasdar N, Li-Chan ECY. Comparison of protein surface hydrophobicity measured at various ph values using three different fluorescent probes. J Agr Food Chem,2000,48(2):328-334
    30 Altamirano MM, Garcia C,Possani LD,Fersht A. Oxidative refolding chromatography:folding of the scorpion toxin Cn5. Nat Biotechnol,1999,17:187-191
    31 Anbazhagan V, Renganathan R. Study on the binding of 2,3-diazabicyclo [2.2.2] oct-2-ene with bovine serum albumin by fluorescence spectroscopy. J Lumin,2008,128: 1454-1458
    32 Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, Timasheff. SN. Suppression of protein interactions by arginine:A proposed mechanism of the arginine effects. Biophy Chem,2007,127:1-8
    33 Awade AC, Efstathiou T. Comparison of three liquid chromatographic methods for egg-white protein analysis. J Chromatogr B,1999,723:69-74
    34 Awade AC, Moreau S, Molle D, Brule G, Maubois JL. Two-step chromatographic procedure for the purification of hen egg white ovomucin, lysozyme, ovotransferrin and ovalbumin and characterization of purified proteins. J Chromatogr A 1994, 677:279-288
    35 Back JF, Bain JM, Vadehra DV, Burley RW. Proteins of the outer layer of the vitelline membrane of hen's eggs. Biochim Biophys Acta,1982,705:12-19
    36 Baiz CR, Peng CS, Reppert, ME, Jones KC and Tokmakoff A. Coherent two-dimensional infrared spectroscopy:Quantitative analysis of protein secondary structure in solution. The Analyst,2012a,137(8):1793-1799
    37 Baiz CR, Reppert M, Tokmakoff A. Amide I Two-Dimensional Infrared Spectroscopy: Methods for Visualizing the Vibrational Structure of Large Proteins. J. Phys. Chem. A, 2012b, DOI:10.1021/jp310689a.
    38 Baliga BR, Kadkol SB, Lahiry NL. Thinning of thick albumen in shell eggs-changes in ovomucin. Poult Sci,1971,50 (2),466-473
    39 Baniel A, Fains A, Popineau Y. Foaming properties of egg albumen with a bubbling apparatus compared with whipping. J of Food Sci,1997,62:377-38
    40 Bansil R, Turner BS. Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Int Sci,2006,11:164-170
    41 Barth A. Infrared spectroscopy of proteins. Biochimicaet Biophysica Acta,2007,1767: 1073-1101
    42 Bell S, Xu G, Khatri I, Wang R, Rahman S, Forstner J. N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2. Biochem J 2003, 373(3):893-900
    43 Beveridge T, Nakai S. Effects of sulphydryl blocking on the thinning of egg white. J Food Sci,1975,40:864-868
    44 Bonwell ES, Wetzel DL. Innovative FT-IR Imaging of Protein Film Secondary Structure before and after Heat Treatment. J Agric Food Chem,2009,57(21): 10067-10072
    45 Bouvier NM, Palese P. The biology of influenza viruses. Vaccine,2008,26:D49-D53
    46 Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O'Keefe BR, Mori T, Gulakowski RJ, Wu L, Rivera MI, Laurencot CM, Currens MJ, Cardellina JH, Buckheit RWJ, Nara PL, Pannell LK, Sowder RC, Henderson LE. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120:potential applications to microbicide development. Antimicrob Agents Chemother,1997,41(7):1521-1530
    47 Brooks J, Hale HP. The mechanical properties of the thick white of the hen's egg. Ⅱ. The relation between rigidity and composition. Biochim Biophys Acta,1961,46: 289-301
    48 Brooks J, Hale HP. The mechanical properties of the thick white of the hen's egg. Biochim Biophys Acta,1959,32 (1):237-250 V,Vadehia DV.The albumen:chemistry.In Burley RW,Vadehra.DV. (Eds), the avian egg:Chemistry and biology. New York:John Wiley and Sons,1989. 65-128
    50 Burstein EA, Vedenkina NS, Ivkova MN. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol,1973,18:263-279
    .51 Cao X, Bansil R, Bhaskar KR, Turner BS, LaMont JT, Niu N, Afdahl NH. pH-dependent conformational change of gastric mucin leads to Sol-Gel transition. Biophys J,1999,76:1250-1258
    52 Cao XH, Wen HB, Li CJ. Differences in functional properties and biochemical characteristics of congenetic rice proteins. J Cereal Sci,2009,50:184-189
    53 Cardamone M, Puri NK. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem J,1992,282(2):589-593.
    54 Carrat F. Flahault A. Influenza vaccine:The challenge of antigenic drift. Vaccine, 2007, (4):39-40
    55 Carrier P, Mantsch HH, Wong PTT. Pressure induced reversible changes in secondary structure of poly(L-lysine):an IR spectroscopic study. Biopolymers,1990,29:837-84
    56 Chen GQ,Gouanx E.Overexpression of a glutamate receptor (GluR2) ligand binding domain in Escherichia coli:application of a novel protein folding screen, Proc. Natl. Acad Sci USA,1997,94:13431-13436
    57 Chu VC, Whittaker GR. Influenza virus entry and infection require host cell N-linked glycoprotein. PNAS,2004,101(52):18153-18158
    58 Cotterill OJ, Winter AR. Egg white lysozyme.3. The effect of pH on the lysozyme-ovomucin interaction. Poult Sci,1955,34:679-687
    59 Crowley PB, Golovin A. Cation-pi interactions in protein-protein interfaces. Prot Struct Funct Bioinform,2005,59:231-239
    60 Cui FL, Zhang QZ, Yao XJ, Luo HX, Yang Y, Qin LX, Qu, GR, Lu Y. The investigation of the interaction between 5-iodouracil and human serum albumin by spectroscopic and modeling methods and determination of protein by synchronous fluorescence technique. Pestic Biochem Phys,2008,90:126-134
    61 Dhe-Paganon S, Werner ED, Nishi M, Hansen L, Chi Y-I, Shoelson SE. A phenylalanine zipper mediates APS dimeriza-tion. Nat Struct Mol Biol,2004,11: 968-974
    62 Dodgson KS, Price RG, A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J,1962,84:106-110
    63 Donovan JW, Davis JG, White LM, Chemical and physical characterization of ovomucin, a sulfated glycoprotein complex from chicken eggs. Biochimica et Biophysica Acta,1970,207(1):190-201
    64 Donovan JW, Davis JG, Wiele MB. Viscometric studies of alkaline degradation of ovomucin. JAgric Food Chem,1972,20(2):223-228
    65 Eftink MR. Fluorescence Techniques for Studying Protein Structure. In:Methods of Biochemical Analysis:John Wiley Sons Inc,2006:127-205
    66 Eichholz A. The hydrolysis of proteids. JPhysiol,1898,23(1):163-177
    67 Esser MT, Mori T, Mondor I, Sattentau QJ, Dey B, Berger EA, Boyd MR, Lifson JD. Cyanovirin-N binds to gp120 to interfere with CD4-dependent human immunodeficiency virus type 1 virion binding, fusion, and infectivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational changes in gp120. J Virol,1999,73(5):4360-4371
    68 Faridbod F, Ganjali MR, Larijani B, Riahi S, Saboury AA, Hosseini M, Norouzi P, Pillip C. Interaction study of pioglitazone with albumin by fluorescence spectroscopy and molecular docking. Spectrochim Acta A Mol Biomol Spectrosc,2011,78:96-101
    69 Feeney RE, Allison RC. Evolutionary biochemistry of proteins:Homologous and analogous proteins from avian egg whites, blood sera, milk, and other substances. New York:John Wiley and Sons Inc,1969.52-57
    70 Feng GE, Jiang L, Liu D, Chen C. Interaction between alizarin and human serum albumin by fluorescence spectroscopy. Anal Sci,2011,27(1):79-84
    71 Fennema OR. Principles of Food Science:Food Chemistry.2nd ed. New York: Marcel Dekker,1993
    72 Fiebrig I, Harding SE, Rowe AJ, Hyman SC, Davis SS. Transmission electron microscopy studies on pig gastric mucin and its interactions with chitosan. Carbohy Polymers,1995,28(3):239-244
    73 Filisetti-Cozzi TM and Carpita NC. Measurement of uronic acids without interference from neutral sugars. Anal Biochem 1991,197:157-62
    74 Foni E, Chiapponi C, Lori D, De Marco M A, Delogu M, Raffini E, Massi P, Detection of Influenza a Virus by Rt-Pcr and Standard Methods in Experimental Infection of Ducks. New Microbiol,2005,28 (1):31-35
    75 Garibaldi JA. Role of Microbial Iron Transport Compounds in the Bacterial Spoilage of Eggs. Appl Environ Microbiol,1970,20(4):558-560
    76 Gerdil C. The annual production cycle for influenza vaccine, Vaccine,2003,(16). 1776-1779
    77 Ghosh S, Mittal A, GangulyNK. Purification and characterization of distint type of mannose sesitive fimbriae from Salmonella typhimurium. FEMS Microbiol Letters, 1994,115:229-2341
    78 Gottschalk A, Lind P. Product of interaction between influenza virus enzyme and ovomucin. Nature,1949,164:232-233.
    79 Grdadolnik J, Mare'chal Y. Infrared difference spectroscopy Part Ⅱ. Spectral decomposition. Vib Spectrosc,2003,31:289-294
    80 Greenstein JP. Sulfhydryl groups in proteins Ⅱ. Edestin, excelsin and globin in solutions of guanidine hydrochloride, urea and their derivatives. J Biol Chem,1939, 128(1):233-240
    81 Gross PC, Zeppezauer M. Infrared spectroscopy for biopharmaceutical protein analysis. J Pharmaceut Biomed,2010.53(1):29-36
    82 Gubareva LV, Kaiser L, Hayden FG. Influenza virus neuraminidase inhibitors. Lancet, 2000,355:827-835
    83 Guerin-C,Brule G. Separation of three proteins from egg white. Sci Des Aliments, 1992,12:705-720
    84 Gum JRJr. Mucin genes and the proteins they ecode:Structure, diversity and regulation. Am JRespir Cell Mol Biol,1992,7:557
    85 Haller O, Kochs G. Interferon-induced Mx proteins:dynamin-like GTPases with antiviral activity. Traffic,2002,3(10):710-717
    86 Hammershoj M, Nebel CC, Carstens JH. Enzymatic hydrolysis of ovomucin and effect on foaming properties. Food Res Int,2008,41(5):522-531
    87 Hammershoj M, Qvist KB. Importance of hen age and egg storage time for egg albumen foaming. Lebenson Wiss Technol,2001,34(2):118-120
    88 Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol,2008,70:431-457
    89 Hayakawa S, Sato Y. Physicochemical identity of alpha-ovomucins or beta-ovomucins obtained from the sonicated insoluble and soluble ovomucins. Agric Biol Chem,1977,41(1):1185-1191
    90 Hayakawa S, Sato Y. Studies on the dissociation of the soluble ovomucin by sonication. Agric Biol Chem,1976,40:2397-2404
    91 Heim A, Pfetzing U, Muller G, Grumbach I M, Antiviral Activity of Win 54954 in Coxsackievirus B2 Carrier State Infected Human Myocardial Fibroblasts. Antiviral Res,1998,37 (1):47-56
    92 Hierholzer JC and Suggs MT, Standardized viral hemagglutination and hemagglutination-inhibition tests. I. Standardization of erythrocyte suspensions. Appl Microbiol 1969,18:816-823
    93 Hiidenhovi J A H, Kankare V. Separation of ovomucin subunits by gel filtration: enhanced resolution of subunits by using a dual column system. J Agric Food Chem, 1999,47(3):1004-1008
    94 Hiidenhovi J, Hietanen A, Makinen J, Huopalahti R, Ryhanen EL. Hydrolysis of ovomucin by different enzymes [C], Ⅺth European Symposium on the Quality of Eggs and Egg Products. Doorwerth, Netherlands,2005:251-256
    95 Hiidenhovi J, Huopalahti R, Ryha nen EL. Ovomucin purification:some preliminary studies to modify the isoelectric precipitation method. In Nys Y. (Ed.), Quality of eggs and egg products. Saint-Brieuc, France:ISPAIA,2003.388-394
    96 Hiidenhovi J, Makinen J, Huopalahti R, Ryhanen E L. Comparison of different egg albumen fractions as sources of ovomucin, J Agric Food Chem,2002,50:2840-2845
    97 Hiidenhovi J. Ovomucin. In Huopalahti R, Lopez-Fandino R, Anton M, Schade R Eds, Bioactive egg compounds. Germany:Springer Verlag,2007.61-68
    98 Holmes KC, Blow DM. The Use of X-Ray Diffraction in the Study of Protein and Nucleic Acid Structure. In:Methods of Biochemical Analysis:John Wiley & Sons Inc, 2006:113-239
    99 Hong Z. Biophysical studies of mucin structure and interaction.[D].Boston University, 2004
    100 Huheihel M, Ishanu V, Tal J, Arad S. Activity of Porphyridiumsp. Polysaccharide against herpes simplex viruses in vitro and in vivo. JBiochem Biophys, Methods,2002, 50:189-200
    101 HuubJ M. Interaction of Bifidobacterial lipoteichoic acid with human intestinal epithelial cells. Infect Immun,1985,47:332-3341
    102 Ibrahim HR. Insights into the structure-function relationships of ovalbumin, ovotransferrin, and lysozyme. In:Yamamoto T, Juneja LR, Hatta Hand Kim M (eds), Hen eggs, their basic and applied science. New York:CRC Press Inc,1997.37-56
    103 Imperiali B, O'Connor SE. Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr Opin Chem Biol,1999,3(6):643-649.
    104 Ishibashi M, Tsumoto K, Tokunaga M, Ejima D, Kita Y, Arakawa T. Is arginine a protein denaturant? Protein Expres Purif, 2005,42:1-6
    105 Itoh T, Miyazaki J, Sugawara H and Adachi S, Studies on the characterization of ovomucin and chalaza of the hen's egg. J Food Sci,1987,52(6):1518-1521
    106 Isa P, Arias CF, L'opez S. Role of sialic acids in rotavirus infection. Glycoconj J, 2006,23:27-37
    107 Jackson M, Mantsch HH. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Spectrochim Acta Rev,1995,15:53-59
    108 Jin LZ, Marquardt RR, Baidoo SK, Frohlich AA. Characterization and purification of porcine small intestinal mucus receptor for Escherichia coli K88ac fimbrial adhesion. Fems Immunol Med Mic,2000,27(1):17-22
    109 Johnson TM, Zabik ME. Egg Albumen Proteins Interactions in an Angel Food Cake System. J Food Sci,1981a,46(4):1231-1236
    110 Johnson TM, Zabik ME. Gelation Properties of Albumen Proteins, Singly and in Combination. Poultry Sci,1981b,60(13):2071-2083
    111 Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Giintert P. Optimal isotope labelling for NMR protein structure determinations. Nature,2006,440(7080): 52-57
    112 Kati WM, MontgomeryD, Carrick R, Gubareva L, Maring C, McDaniel K, Steffy K, Molla A, Hayden F, Kempf D, Kohlbrenner W. In vitro characterization of A-315675, a highly potent inhibitor of A and B strain influenza virus neuraminidases and in fluenza virus replication. Antimicrob Agents Chemother,2002,46:1014-1021
    113 Kato A, Fujinaga K, Yagishita K. Nature of the carbohydrate side chains and their linkage to the protein in chicken egg white ovomucin. Agric Biol Chem,1973, 37:2479-2485
    114 Kato A, Imoto T, Yagishita K. The binding groups in ovomucin-lysozyme interaction. Agric Biol Chem,1975,39:541-544
    115 Kato A, Nakai S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochim Biophys Acta,1980, 624(1):13-20
    116 Kato A, Sato Y. The separation and characterization of carbohydrate rich component from ovomucin in chicken eggs. Agric Biol Chem,1971a,35:439-440.
    117 Kato A, Nakamura R, Sato Y. Studies on changes in stored shell eggs part VII. Changes in the physicochemical properties of ovomucin solubilized by treatment with mercaptoethanol during storage. Agric Biol Chem,1971b,35:351-356
    118 Kato A, Nakamura R, Sato Y. Studies on changes in stored shell eggs. Part V. The difference in the chemical and physicochemical properties of ovomucin between the thick and thin white. Agric Biol Chem,1970a,34(12):854-859
    119 Kato A, Nakamura R, Sato Y. Studies on changes in stored shell eggs. Part VI. Changes in the chemical composition of ovomucin during storage. Agric Biolo Chem, 1970b,34:1009-1013
    120 Kato A, Oda S, Yamanaka Y, Matsudomi N, Kobayashi K. Functional and structural properties of ovomucin. Agric Biol Chem,1985,49:3501-3504
    121 Kato A, Ogata S, Matsudomi N, Kobayashi K. A comparative study of aggregated and disaggregated ovomucin during egg white thinning. J Agric Food Chem,1981,29: 821-823
    122 Kato A, Ogino K, Matsudomi N, Kobayashi K. Separation of ovomucin into carbohydrate rich and poor components by chromatography on lysozyme-sepharose 4B. Agric Biol Chem,1977,41:1925-1929
    123 Kato A, Osako Y, Matsudomi N, Kobayashi K. Changes in the emulsifying and foaming properties of proteins during heat denaturation. Agric Biol Chem,1983,47(1): 33-37
    124 Kato A, Sato Y. Studies on changes in stored shell eggs. VIII the release of carbohydrate rich component from ovomucin gel during storage. Agric Biol Chem, 1972,36(5):831-836
    125 Kato A, Wada T, Kobayashi K, Seguro K, Motoki M. Ovomucin-food protein conjugates prepared through the transglutaminase reaction. Agric Biol Chem,1991, 55(4):1027-1031
    126 Kato A, Yoshida K, Matsudomi N, Kobayashi K. The interaction between ovomucin and egg white proteins. Agric Biol Chem,1976,40:2361-2366
    127 Kelm S, Schauer R. Sialic acids in molecular and cellular recognition. Int Rev Cytol, 1997,175:137-240
    128 Kobayashi K, Hattori M, Kudo HY, Okubo T, Yamamoto S, Takita T, Sugita-Konishi Y. Glycopeptide derived from hen egg ovomucin has the ability to bind enterohemorrhagic Escherichia coli O157:H7. J Agric Food Chem,2004,52: 5740-5746
    129 Kodama Y, Kimura N. Inhibitor of helicobacter pylori colonization. USA Patent, 6235709 B 1.2001-5-22
    130 Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Bioch Bioph Sin,2007,39(8):549-559
    131 KorhonenTK, Lounatmaa K, Ranta H, Kuusi N. Characterizationof type Ipili of Salmonellatyphymurium. JBacteriol,1980,144:800-8051
    132 Kovacs-Nolan J, Phillips M and Mine Y, Advances in the value of eggs and egg components for human health. J Agric Food Chem 2005,53:8421-8431
    133 Kwon KS, Yu M H. Efect of glycosylatien on the stability of alphal-antitrypsin toward urea denatmeation and thermal deactibation. Biochem Biophys Acta,1997, 1335:265
    134 Lang T, Hansson GC, Samuelsson T. An inventory of mucin genes in the chicken genome shows that the mucin domain of Muc13 is encoded by multiple exons and that ovomucin is part of a locus of related gel-forming mucins. BMC Genomics,2006,7: 197
    135 Lanni F,Sharp BG, Eekert-EA, Dillon ES,Beard D,Beard JW.The egg white inhibitor of influenza virus hemagglutination. I. Preparation and properties of semipurified inhibitor. JBiol Chem,1949,179:1275-1287
    136 Lefevre T, Arseneault K, Pezolet M. Study of protein aggregation using two-dimensional correlation infrared spectroscopy and spectral simulations. Biopolymers,2004,73(6):705-715
    137 Li J, Garg M, Shah D, Rajagopalan R. Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions. J Chem Phys,2010,133(5):54-62
    138 Li-Chan E, Nakai S. Biochemical basis for the properties of egg white. CRC Crit Rev Poulty Biol,1989(2):21-58
    139 Liu J, Yong W, Deng Y, Kallenbach NR, Lu M. Atomic structure of a tryptophan-zipper pentamer. Proc Natl Acad Sci USA,2004,101:16156-16161
    140 Lodha P, Netravali AN. Characterization of stearic acid modified soy protein isolate resin and ramie fiber reinforced 'green' composites. Compos Sci Technol,2005,65: 1211-1225
    141 Ma B, Nussinov R. Trp/Met/Phe Hot spots in protein-protein interactions:potential targets in drug design. Curr Top Med Chem,2007,7:999-1005
    142 MacDonnell LR, Feeney RE, Hanson HL, Campbell A, Sugihara, TF. The functional properties of the egg white proteins. Food Technol,1955,9(5):49-53
    143 MacDonnell LR, Lineweaver H, Feeney RE. Chemistry of shell egg deterioration: effect of reducing agents. Poultry Sci,1951,30:856-863
    144 Mahomed F. Recent advances in mucin immunohistochemistry in salivary gland tumors and head and neck squamous cell carcinoma. Oral Oncol,2011,47(9):797-803
    145 Maleki A, Lafitte G, Kjoniksen A-L, Thuresson K, Nystroma B. Effect of pH on the association behavior in aqueous solutions of pig gastric mucin. Carbohyd Res,2008, 343:328-340
    146 Mare'chal Y. Interaction configuration of H2O molecules in a protein (Stratum corneum) by infrared spectrometry. J Mol Struct,1997,416:133-143
    147 Mariam J, Dongre PM, Kothari DC. Study of Interaction of Silver Nanoparticles with Bovine Serum Albumin Using Fluorescence Spectroscopy. J Fluor esc,2011,21(6): 2193-2199
    148 Martis RL, Singh SK, Gromiha MM, Santhosh C. Role of cation-π interactions in .single chain'all-alpha'proteins. J Theor Biol,2008,250:655-662.
    149 Masatomo K, Yuki I, Yukie O, Kobayashi M, Sakura K, Kasama S, Fukuda MN, Fukuda M, Katsuyama T, Nakayama J. Natural antibiotic function of a human gastric mucin against helicobacter pylori infection. Science,2004,305(13):1003-1006
    150 McCullagh CM, Gupta R, Jamieson AM, Blackwell J. Gelation of fractionated canine submaxillary mucin in a chaotropic solvent. Int J Biol Macromol,1996,18:247-253
    151 Mcguckin MA, Linden SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol,2011,9(4):265-278
    152 Miao B, Geng M, Li J, Li F, Chen H, Guan H, Ding J. Sulfated polymannuroguluronate, a novel anti-acquired immune deficiency syndrome (AIDS) drug candidate, targeting CD4 in lymphocytes. Biochem Pharmacol,2004,68: 641-649
    153 Mine Y, Kovacs-Nolan J. Biologically Active Hen egg components in Human Health and Disease. J Poult Sci,2004,41(1):1-29
    154 Mine Y, Kovacs-Nolan J. New insights in biologically active proteins and peptides derived from hen egg. World's Poult Sci J,2006,62(1):87-95
    155 Mine Y. Recent advances in the understanding of egg white protein functionality. Trends Food Sci Tech,1995,6:225-232
    156 Misawa S, Kumagai I. Refolding of therapeutic proteins produced inEscherichia coli as inclusion bodies. Biopolymers,1999,51:297-307
    157 Moncada DM, Kammanadiminti SJ, Chadee K. Mucin and Toll-like receptors in host defense against intestinal parasites. Trends Parasitol,2003,19:305-311
    158 Murayama K, Wu Y, Czarnik-Matusewicz B, Ozaki Y. Two-Dimensional /Attenuated Total Reflection Infrared Correlation Spectroscopy Studies on Secondary Structural Changes in Human Serum Albumin in Aqueous Solutions:pH-Dependent Structural Changes in the Secondary Structures and in the Hydrogen Bondings of Side Chains. J Phys Chem B,2001,105:4763-4769
    159 Nagaoka S, Masaoka M, Zhang Q, Hasegawa M, Watanabe K. Egg ovomucin attenuates hypercholesterolemia in rats and inhibits cholesterol absorption in Caco-2 cells. Lipids.2002,37(3):267-272
    160 Nagaraj RH, Oya-Ito T, Padayatti PS, Kumar R, Mehta S, West K, Levinson B, Sun J, Crabb JW, Padival AK. Enhancement of Chaperone Function of a-Crystallin by Methylglyoxal Modification. Biochemistry,2003,42(36):10746-10755
    161 Naidja A, Liu C, Huang PM. Formation of protein-birnessite complex:XRD, FTIR, and AFM analysis. J Colloid Interf Sci,2002,251(1):46-56
    162 Nakamura R, Sato Y. Studies on the foaming property of chicken egg white. X. On the role of ovomucin (B) in egg white foaminess (The mechanism of foaminess). Agric Biol Chem,1964,28:530-534
    163 Nakamura T, Asano A, Okano S, Ko JH, Kon Y, Watanabe T, Agui T. Intracellular localization and antiviral property of canine Mx proteins. J Interferon Cytokine Res, 2005,25(3):169-173
    164 Nicholls JM, Lai J, Garcia J. Investigating the Interaction between Influenza and Sialic Acid:Making and Breaking the Link. In Itzstein M (ed), Influenza Virus Sialidase-A Drug Discovery Target, Springer Basel,2012.32-43
    165 Noda I. Two-dir lensional infrared (2D IR) spectroscopy:theory and applications. Appl Spectrosc,1990,44 (4):550-561
    166 Noda, I, Ozaki, Y. Two-dimensional Correlation Spectroscopy Applications in Vibrational and Optical Spectroscopy. John Wiley Sons Ltd,2004
    167 Offengenden M, Fentabil MA, Wu J. N-glycosylation of ovomucin from hen egg white. Glycoconj J,2011,28:113-123
    168 Offengenden M, Wu J. Egg white ovomucin gels:structured fluids with weak polyelectrolyte properties. RSC Adv,2013,3:910-917
    169 Oguro T, Watanabe K, Tani H, Ohishi H, Ebina T. Morphological observations on antitumour activities of 70 kDa fragment in a-subunit from pronase treated ovomucin in a double grafted tumor system. Food Sci Technol Res,2000,6(3):179-185
    170 Ohami H, Ohishi H, Yokota T, Mori T, Watanabe K. Cytotoxic effect of sialoglycoprotein derived from avian egg white ovomucin on the cultured tumor cell. Med Biol,1993,126:19-23
    171 Omana D A, Wang J P, Wu J P. Ovomucin-a glycoprotein with promising potential. Trends Food Sci Tech,2010,21(9):455-463
    172 Omana DA, Wu JP. A new method of separating ovomucin from egg white. J Agric Food Chem,2009a,57:3596-3603
    173 Omana D A, Wu J. Effect of different concentrations of calcium chloride and potassium chloride on egg white proteins during isoelectric precipitation of ovomucin. Poult Sci,2009b,88:2224-2234
    174 Otani H, Maenishi K. Effects of hen egg proteins on proliferative responses of mouse spleen lymphocytes. Lebens Wissensch Tech,1994,27:42-47
    175 Pelton JT, McLean LR. Spectroscopic methods for analysis of protein secondary structure. Anal Biochem,2000,277(2):167-176
    176 Perez-Vilar J, Hill R. The structure and assembly of secreted mucins. J Biol Chem, 1999,274(45):31751-317514
    177 Popescu M-C, Vasile C, Craciunescu O. Structural analysis of some soluble elastins by means of FT-IR and 2D IR correlation spectroscopy. Biopolymers,2010,93(12): 1072-1084
    178 Rabouille C, Aon M, Muller G, Cartaud J, Thomas D. The supramolecular organization of ovomucin. Biochem J,1990,266:697-706
    179 Rajamohan F, Venkatachalam TK, Irvin JD, Uckun FM. Pokeweed antiviral protein isoforms PAP-Ⅰ, PAP-Ⅱ, and PAP-Ⅲ depurinate RNA of human immunodeficiency virus (HIV)-1. Biochem Biophys Res Commun,1999,260(2):453-458
    180 Reddy KRc, Lilie H, Rudolph R, Lange C. L-Arginine increases the solubility of unfolded species of hen egg white lysozyme. Protein Sci,2005,14:929-935.
    181 Robinson SD, Monsey JB. The composition and proposed subunit structure of egg-white beta-ovomucin. The isolation of an unreduced soluble ovomucin. Biochem J,1975,147(1):55-62
    182 Robinson SD, Monsey JB. Changes in the composition of ovomucin during liquefaction of thick egg white:the effect of ionic strength and magnesium salts. J Sci Food Agric,1972,23:893-904
    183 Robinson SD, Monsey JB. Studies on the composition of egg-white ovomucin. Biochem J,1971,121(1):537-547
    184 Robinson SD. Egg white glycoproteins and the physical properties of egg white. In: Freeman BM, Lake PE. Eds., Egg formation and egg production. Edinburgh, Scotland: British Poult. Sci. Ltd.,1972,65-86
    185 Ross PD, Subramanian S. Thermodynamics of protein associationreactions:forces contributing to stability. Biochemistry,1981,20 (11):3096-3102
    186 Ruegg M, Hani H. Infrared spectroscopy of the water vapor sorption process of caseins. Biochimica et Biophysica Acta,1975,400:17-23
    187 Ryoko K, Makoto H, Yukiko K, Kazuo K, Noriyuki I, Tsutomu O. Inactivation composition of food poisoning bacteria. Japanese Patent,269420.2004
    188 Sarciaux JM, Mansour S, Hageman MJ, Nail SL. Effects of buffer composition and processing eonditions on aggregation of bovine IgG during freeze-drying. J Pharm Sci, 1999,88:1354-1361
    189 Sato Y, Kato A. Chemical composition of the chalazae and their deterioration during storage of eggs. Poult Sci,1980,59:1416-1422
    190 Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AO, Riekel C, Eisenberg D. Atomic structures of amyloid cross-b spines reveal varied steric zippers. Nature,2007,447:453-457
    191 Schauer R. Sialic acids:fascinating sugars in higher animals and man. Zoology,2004, 107:49-64
    192 Schmidt V, Giacomelli C, Soldi V. Thermal stability of films formed by soy protein isolate-sodium dodecyl sulfate. Polym Degrad Stab,2005,87:25-31
    193 Seitz O. Glycopeptide Synthesis and the Effects of Glycosylation on Protein Structure and Activity. Chembiochem,2000,1(4):214-246
    194 Sellers LA, Allen A, Morris ER, Ross-Murphy SB. Mucus glycoprotein gels. Role of glycoprotein polymeric structure and carbohydrate side-chains in gel formation. Carbohydr Res,1988,178:93-110
    195 Servaty R, Schiller J, Binder H, Arnold K. Hydration of polymeric components of cartilage-an infrared spectroscopic study on hyaluronic acid and chondroitin sulfate. Int J Biol Macromol,2001,28:121-127
    196 Sheehan J, Kirkham S, Howard M, Woodman P, Kutay S, Brazeau C, Buckley J, Thornton DJ. Identification of molecular intermediates in the assembly pathway of the MUC5AC mucin. JBiol Chem,2004,279(15):15698-15705
    197 Sheehan JK, Thornton DJ, Howard M, Carlstedt I, Corfield AP, Para-skeva C. Biosynthesis of the MUC2 mucin:evidence for a slow assembly of fully glycosylated units. Biochem J,1996,315:1055-1060
    198 Shirazi T, Longman RJ, Corfield AP, Probert CSJ. Mucins and inflammatory bowel disease. Post grad Med J,2000,76(898):473-478
    199 Shukla D, Trout BL. Understanding the synergistic effect of arginine and glutamic acid mixtures on protein solubility. J Phys Chem B,2011,115:11831-11839
    200 Silberberg, A. Mucus glycoprotein, its biophysical and gel-forming properties. In Chantler E, Ratcliffe NA (eds). Mucus and Related Topics. Cambridge:Company of Biologists,1989.43-63
    201 Sleigh RW, Melrose GJH, Smith MB. Isolation and characterization of hen egg white ovomucin. Biochimica et Biophysica Acta,1973,310(2):453-460
    202 Slomiany BL, Murty VLN, Piotrowski J, Wang SL, Slomiany A. Helicobacter pylori and Gastric Mucus Integrity. In:Menge H, Gregor M, Tytgat GNJ. Helicobacter pylori. Springer Berlin Heidelberg,1991.37-47
    203 Slomiany BL, Slomiany A. Role of mucus in gastric mucosal protection. J Physiol Pharmacol,1991,42(2):147-161
    204 Slomiany BL, Piotrowski J, Okazaki K, Grzelinska E, Slomiany A. Nature of the Enhancement of the Protective Qualities of Gastric Mucus by Sucralfate. Digestion, 1989,44(4):222-231
    205 Smith MB, Back JF. Modification of ovalbumin in stored eggs detected by heat denaturation. Nature,1962,193:878-879
    206 Smith MB, Back JF. Studies on ovalbumin-The formation and properties of S-ovalbumin, a more stable form. Austr J Biol Sci,1965,18:365-377
    207 Smith MB, Reynolds TM, Buckingham CP, Back JF. Studies on the carbohydrate of egg-white ovomucin. Biol Sci,1974,27(1):349-360
    208 Srinivas V, Raman B, Rao KS, Ramakrishna T, Rao CM. Structural perturbation and enhancement of the chaperone-like activity of a-crystallin by arginine hydrochloride. Protein Sci,2003,12:1262-1270
    209 Starzak M, Mathlouthi M. Cluster composition of liquid water derived from laser-Raman spectra and molecular simulation data. Food Chem,2003,82:3-22
    210 Strecker G, Wieruszeski JM, Cuvillier O, Michalski JC, Moutreuil J.1H- and 13C-NMR assignments for sialylated oligosaccharideealditols related to mucins. Study of thirteen components from hen ovomucin and swallow nest mucin. Biochimie, 1992,74:39-52
    211 Strecker G, Wieruszeski JM, Martel C, Moutreuil J. Complete 1H- and 13C-NMR. assignments for two sulphated oligosaccharide alditols of hen ovomucin. Carbohyd Res,1989,185:1-13
    212 Strecker G, Wieruszeski JM, Martel C, Moutreuil J. Determination of the structure of sulfated tetra and pentasaccharides obtained by alkaline borohydride degradation of hen ovomucin. A fast atom bombardment-mass spectrometric and 1H-NMR spectroscopic study. Glycoconj J,1987,4:329-337
    213 Su Y, Xu Y,Yang L, Weng S Soloway RD, Wang D, Wu J. Spectroscopic studies of the effect of the metal ions on the structure of mucin. J Mol Struct,2009,920:8-13
    214 Surewicz WK, Mantsch HH. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochimica et Biophysica Acta,1988,952: 115-130
    215 Surewicz WK, Montsch HH, Chapman P. Determination of protein secondary structure by Fourier transforminfrared spectroscopy. A critical assessment. Biochemistry,1993,32:389-394
    216 Sylvester FA, Philpott D, GoldB, Lastovica A, Forstner JF. Adherence to lipids and intestinal mucinbya recentlyrecognizedhumanpathogen, Campylobacter upsaliensis. Infect Immun,1996,64:4060-40661
    217 Takeuchi H, Baba M, Shigeta S, An Application of Tetrazolium (Mtt) Colorimetric Assay for the Screening of Anti-Herpes Simplex Virus Compounds. J Virol Methods, 1991,33 (1-2):61-71
    218 Talarico LB, Zibetti RGM, Faria PCS,et al. Antiherpes simplexvirus activity of sulfated galactans fromthe red seaweeds Gymnogongrus grif f ithsiaeand Cryptonemiacrenulata. Int J Biolog Macro,2004,34:63-71
    219 Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM. High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. JBiomol NMR,2011, 51(3):227-233
    220 Tanizaki H, Tanaka H, Iwata H, Kato, A. Activation of macrophages by sulfated glycopeptides in ovomucin, yolk membrane, and chalazae in chicken eggs. Bio Biotech, Biochem,1997,61(11):1883-1889
    221 Thornton DJ, Carlstedt I, Howard M, Devine PL, Price MR, Sheehan JK. Respiratory mucins:identification of core proteins and glycoforms. Biochem J,1996,316: 967-975
    222 Thornton DJ, Davies JR, Kraayenbrink M, Richardson PS, Sheehan JK, Carlstedt I. Mucus glycoproteins from 'normal' human tracheobronchial secretion. Biochem J, 1990,265:179-186
    223 Thornton DJ, Howard M, Khan N, Sheehan JK. Identification of two glycol forms of the MUC5B mucin in human respiratory mucus:evidence for a cysteine-rich sequence repeated within the molecule. JBiol Chem,1997,272:9561-9566
    224 Thornton DJ, Rousseau K, McGuckin MA. Structure and function of the polymeric mucins in airways Mucus. Annu Rev Physiol,2008,70:459-486
    225 Thornton DJ, Sheehan JK, Lindgren H, Carlstedt I. Mucus glycoproteins from cystic fibrotic sputum. Macromolecular properties and structural'architecture'. Biochem J, 1991,276(3):667-675
    226 Tischer A, Lilie H, Rudolph R, Lange, C. L-arginine hydrochloride increases the solubility of folded and unfolded recombinant plasminogen activator rPA. Protein Sci, 2010,19:1783-1795
    227 Tomimatsu Y, Donovan JW. Light scattering study of ovomucin. JAgric Food Chem, 1972,20:1067-1073
    228 Toribara NW, Ho SB, Gum E, Gum JR, Lau P, Kim YS. The carboxyl-terminal sequence of the human secretory mucin, MUC6:analysis of the primary amino acid sequence. J Biol Chem 1997,272(16):398-403
    229 Toussant M, Latshaw J. Ovomucin content and composition in chicken eggs with different interior quality. J Sci Food Agric,1999,79(12):1666-1670
    230 Tsuge Y, Shimoyamada M, Watanabe K. Binding of egg white proteins to viruses. Biosci Biotechnol Biochem,1996a,60(9):1503-1504
    231 Tsuge Y, Shimoyamada M, Watanabe K. Differences in hemagglutination inhibition activity against bovine rotavirus and hen Newcastle disease virus based on the subunit in hen egg white ovomucin. Biosci Biotechnol Biochem,1996b,60(9):1505-1506
    232 Tsuge Y, Shimoyamada M, Watanabe K. Structural features of hen Newcastle disease virus and anti-ovomucin antibodies binding glycopeptides from pronase treated ovomucin. JAgric Food Chem,1997a,45(7):2393-2398
    233 Tsuge Y, Shimoyamada M, Watanabe K. Bindings of ovomucin to Newcastle disease virus and anti-ovomucin antibodies and its heat stability based on binding abilities. J Agric Food Chem,1997b,45(12):4629-4634
    234 Tsumoto K, Umetsu M, Kumagai I, Ejima D, Philo JS, Arakawa T. Role of arginine in protein refolding, solubilization, and purification. Biotechnol Prog,2004,20: 1301-1308
    235 Tsumoto K, Umetsu M, Yamada H, Ito T, Misawa S, Kumagai I. Immobilized oxidoreductase as an additive for refolding inclusion bodies:application to antibody fragments. Protein Eng,2003,16:535-541
    236 Turner B, Bhaskar K, Hadzopoulou-Cladaras M, LaMont J. Cysteine-rich regions of pig gastric mucin contain von Willebrand factor and cysteine knot domains at the carboxyl terminal. Biochim Biophys Acta,1999,1447(1):77-92
    237 Varma BK, Demers A, Jamieson AM, Blackwell J, Jentoft N. Light scattering studies of the effect of Ca+ on the structure of porcine submaxillary mucin. Biopolymers, 1990,29(2):441-448
    238 Vermeer AWP, Norde W. The thermal stability of immunoglobulin:unfolding and aggregation of a multidomain protein. Biophys J,2000,78:394-404
    239 Wang F, Liu AP, Ren FZ, Hang X, Stephanie C, Zhang L, Guo. FTIR Analysis of Protein Secondary Structure in Cheddar Cheese during Ripening. Spectroscopy and Spectral Analysis,2011,31(7):1786-1789
    240 Wang J, Hu Y, Wang D, Liu J, Zhang J, Abula S, Zhao B, Ruan S. Sulfated modification can enhance the immune-enhancing activity of lycium barbarum polysaccharides. Cell Immunol,2010,263(2):219-223
    241 Wang W, Nema S, Teagarden D. Protein aggregation path ways and influencing factors. Int.J Pharm,2010,390:89-99
    242 Wang Y, Murayama K, Myojo Y, Tsenkova R, Hayashi N, Ozaki Y. Two-dimensional Fourier transform near-infrared spectroscopy study of heat denaturation of ovalbumin in aqueous solutions. J Phys Chem B,1998,102 (34): 6655-6662
    243 Watanabe K, Shimoyamada M, Onizuka T, Akiyama H, Niwa M, Ido T, Tsuge Y. Amino acid sequence of a-subunit in hen egg white ovomucin deduced from cloned cDNA. DNA Sequence,2004,15(4):251-261
    244 Watanabe K, Tsuge Y, Shimoyamada M, Ogama N, Ebina T. Antitumor effects of pronase-treated fragments, glycopeptides, from ovomucin in hen egg white in a double grafted tumor system. JAgric Food Chem,1998b,46(8):3033-3038
    245 Watanabe K, Tsuge Y, Shimoyamada M. Binding activities of pronase treated fragments from egg white ovomucin with anti-ovomucin antibodies and Newcastle disease virus. JAgric Food Chem,1998a,46(11):450-4506
    246 Wetherall NT, Trivedi T, Zeller J, Hodges-Savola C, McKimm-Breschkin JL, Zambon M, Hayden FG. Evaluation of Neuraminidase Enzyme Assays Using Different Substrates to Measure Susceptibility of Influenza Virus Clinical.Isolates to Neuraminidase Inhibitors:Report of the Neuraminidase Inhibitor Susceptibility Network. JClin Microbiol,2003,41(2):742-750
    247 Wishart DS, Sykes BD, Richards FM. The chemical shift index:a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry,1992,31(6):1647-1651
    248 Wu YQ, Yukihiro O. Two dimensional infrared correlation spectroscopy studies of proteins in aqueous solutions. J Infrared Millim Waves,2003,22(3):161-168
    249 Xie Q, Guo T, Lu J, Zhou HM. The guanidine like effects of arginine on aminoacylase and salt-induced molten globule state. Int J Biochem Cell Biol,2004, 36:296-306
    250 Xu J, Kaloyanova D, Ivanov IG, AbouHaidar MG. The low expression level of pokeweed antiviral protein (PAP) gene in Escherichia coli by the inducible lacpromoter is due to inefficient transcription and translation and not to the toxicity of the PAP. Arch Biochem Biophys,1998,351(1):82-88
    251 Yokota T, Ohishi H, Watanabe K. In vitro studies of cytotoxic effect on sarcoma-180 cells of β-subunit from egg white ovomucin. Food Sci Technol Res,1999a, 5(3):273-278
    252 Yokota T, Ohishi H, Watanabe K. Antitumor effects of β-subunit from egg white ovomucin on xenografted sarcoma-180 cells in mice. Food Sci Technol Res,1999b, 5(3):279-283
    253 Young LL, Gardner FA. Preparation of egg white ovomucin by gel filtration. J Food Sci,1972,37:8-11
    254 Zhang M, Cheung PCK, Ooi VEC, Zhang L. Evaluation of sulfated fungal β-glucans from the sclerotium of Pleurotus tuber-regium as a potential water-soluble antiviral agent. Carbohyd Res,2004,339(13):2297-2301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700