广适性玉米杂交种抗逆稳产生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广适性玉米杂交种的主要特点是产量水平高且稳产性好、年际间变化小,适宜种植区域广、年种植面积大、甚至能够跨生态区种植。它们是推动玉米品种更新换代的主力,是提高玉米单产水平的最有效途径。品种的适应性比杂种优势更重要,玉米品种的产量高低取决于对当地生态条件的适应能力。干旱、肥力不足、花期阴雨是是黄淮海地区影响玉米产量的重要非生物逆境因子。本研究在人工控制条件下,选用适应性不同的玉米品种,研究了干旱、低肥、花期遮阴等3个胁迫因子单一及两、三重复合胁迫(共7种逆境)对玉米生长发育的影响,以探索广适性品种抗逆稳产的生理机制。主要研究结果如下:
     1.多胁迫因子间存在明显的交互作用,不是单因子效应的累加。低肥、干旱和花期遮阴等因子对产量影响存在交互作用。在两因素的交互作用中,肥力、干旱、遮阴等三者间的交互作用均达到显著或极显著水平。
     2.花期遮阴对玉米生长发育及产量的影响大于低肥和干旱。花期遮阴、低肥和干旱单胁迫造成玉米产量的损失分别为84.48%、51.23%和18.26%。本研究中,7种逆境胁迫降低了13.62%~91.55%的玉米产量。玉米产量在7种逆境胁迫下依次表现为干旱>低肥>低肥干旱>遮阴>干旱遮阴>低肥遮阴>低肥干旱遮阴。复合胁迫对产量的影响大于单一逆境胁迫。
     3.广适性玉米杂交品种对多种逆境具有较高的抗性,没有明显的缺陷。对照处理ZD958(郑单958)的单株产量最高,且在7种胁迫条件下的平均单株产量最高,变异系数最小,稳产性最好;ND108(农大108)的变异系数居第二位,YY22(豫玉22)和ZY9(张玉9号)的变异系数最大。品种的稳产性与它们的抗逆性密切相关。ZD958和ND108对低肥、干旱和遮阴胁迫均具有较好的抗性,因此,产量在不同胁迫间波动小。YY22对遮阴胁迫敏感,ZY9对遮阴和低肥胁迫都较敏感,故产量在不同胁迫间波动大。因此,广适性玉米杂交种对逆境胁迫没有明显的敏感性,表现出广泛的适应性。
     4.广适性玉米杂交种器官发育受胁迫影响小。雌雄穗协调发育是完成受精、籽粒建成的前提。逆境胁迫对不同适应性品种散粉时间的影响很小,对花丝抽出时间的影响大。广适性玉米杂交种品种ZD958受逆境胁迫花丝抽出时间推迟0.75-7.95d,雌雄穗开花间隔(ASI)增加了1.15~6.60d,在7种逆境胁迫间变异系数最小,分别为28.13%和22.89%。穗发育也表现相同的特点,吐丝后2周时7种胁迫条件下ZD958果穗占穗部总鲜重(果穗+苞叶)的平均比例为34.66%,居第三位,胁迫间的变异系数仅高于ND108。第五次取样时,ZD958果穗占穗部总鲜重的平均比例最高,为42.87%,变异系数仍然较小,居第二位。
     5.广适性玉米杂交种的叶绿素含量高且胁迫处理间波动小。逆境胁迫下,5个玉米品种的叶绿素含量降低了11.82%-48.99%,叶绿素a含量变化小于叶绿素b。逆境胁迫解除后,叶绿素含量略有回升。叶绿素含量的降低主要在于叶绿素b含量下降。这也导致逆境胁迫处理后叶绿素a/b值显著升高。低肥、干旱、遮阴等3种逆境因子及其交互作用对玉米叶片中叶绿素含量的影响基本一致。ZD958的叶绿素含量高且胁迫处理间波动小。
     6.广适性玉米杂交种物质积累快、籽粒形成关键期的植株生长率高。干物质积累和植株生长速率是植株个体生理功能的最终体现。对照处理ZD958的单株干物质积累量最大,收获时较其它品种高10.4%-17.3%,籽粒形成关键期的植株生长率最高,为3.32g/(株·d),高于其它品种4.75%-15.15%,且穗物质分配指数高。逆境胁迫期间(吐丝期)和逆境胁迫处理后(成熟期)广适性玉米杂交种ZD958的单株干物质在7种逆境条件下的变异系数均为最小,分别为3.94%和8.34%。胁迫处理后各品种穗物质分配指数减小了7.53%~79.0%,ZD958的穗物质分配指数在7种胁迫处理间波动最小。
     7.广适性玉米杂交种物质转运调控能力强。逆境胁迫处理后,茎、叶贮存物质都向穗部转运。茎中物质转运晚于叶片,且叶片在8种环境条件下均存在物质转运,而茎中的物质只有在对照、干旱、低肥和低肥干旱4种环境条件下存在物质转运。广适性玉米杂交种ZD958叶片对照处理仅有6.52%的物质转运,而其它4个品种叶片物质的转运率达18.73%~30.58%。逆境条件下,ZD958最多可调控叶片32.27%的物质的转运,调控能力大高于其它4个品种。
     8.广适性玉米杂交种的碳氮代谢协调。茎、叶、穗中C/N的变化可以反映胁迫对碳氮代谢的影响。茎C/N在低肥遮阴、低肥干旱遮阴、干旱胁迫吐丝期以及遮阴和干旱遮阴胁迫吐丝期和吐丝后3周时降低,说明胁迫对这些时期茎碳代谢的影响大于氮代谢,其它时期胁迫对氮代谢的影响大于碳代谢。叶C/N在干旱遮阴吐丝期和吐丝后3周时降低,胁迫氮代谢的影响大于氮代谢;其它时期胁迫处理的C/N均升高,说明胁迫主要影响了叶片中的氮代谢。穗C/N在吐丝后3周和收获期胁迫处理下增加,氮代谢受胁迫处理的影响大于碳代谢。广适性玉米杂交种ZD958在各环境条件下叶、茎中可溶性糖和全氮含量较高,C/N居中,碳氮代谢协调,逆境胁迫后恢复速度快于其它品种。
ABSTRACT The main characteristics of maize hybrids with wide adaptability is of high and stable yield, small changes between years, extensive areas suitable for planting, planting large area yearly, even to be able to grow across ecological zones. They were often the main force to promote the replacement of maize varieties, were the most effective way to improve the level of maize yield. The adaptability of varieties is more important than heterosis. The level of maize production depends on its ability to adapt to local ecological conditions. Drought, inadequate fertility, low light were the main abiotic stress factors for yield and stability in maize producing areas of the Huanghuaihai maize belt and the maize producing area. In this study, under controlled conditions, the different maize varieties with adaptability were used to study the lack of fertility, the effect of flowering drought, low light stress factors and three double, triple Stress (7stresses, totally) on maize growth to explore physiological mechanism of the wide varieties with wide adaptability response to these stress factors. The main results are as follows:
     Low light on corn growth and yield was large than that of fertility and flowering drought. In this study,7Stresses decreased yield by13.62%~91.55%. The effect of7kinds of stress on the five yield of maize hybrids in order were shade> low fertility and shade>low fertility, drought and shade> drought and shade>low fertility>low fertility and drought> drought. Shading at flower period significantly reduced the yield of5varieties by84.48%than non-shading treatments. Low fertility and drought treatment caused51.23%and18.26%yield loss, respectively. Shading had a great influence on flowering time. The silking time of5varieties was delayed by more than7d in treatments of shade, low fertility and shade, drought and shade, low fertility, drought and shade.
     There were more significant interactions between the factors, not just the cumulative effect of single stress factors. The interactions of low-fat, flowering shade and drought on the yield of maize yield existed. Among the interactions of two factors, the interactions of fertility, drought, and shade were significant or very significant. The interaction had very obvious effect on characteristics of species. The resistance of Zhangyu-9to low fertility was significantly higher than other varieties. Shading significantly increased the degree of sensitivity of maize to fertility, Zhangyu-9was the most sensitive and its barren-resistant index changed from the highest to the lowest.
     The corn hybrids variety with wide adaptability had high resistance to stresses, and no obvious defects. The yield of Nongda108was the highest in the treatment of drought and shade, was the lowest in the treatment of drought, drought and low fertility. Zhang Yu-9yielded most in the treatment of low fertility, and yielded lowest in the treatment of shade and low fertility. The yield per plant Yuyu22in low-fertility and drought conditions was higher than Zhengdan958, and it was the second highest in high fertilizer and drought conditions. However, the yield per plant of Yuyu22was the lowest in the conditions of shade, drought and shade, low fertility conditions. Luoyu-4yielded lowest in the condition of low fertility, drought, shade. Zhengdan958yielded highestly in the conditions of shade, drought, and low fertility and drought-shade. And it yielded the second highestly in the other four stresses. Therefore, the wide adaptability of maize hybrids did not significantly sensitive to stress, showing a wide range of adaptability to stresses.
     The difference of dry matter of5corn hybrids at silking was small. From silking to harvest the dry matter accumulation of maize hybrids with wide adaptability Zhengdan958was faster10.4%to17.3%than other varieties. At silking and harvest, the dry matter per plant of maize hybrids with wide adaptability Zhengdan958changed smallest among7kind of stresses, and the variation coefficient were3.94%and8.34%respectively. Under normal conditions, plant growth rate of maize hybrids with wide adaptability Zhengdan958during seed formation critical period was the highest, being4.03g/(plant· d), higher27.57%~57.37%than other varieties.
     The maize hybrids with wide adaptability Zhengdan958was stronger ability for controlling matter distribution. In this study, stem was sink organs to accumulate storage material at pre-or pro-silking, and2weeks after silking, storage material in stem began to transport and redistribute in the treatment of drought, low fertility, drought and low fertility. During stresses the redistribution of the storage material in leaves was of great important for maize response to stresses. The maize hybrids with wide adaptability Zhengdan958transported only6.52%leaf material under normal conditions, while the transfer rate of the other four varieties changed from18.73%to30.58%. But under stress conditions, Zhengdan958could transported32.27%mostly of the material in leaves, and its regulatory capacity was much higher than the other four varieties.
     The organ development of maize hybrids with wide adaptability was influenced small under by stresses. The effect of stresses on dusting time of varieties with different adaptability was very small, less than2d; but its effect on silking time was very large. The silking time of wide adaptability Zhengdan958was put off0.75~7.95d by stresses, and its ASI increased1.15~6.60d. Their variation coefficients among7kinds of stresses were minimum in5varieties, being28.13%and22.89%respectively. Ear growth also showed the same characteristics. The ratio of ear to total ear (ear+bract) of Zhengdan958was34.66%under7kinds of stresses at2weeks after silking (third sample), ranking third among5varieties. The variation coefficient of Zhengdan958between stresses was only higher than Nongda108. The ratio of Zhengdan958was the highest at fifth sampling, being42.87%. its variation coefficient was also small and being in second place.
     Characteristics of carbon and nitrogen metabolism of maize hybrids with wide adaptability. After silking, the soluble sugar content, C/N in leaves, stem and ear, and total nitrogen content in leaves of5maize varieties changed as single-peak curve, and was the highest at3weeks after silking (5th sample). The performance of organs in order was stem> ear> leaf. The total nitrogen content in stem and ear was the lowest at3weeks after silking, and it was higher at harvest than at silking. The content of soluble sugar and total nitrogen in leaves and stem of the maize hybrids Zhengdan958with wide adaptability under normal conditions was higher. After stresses relieved, it could restored quickly than other varieties.
引文
[1]白彩云,李少昆,张厚宝,等.ZD958在东北春玉米区生态适应性研究[J].作物学报,2010,36(2):296-302.
    [2]苌建峰.不同基因型玉米碳氮代谢差异研究[D].郑州:河南农业大学,2007.
    [3]陈海生,陶龙兴,王熹,等.灌水方式对水稻灌浆期光合物质运转与分配的影响[J].中国农业科学,2005,38(4):678-683.
    [4]陈杰,穗期干旱胁迫对玉米水分利用效率的影响及其评价指标研究[D].雅安:四川农业大学,2005.
    [5]崔震海,玉米水分利用效率鉴定指标体系及其生理基础的研究[D].沈阳农业大学,2005.
    [6]丁爱萍,王瑞,张卓文.12种园林植物耐荫性鉴定指标的筛选植物[J].生理学通讯,2009,45(1):55-59.
    [7]丁莉.玉米品种更替过程中光合效率与产量提高的生理生态机制[D].北京,中国科学院,2005.
    [8]董永华,史吉平,韩建民.干旱对玉米幼苗PEP羧化酶活性的影响[J].玉米科学,1995,3(2):54-57.
    [9]丰光,刘志芳,李妍妍,等.中国不同时期玉米单交种产量变化的研究[J].中国农业科学2010,43(2):277-285.
    [10]付景.玉米耐荫性指标的筛选与评价[D].郑州:河南农业大学,2009.
    [11]葛体达.夏玉米对干旱胁迫的响应与适应机制的研究[D].莱州:莱阳农学院,2004.
    [12]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293-297.
    [13]关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响[J].作物学报,2000,26(6):806-812.
    [14]郭庆法,王庆成,汪黎明.中国玉米栽培学.上海科学技术出版社,2005.
    [15]赫忠友,谭树义,林力等.不同光照强度和光质对玉米雄花育性的影响[J].中国农学通报,1998,14(4):6-8.
    [16]胡梦芸,张正斌徐萍,等.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究[J].作物学报,2007,33(11):1884-1891.
    [17]胡瑞法,Meng E C H,张世煌,等.采用参与式方法评估中国玉米研究的优先序[J].中国农业科学,2004,37(6):781-787.
    [18]黄智鸿,王思远,包岩,等.超高产玉米品种干物质积累与分配特点的研究[J].玉米科学,2007,15(3):95-98.
    [19]贾士芳.生育后期遮光对玉米产量和品质及生理特性的影响[D].泰安:山东农业大学,2007.
    [20]姜东,于振文,李永庚,等.高产小麦营养器官临时贮存物质积运及其对粒重的贡献[J].200329(1):31-36.
    [21]焦德茂,季本华.水稻耐光氧化和耐阴特性的鉴定及其生理基础[J].中国水稻科学,1994,9(4):245-248.
    [22]焦艳平.我国优势粮食作物生产潜力分析及开发对策研究[D].北京:中国农业大学,2006.
    [23]颉建明,郁继华,黄高宝,等.持续低温弱光及之后光强对辣椒幼苗光抑制的的影响[J].农业工程学报,2008,24(5):231-234.
    [24]李潮海,刘奎,连艳鲜。玉米碳氮代谢研究进展[J].河南农业大学学报,2000,34(4):318-323.
    [25]李潮海,栾丽敏,尹飞,等.弱光胁迫对不同基因型玉米生长发育和产量的影响[J].生态学报,2005,25(4):824-830.
    [26]李潮海,苏新宏,谢瑞芝,周苏玫,李登海.超高产栽培条件下夏玉米产量与气候生态条件关系研究[J].中国农业科学,2001,34(3):311-316.
    [27]李潮海,赵亚丽,杨国航,等.遮光对不同基因型玉米光合特性的影响[J].应用生态学报,2007,18(6):1259--1264.
    [28]李云昌,胡琼,梅德圣,等.高油油菜品种中油杂11的分子辅助选育及广适应性[J].中国农业科学,2008,41(9):2599-2606.
    [29]连艳鲜,李潮海,周苏玫.高产玉米杂交种干物质生产与分配特征[J].2003,7:7-9.
    [30]刘成,申海兵,石云素,等.水分胁迫后玉米雌雄穗开花间隔时间(ASI)与产量和抗旱性的关系研究[J].新疆农业科学,2008,45(4):609-612.
    [31]刘瑞显,王友华,陈兵林,等.花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响[J].作物学报,2008,34(4):675-683.
    [32]刘永红,杨勤,杨文钰,等.花期干湿交替对玉米干物质积累与再分配的影响[J].作物学报,2006,32(11):1723-1727.
    [33]刘宗华,王春丽,汤继华,等.氮胁迫对不同玉米自交系若干农艺性状和产量的影响[J].河南农业大学学报2006,40(6):573-577.
    [34]路海东,薛吉全,马国胜,等.低氮胁迫对不同基因型夏玉米源库性状和灌浆特性的影响[J].应用生态学报,2010,21(5):1277-1282.
    [35]马冬云,郭天财,王晨阳,等.施氮量对冬小麦灌浆期光合产物积累、转运及分配的影响[J]作物学报,2008,34(6):1027-1033.
    [36]穆培源,庄丽,张吉贞,等.作物品种稳定性分析方法的研究进展.新疆农业科学2003,40(3):142-144.
    [37]齐华,白向历,孙世贤,等.水分胁迫对玉米叶绿素荧光特性的影响[J].华北农学 报,2009,24(3):102-10.
    [38]齐学礼,胡琳,董海滨,等.强光高温同时作用下不同小麦品种的光合特性[J].作物学报,2008,34(12):2196-2201.
    [39]钱立生.两优培九及其亲本低温强光适应特性的比较研究[D].合肥:安徽农业大学,2005.
    [40]茹高林.我国不同年代玉米品种及其亲本自交系主要农艺性状增益分析[D].乌鲁木齐:新疆农业大学,2009.
    [41]申丽霞,王璞,兰林旺,等.施氮对夏玉米碳氮代谢及穗粒形成的影响[J].植物营养与肥料学报,2007,13(6):1074-1079.
    [42]申林.超高产玉米与普通玉米干物质积累与分配及产量的比较研究[D].吉林:吉林农业大学,2008.
    [43]石磨.吉林省东部春玉米超高产栽培及气候条件影响的研究[D].北京:中国农业大学,2007.
    [44]宋海星,彭建伟,刘强,等.不同氮素生理效率油菜生育后期氮素再分配特性研究[J].中国农业科学,2008,41(6):1858-1864.
    [45]苏新宏,张学林,王群,等.超高产栽培条件下气象条件对夏玉米产量的影响玉米科学,2009,17(1):105~107,112.
    [46]孙海锋,战勇,林海容,等.花期干旱对不同基因型大豆叶绿素荧光特性的影响[J].大豆科学,2008,27(1):56-60.
    [47]孙永健,孙园园,李旭毅,等.水氮互作对水稻氮磷钾吸收、转运及分配的影响[J].作物学报,2010,36(4):655-664.
    [48]唐连顺,李广敏.干旱对玉米杂交种及其亲本自交系幼苗膜脂过氧化及其保护酶活性的影响.作物学报,1995,21(4):509-512.
    [49]佟屏亚,罗振锋,矫树凯.现代玉米生产.北京.中国农业科技出版社,1998.
    [50]王邦锡,孙莉,黄久常.渗透胁迫引起的膜损伤与膜脂过氧化和某些自由基的关系[J].中国科学,1992,B(4):364-368.
    [51]王双.干旱条件下施氮水平对夏玉米生长及干旱阈值的影响[D].武汉:华中农业大学,2008.
    [52]王思思.干旱对我国不同年代玉米杂交种苗期生理特性的影响[D].泰安:山东农业大学,2009.
    [53]卫晓轶,李国清,王艳朋,等.不同基因型玉米某些氮代谢生理指标的差异研究[J].河南农业大学学报,2007.41(3):264-268.
    [54]魏亚萍.氮肥对夏玉米库容建成和充实的影响机理[D].北京:中国农业大学,2004.
    [55]温振民,张永科.用高稳系数法估算玉米杂交种高产稳产性的探讨[J].作物学 报,1994,20(4):508-512.
    [56]吴莹.超高产玉米对低氮胁迫的响应[D].吉林:吉林农业大学,2008.
    [57]吴元奇,潘光堂,荣廷昭.作物稳定性研究进展[J].四川农业大学学报.2005,23(4):482-489.
    [58]武仙山,王正航,昌小平,等.用株高旱胁迫系数分析小麦发育中的抗旱性动态[J].作物学报,2008,34(11):2010-2018.
    [59]徐蕊,王启柏,于滨,等.玉米品种抗旱性评价体系研究[J].玉米科学,2009,17(2):102-107.
    [60]徐世昌,戴俊英,沈秀瑛,等.水分胁迫对玉米光合性能及产量的影响[J].作物学报,1995,21(3):356-363.
    [61]薛吉全,张仁和,马国胜,等.种植密度、氮肥和水分胁迫对玉米产量形成的影响[J].作物学报,2010,36(6):1022-1029.
    [62]严建民,翟虎渠,万建民,等.亚种间重穗型杂交稻光合产物的运转特性及其生理机制[J].中国农业科学,2003,36(5):502-507.
    [63]杨德光,沈秀瑛,赵天宏,等.玉米旱害生理研究进展[J].作物杂志,2001(5):1-4.
    [64]杨国航,孙世贤,张春原,等.全国玉米杂交种推广现状浅析[J].种子,2005,24(9):59-61.
    [65]袁野,吴凤芝,周新刚.光氮互作对番茄果实糖积累及蔗糖代谢相关酶活性的影响[J].中国农业科学,2009,42(4):1331-1338.
    [66]张凤路,BOLANOS J玉米的雌雄穗开花间隔研究进展[J].河北农业大学学报2002,25(5):24-25,37,
    [67]张吉旺,董树亭,王空军,等.遮荫对夏玉米产量及生长发育的影响[J].应用生态学报,2006,17(4):657-662.
    [68]张吉旺.光温胁迫对玉米产量和品质及其生理特性的影响[D].泰安:山东农业大学,2005.[69]张卫星,赵致,柏光晓,等.不同玉米杂交种对水分和氮胁迫的响应及其抗逆性[J].中国农业科学,2007,40(7):1361-1370.[70]张志刚,尚庆茂.低温、弱光及盐胁迫下辣椒叶片的光合特性[J].中国农业科学,2010,43(1):123-131.[71]赵久然,陈国平.不同时期遮光对玉米籽粒生产能力的影响及籽粒败育过程的观察[J].中国农业科学,1990,23(4):28-34.[72]郑盛华.水分胁迫对玉米生理生态特性影响的研究[D].北京:中国农业科学院,2007.[73]郑旭川.灌浆结实期高温弱光对水稻籽粒蛋白质代谢关键酶活性及氨基酸组分的影响[D].雅安:四川农业大学,2009.[74]周玉芝,段会军,姬惜珠,等.河北省夏播玉米品种主要农艺性状演变规律的研究[J].河北农业大学学报,2005,28(2):1-4·
    [75]朱新开,严六零,郭文善,等.淮北稻茬超高产小麦碳氮代谢特征研究.麦类[J].作物学报,2002,22(1):51-55.
    [76]邹江石,吕川根,胡凝,等.两系杂交稻两优培九的生态适应性研究及其种植区域规划[J].中国农业科学,2008,41(11):3563-3572.
    [77]李会勇,王得锋,唐保军,等.玉米单交种ZD958遗传结构及杂种优势初步研究[J].玉米科学,2009,17(1):28-31.
    [78]Aguilar M., Borjas F., Espinosa M.. Agronomic response of maize to limited levels of water under furrow irrigation in southern Spain[J].Spanish Journal of Agricultural Research,20075(4):587-592.
    [79]Andrew R H, Bums M C. Effect of shade applied at consecutive periods on sweet corn development[J]. Journal ofthe American Society for Horticultural Science,1978,103(5): 658-661.
    [80]Banziger,M.Edmeades G O,Lafitte H R.Physiological mechanisms contributing to the increased N stress tolerance of tropical maize selected for drought tolerance[J].Field crop research.2002,75:223-233
    [81]Barber J. Molecular basis of the vulnerability of hotsystem II to damage by light[J]. Australian Journal of Plant Physiology,1995,22(2):201-208.
    [82]Barker J, H. Campos, M. Cooper, et al.2005 Improving drought tolerance in maize. pp. 173-253. In:J. Janick (Ed.), Plant Breed. Rev., Vol.25. John Wiley & Sons, Inc.,New York.
    [83]Baum M., Grando S., Backes G., et al. QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross 'Arta' × H. spontaneum 41-1. Theor Appl Genet,2003,107:1215-1225.
    [84]Becker H C. and Leon J., Stability analysis in plant breeding[J]. Plant breeding,1988, 101,1-23.
    [85]Bjirkman O, Demming B. Photon yield of O evolution and chlorophyll goueoescence character at 77K among vascular plants of diverse origins[J]. Planta 1987,170:489-504.
    [86]Bolanos, J., Edmeades, G.O.,1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize[J]. Field Crop Res.48,65-80.
    [87]Bonal D, Guehl J M. Contrasting patterns of leaf water potential and gas exchange responses to drought in seedlings of tropical rainforest species[J]. Functional Ecology, 2001,15(4):490-496.
    [88]Boyer J.S., Westgate M.E.. Grain yields with limited water[J]. J. Exp. Bot.,2004,55, 2385-2394.
    [89]Brangeon J., Nguyen Q B., Lechamy A. Ultrastructural detection of sucrose synthase distribution in developing maize leaves[J]. Protoplasma,1996,92:3-4.
    [90]Burns MC, Andrew R H. Effect of shade on sweet comdevelopment[J]. Agronomy Abstracts,1976,70.
    [91]Cakir R. Effect of water stress at different development stages on vegetative and reproductive growth of corn[J]. Field Crops Res,2004,89:1-16.
    [92]Cao G, Zhu J, He C, et al. Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.) [J]. Theor Appl Genet, 2001,103:153-160.
    [93]Cattivelli L., Baldi P., Crosatti C., et al. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae[J]. Plant Mol. Biol.2002,48,649-665.
    [94]Crosbie T M. Changes in physiological traits associated with long-term breeding efforts to improve grain yield of maize.//Loden H D, Wilkinson, eds. Proceedings of 37th Annual Corn & Sorghum Research Conference.5-9 December,1982, Washington D C, Chicago I L, American Seed Trade Association,1982,37:206-223.
    [95]Dale J E. The growth of leaves[J].Studies in Biology,1982,137:1-60.
    [96]Ding L., Wang K.J., Jiang G.M., et al. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years[J]. Field Crops Research,2005,93,108-115
    [97]Duvick D N, Smith J S C, Cooper M. Long-term selection in a commercial hybrid maize breeding program[J]. Plant Breeding Review,2004,24:109-152.
    [98]Duvick D N. Genetic contributions to yield gains of U.S. hybrid maize,1930-1980. In: Genetic Contributions to Yield Gains of Five Major Crop Plants. Proceedings of a Symposium, Madison,Wis. (USA),1984. pp 15-47.
    [99]Duvick D N. The Contribution of Breeding to Yield Advances in maize (Zea mays L.) [J]. Advances in Agronomy,2005,86:83-145.
    [100]Duvick D N. What is yield? In:Developing Drought and Low N-Tolerant Maize. Proceedings of Symposium, CIMMYT. El Batan, Mexico,1996. pp 332-335.
    [101]Dwyer L M, Tollenaar M, Stewart D W. Changes in plant density dependence of leaf photosynthesis of maize (Zea mays L.) hybrids,1959 to 1988[J]. Canadian Journal of Plant Science,1991,71:1-11.-
    [102]Earla H.J., Tollenaar M. Differences among commercial maize (Zea mays L.) hybrids in respiration rates of mature leaves[J]. Field Crops Research,1998,59:9-19.
    [103]Earley E B, Miher R J. Effects of shade on maize production under field conditons[J]. Crop Sci.,1967,6:1-6.
    [104]Early E B, Lyons J C, Inselberg E,et al. Earshoot development of Midwest dent corn(Zea mays L.)[J]. Agric. Exp. Stn,1974,747:1-44.
    [105]Eberhart S A, Russell W A. Stability parameters for comparing varieties[J].Crop Sci,1966, 6:36-40.
    [106]Echarte L,Andrade F H.Harvest index stability of Argentimean maize hybrids released between 1965 and 1993[J]. Field Crops Research,2003,82:1-12.
    [107]Echarte L., Tollenaar M. Kernel set in maize hybrids and their inbred lines exposed to stress[J]. Crop Sci.2006,46:870-878.
    [108]Echartea L., Luqueb S., Andrade F.H., et al. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1993[J]. Field Crops Research 68 (2000) 1-8
    [109]Edmeades G.O., Bolanos J., Elings A., et al.2000, The role and regulation of the anthesis-silking interval in maize. In:Westgate, M.E., Boote, K.J. (Eds.), Physiology and Modelling Kernel Set in Maize. CSSA Special Publication No.29. CSSA, Madison, WI, pp.43-73.
    [110]Edmeades G.O., Schussler J., Campos H., et al.2003, Increasing the odds of success in selecting for abiotic stress tolerance in maize, pp.16-28. In:C.J. Birch, S.R. Wilson (Eds.), Versatile Maize-Golden Opportunities. Proc.5th Australian Maize Conference, Toowoomba,18-20 Feb.2003. Maize Association of Australia.
    [111]Ephrath J E, Wang R F, Terashima K. Shading effects on soybcan and corn[J]. Biotronics, 1993,22:15-24.
    [112]Fellipe G M, Garcia Jr O, Felipe G M. Effects of shading the first leaf on growth of two maize cultivars[J]. Ciencia e Cultura,1979,31(8):882-885.
    [113]Foti S, Cosentino S L, Patane C, et al. Plant indicators of available soil water in the perennial herbaceous crop Miscanthus x giganteus Greef et Deu[J].Agronomie,2003,23(1):29-36.
    [114]Foulkes M J. Seott R K, Sylvester-Bradley R. The ability of wheat cultivars to withstand drought in UK conditions:formation of grain yield[J]. J. Agric Sci,2002,138:153-169.
    [115]Foumier C, Andfieu B. Dynamics ofthe elongation of intemodes in maize(Zea mays L.). Effects of shade treatment on elongation pattems[J]. Annals-of-Botany,2000; 86(6):1127-1134.
    [116]Fox PN, Skovmand B, Thompson BK, Braun HJ, Cormier R (1990) Yield and adaptation of hexaploid spring triticale[J]. Euphytica 47:57-64
    [117]Francis T R, Kannenberg L W. Yield stability studies in short-season maize Ⅰ-A descriptive method for grouping genotypes [J].Can J. Plant Sci,1978,58:1029-1034.
    [118]Gallais A., Coque M., Bertin P. Response and selection of a maize population for adaptation to high or low nitrogen fertilization[J]. Maydica,2008,53:21-28.
    [119]Gaskell M L,Pearce R B. Photosynthetic acclimation of maize to solar radiation level[J]. Maydica,1980,25(2):55-64.
    [120]Gerakis P A, Papakosta T D. Growth dynamics of Zea mays L. populations differing in genotype and density and grown under illuminance stress[J]. Oecologia Plantarum,1979, 14(1):13-26.
    [121]Gmelig M H D, Effect of light intensity, temperature and day-length on the rate of leaf appearance of maize[J]. Neth. agriculture Science,1973,21:68-76.
    [122]Grookston R K, Hill D S. Grain yield and land quivalent ratio's from intercropping corn and soybean in Minnesota[J]. Agro.1979,71:41-44.
    [123]Gutezeit B. Yield and nitrogen balance of broccoli at different soil moisture rates[J]. Irrigation Science,2004,23(1):21-27.
    [124]Hamamoto H, Shishido Y, Uchiumi T, etal. Effects of low light intensity on growth, photosynthesis and distribution of photoassimilates in tomato plants[J]. Environment Control in Biology,2000,38 (2):63-69.
    [125]Han H J., Ryoo J W. Effects of shading on growth and dry matter accumulation of corn and sorghum species. Ⅰ. Effects of shading on photosynthetic rate[J]. Journal of the Korean Society of Grassland Science,1988,8(1):61-65.
    [126]Hashemi-Dezfouli A,Herbert S J. Intensifying plant density response of com with artificial shade[J]. Agronomy J.,1992,84(4):547-551.
    [127]Hatch M D, Slack C R, Bull T A. Light-induced changes in the content of some enzymes to the C4 dicarboxylic acid pathway of photosynthesis and its effect on other characteristics of photosynthesis[J]. Phytochemistry,1969.8:696-706.
    [128]Hoveland C S, Buchanan G A, Crowley R H. et al. Response of weed and crop species to shade[J]. Abstracts, Meeting Weed Science Society ofAmerica,1978:1-2.
    [129]Huang W D, Wlu L K, Zhan JCh. Effect of weak light on the peroxidation of membrane lipid of cherry leaves[J]. Acta Botanica Sinica,2002,44(8):920-924.
    [130]Huehn VM. Beitrage zur erfassung der phanotypischen stabilitat[J]. EDV Med Biol.,1979, 10:112-117.
    [131]Jensen C R, Mogensen V O, Poulsen H H, et al. Soil water matric potential rather than water content determines drought responses in field-grown lupin(Lupinus angustifolius) [J]. Australian Journal of Plant Physiology,1998,25(3):353-363.
    [132]Jone H G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling[J]. Agricultural and Forest Meteorology,1999, 95(3):139-149.
    [133]Kang MS. A rank-sum method for selecting high yielding stable corn genotypes[J]. Cereal Res Commun,1988,16:113-115.
    [134]Kiniry J.R., Ritchie J T. Shade-sensitive interval of kernel number of maize[J]. Agron. J. 1985,77:711-715.
    [135]Lawlor D W., Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant Cell Environ.2002,25,275-294.
    [136]Lucas Borra's, Westgate M E., Juan P, et al. Coupling time to silking with plant growth rate in maize[J].Field Crops Research.2007:102:73-85.
    [137]Luigi C, Fulvia R, Franz W, et al. Drought tolerance improvement in crop plants:An integrated view from breeding to genomics[J]. Field Crops Research,2008,105:1-14.
    [138]Mbewe D M N, Hunter R B. The effect of shade stress on the performance of com for silage versus grain[J]. Can. Plant Science,1986,66(1):53-60.
    [139]Meghji M R, Dudley J W, Lambert R J,et al. Inbreeding depression, inbred and hybrid grain yields, and other traits of maize genotypes representing three eras[J]. Crop Science, 1984,24:545-549.
    [140]Mengel K, Judel G K. Effect of shading on nonstructural carbohydrates and their turnover in culms and leaves during the grain filling period of spring wheat[J]. Crop Sci,1982, 22:958-962.
    [141]Muchow, R C. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment I Leaf growth and leaf nitrogen[J]. Field Crop. Res.1988,18,1-16.
    [142]Mudrik V, Kosobrukhov A, Knyazeva I, et al. Changes in the photosynthetic characteristics of Plantago major plants caused by soil drought stress[J]. Plant Growth Regulation,2003,40(1):1-6.
    [143]Nassar R, Huehn M. Studies on estimation of phenotypic stability:tests of significance for nonparametric measures of phenotypic stability[J]. Biometrics,1987,43:45-53.
    [144]Nobel P, S,Zaragoza L J, Smith W K. Relations between mesophyll surface area, photosynthesis rate and illumination level during development for leaves of Plectrantus parviflorus H[J]. Plant Physiology,1975,55:1067-1070.
    [145]Pustovoitova T N, Zhdanova N E, Zholkevich V N. Changes in the rates of nA and ABA in cucumber leaves under progressive soil drought[J]. Russian Journal of Plant Physiology, 2004,51(4):513-517.
    [146]Ramanjulu S., Bartels D. Drought- and desiccation-induced modulation of gene expression in plants[J]. Plant Cell Environ.2002,25:141-151.
    [147]Reddy A R., Chaitanya K.V., Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. J. Plant Physiol.2004, 161:1189-1202.
    [148]Reed A J., Singletary G W. Roles of carbohydrate supply and phytohormones in maize kernel abortion[J]. Plant Physiol.1989,91:986-992.
    [149]Russell W A. Agronomic performance of maize cultivars representing different eras of breeding[J]. Maydica,1984,29:375-390.
    [150]Russell W A. Genetic improvement of maize yields[J]. Advances in Agronomy,1991,46: 245-298.
    [151]Saini H S., Westgate M E. Reproductive development in grain crops during drought[J]. Adv. Agron.2000,68:59-96.
    [152]Sangoi L., Gracietti M.A., Rampazzo C., et al. Response of Brazilian maize hybrids from different eras to changes in plant density[J]. Field Crops Research,79 (2002) 39-51
    [153]Sergio F, Luque, Alfredo G. et al. Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids[J]. Field Crops Research,2006,95:383-397.
    [154]Shukla G K. Some aspects of partitioning genotype-environmental components of variability[J].Heredity,1972,28:237-245.
    [155]Slafer G.A., Araus J.L., Royo C., et al. Promising ecophysiological traits for genetic improvement of cereal yields in Mediterranean environments[J]. Ann. Appl. Biol.2005, 146:61-70.
    [156]Smith S J C, Duvick D N, Smith O S,et al. Changes in pedigree backgrounds of pioneer brand maize hybrids widely grown from 1930 to 1999[J]. Crop Science,2004,44: 1935-1946.
    [157]Struik P C. The effects of short and long shading applied during different stages of growth on the development, productivity and quality of forage maize(Zea mays L.)[J]. Netherlands Journal of Agricultural Science,1983,31(2):101-124.
    [158]Thennarasu K. An certain non-parametric procedures for studying genotype-environment interactions and yield stability[D]. Theses P J School IARI, New Dehli,1995.
    [159]Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance[J]. Crop Sci,1999,39:1597-1640.
    [160]Tollenaar M., Lee E.A. Dissection of physiological process underlying grain yield in mize by examining genetic improvement and heterosis[J]. Maydica 51 (2006):399-408
    [161]Tollenaar M. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988[J]. Crop Sci.1989,29:1365-1371.
    [162]Tollenaar M. Physiological basis of genetic improvement in grain yield of commercial hybrids in Ontario from 1959 to 1988[J]. Crop Sci.1991,31:119-124.
    [163]Tollenaar M. Sink-source relationships during reproductive development in maize. A review[J]. Maydica,1977,22:49-75.
    [164]Tollenaar M., Aguilera A., Nissanka S P. Grain yield is reduced more by weed interference in an old than in a new maize hybrid[J].Agron. J.1997,89:239-246.
    [165]Tollenaar M., Dwyer L M., Stewart D W. Ear and kernel formation in maize hybrids representing three decades of grain yield improvement in Ontario[J]. Crop Sci.1992, 32:432-438.
    [166]Troyer A F. Adaptation and heterosis in corn and mule hybrids[J].Crop Sci,2006,46: 528-543.
    [167]Ueda S., Kubota F. Environmental factors and productivity in silage maize Ⅱ Effects of shading treatments on the production of maize hybrids[J]. Journal of Japanese Society of Grassland Science,1981,27(2):174-181.
    [168]Uhart S A, Andrade F H. Nitrogen deficiency in Maize Ⅱ Carbon-nitrogen interaction effects on kernel number and grain yield[J]. Crop Science,1995,35(5):1384-1389.
    [169]Uhart, S.A., Andrade, F.H. Nitrogen deficiency in maize I Effects on crop growth, development, dry matter partitioning, and kernel set[J]. Crop Sci.1995a,35:1376-1383.
    [170]Uhart, S.A., Andrade, F.H.. Nitrogen deficiency in maize Ⅱ Carbon-nitrogen interaction effects on kernel number and grain yield[J].Crop Sci.,1995b,35:1384-1389.
    [171]Vidovic J. The effect of changes in leaf angle and LAI on the radiation regime of the stand and on photosynthesis in maize leaves[J]. Rostlinna Vyroba,1979,25(12):1247-1256.
    [172]Voltas J., Lopez-Corcoles H., Borras G. Use of biplot analysis and factorial regression for the investigation of superior genotypes in multi-environment trials[J]. Eur. J. Agron.2005, 22,309-324.
    [173]Vyn T J., Hooker D C. Assessment of multiple-and single- factor stress impacts on corn[J]. Field crop research,2002,75:123-137
    [174]Wang G L, Manjit, Kang S., et al.Genetic analyses of grain-filling rate and duration in maize [J]. Field Crops Research,1999,61:211-222.
    [175]Wang X Q, Huang W D. The effects of weak light on the ultrastmcl-ralvariations of phloem tissues in source leaves of three-year-old nectarine trees(Prunus persica L. Var. nectarina Alt.)[J]. Acta Botanica Sinica,2003,45(6):688-697.
    [176]Ward D A, Woolhouse H W. Comparative effects of light during growth on the photosynthetic properties of NADP-ME type C4 grasses from open and shaded habitats I Gas exchange, leaf anatomy and ultrastructure[J]. Plant, Cell and Environment,1986, 9(4):261-270.
    [177]Ward D A, Woolhouse H W. Comparative effects of light during growth on the photosynthetic properties of NADP-ME type C4 grasses from open and shaded habitats II Photosynthetic enzyme activities and metabolism[J]. Plant, Cell and Environment,1986, 9(4):271-277.
    [178]Xu J L, Lafitte H R, Gao Y M, et al. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice[J].Theor Appl Genet,2005,111:1642-1650.
    [179]Yadav O P., Bhatnagar S K., Evaluation of indices for identification of pearl millet cultivars adapted to stress and non-stress conditions[J].Field Crop Res,2001,70,201-208.
    [180]Yan J Q, Zhu J, He C X, et al. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.) [J].Genetics,1998,150:1257-1265.
    [181]Yan W, Hunt LA, Sheng Q, et al. Cultivar evaluation and mega-environment investigation based on the GGE biplot[J]. Crop Sci 2000,40:597-605.
    [182]Yan W, Kang MS, MA BL, et al. GGE Biplot vs. AMMI analysis of genotype -by-environment data[J].Crop Sci,2007,47:643-655.
    [183]Yan W, Rajcan I. Biplot analysis of test sites and trait relations of soybean in Ontario[J]. Crop Sci,2002,42:11-20
    [184]Yan W, Tinker NA. An integrated system of biplot analysis for displaying, interpreting, and exploring genotype-by-environment interactions[J].Crop Sci,2005,45:1004-1016.
    [185]Yan W. GGEbiplot:a windows application for graphical analysis of multi-environment trial data and other types of two-way data[J].Agronomy,2001,93:1111-1118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700