硫酸软骨素寡糖的制备及其体外抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫酸软骨素(Chondroitin Sulfate, CS)为高分子糖胺聚糖的一种,因其较高的生物活性现已应用于临床和医药。但由于CS高分子量、高表观粘度、结构复杂及细胞膜的选择透过性等因素,造成了其生物利用率较低。本文研究了CS的降解方法,对降解产物进行了初步分级及纯化,并研究了低分子量CS的体外抗氧化活性,为糖类药物的筛选与应用提供一定的理论参考。
     论文探索了不同降解方法对CS降解产物的影响。结果表明:酸法降解所得低分子CS硫酸基脱除率高达3.97%,并伴随有4,5-不饱和糖醛酸等不饱和结构产生,产物颜色为橘红色。而酶解条件温和,所得产物硫酸基保存完好,产物颜色为乳白色。体外抗氧化实验表明,酸解所得产物DPPH·自由基清除能力及还原能力均优于酶解所得产物。为有效控制CS分子量范围,以下文中均选用酶解的方法。
     研究了经初步分级后CS的体外抗氧化活性。采用透析袋透析(分子量为5000)及Sephadex G25凝胶柱对CS酶解产物进行初步分级,得到两种重均分子量分别为4875 Da、1326 Da的低分子量CS。分别研究了CS及两种低分子量CS的体外抗氧化活性,结果表明,随着浓度增大,各组分抗氧化活性随之增大;且相同浓度下分子量越低,活性越强。当浓度为10 mg/mL时,低分子量CS(1326 Da)可清除56.22%的羟自由基,高于高分子量CS(21.54%),且对超氧阴离子自由基的清除率可达52.33%。此浓度下,低分子量CS(4875 Da)的还原能力跟低分子量CS(1326 Da)浓度为2 mg/mL时相当。
     建立了CS寡糖的分离纯化方法。首次采用DEAE纤维素52阴离子交换柱与制备凝胶电泳联合的方法实现了对低分子量CS的分离纯化。经分离纯化后得到三种组分,分别采用AKTA superdex peptide及荧光辅助糖电泳对每种组分进行纯度验证,均为单一条带,表明上述分离所得组分单一;采用高效凝胶过滤色谱(HPGFC)对单一组分进行分子量测定,结果表明三种组分分子量分别为521 Da、1024 Da及1527 Da,分别与CS二糖(C14H21NO15SNa2)、四糖(C28H40N2O29S2Na4 )、六糖(C42H59N3O43S3Na6)相吻合。
     研究了单一组分CS寡糖的体外抗氧化活性。结果表明,所得三种CS寡糖(分子量分别为521 Da、1024 Da及1527 Da)的超氧阴离子自由基清除能力及还原能力均表现出了一定的量效关系,即随着浓度的增大,三种寡糖的活性随之增大。对于以上两种测定方法,三种寡糖活性无显著性差异。浓度为4 mg/mL时,超氧阴离子自由基清除力达到最大,约为35%,而达到最大还原能力所需浓度较大(>10 mg/mL)。
Chondroitin Sulfate (CS), a kind of glycosaminoglycans, has been used in clinical and medicine because of the high biological activities. But its bioavailability is relatively lower due to its high molecular weight, high apparent viscosity, complex structure and selective permeability of cell membrance. The different degradation methods of CS, preliminary separation, purification methods and antioxidant activities in vitro of CS degradations were studied in this paper. It can provide a theoretical to screen and apply for carbohydrate drugs.
     In this paper, different degradation methods of CS were studied. It showed that the sulfate removal rate of acid degradation products reached 3.97%, and some 4, 5-unsaturated uronic acids were generated. The color of products was orange-red. While the enzyme hydrolysis condition was mild, the sulfate of enzymatic degradation products was well-preserved, and the color was milky. The vitro antioxidant experiment showed that DPPH? free radical scavenging capacity and reducing power of acid degradations were superior to the enzyme degradations. In order to effective control the degradation, enzymatic method was used in the following paper.
     The antioxidant activities in vitro of different molecular weight CS by preliminary separation were also studied. After dialysis (molecular weight 5000) and Sephadex G25 gel column, two low molecular weight CS were gained, which weight-average molecular weight were 4875 Da and 1326 Da, respectively. The antioxidant experiment in vitro showed that the lower molecular weight was, the stronger the activity was. At 10 mg/mL, the low molecular weight CS (1326 Da) could remove 56.22% of hydroxyl radical, higher than CS (21.54%), and the superoxide anion radical scavenging could reach 52.33%. Reducing power of low molecular weight CS (4875 Da) at 10 mg/mL was similar with that of low molecular weight CS (1326 Da) at 2 mg/mL.
     The purification methods of CS oligosaccharides were established. It’s the first time to combine DEAE-52 cellulose chromatography with preparative electrophoresis to separate the CS oligosaccharides. Three chondroitin sulfate oligosaccharides were obtained, which have been confirmed single band by AKTA superdex peptide column and fluorescent assisted carbohydrate electrophoresis. Through HPGFC measured, the molecular weights of these three components were 521 Da, 1024 Da and 1527 Da, corresponding to the disaccharide, tetrasaccharide and hexasaccharide, respectively.
     Finally, the antioxidant activities in vitro of three CS oligosaccharides (the molecular weights were 521 Da, 1024 Da and 1527 Da) we got were compared. For superoxide anion radical scavenging capacity and reducing power, these three oligosaccharides all showed a definite dose relationship. As the concentration increased, the activities were greater. The activities in the both detecting methods had no significant difference. When the concentration was 4 mg/mL, the superoxide anion radical scavenging abilities of these three oligosaccharides reached the maximum, about 35%. It required higher concentration to achieve the maximal reducing power (> 10 mg/mL).
引文
[1] Vynios D H, Karamanos N K, Tsiganos C P. Advances in analysis of glycosaminoglycans: its application for the assessment of physiological and pathological states of connective tissues[J]. Journal of Chromatography B. 2002, 781(1-2): 21-38.
    [2]崔向珍,王凤山,刘爱华,等.透明质酸寡糖研究进展[J].中国药学杂志. 2006, 41(13): 964-967.
    [3] Jobe K L, Odman-Ghazi S O, Whalen M M, et al. Interleukin-12 release from macrophages by hyaluronan, chondroitin sulfate A and chondroitin sulfate C oligosaccharides[J]. Immunology Letters. 2003, 89(2-3): 99-109.
    [4]付杰,郭学平,王凤山.超声对生物大分子的作用及其在透明质酸降解中的应用[J].中国生化药物杂志. 2008, 29(1): 71-73.
    [5] Choi J, Kim J K, Kim J H, et al. Degradation of hyaluronic acid powder by electron beam irradiation, gamma ray irradiation, microwave irradiation and thermal treatment: A comparative study[J]. Carbohydrate Polymers. 2010, 79(4): 1080-1085.
    [6]蒋秋燕,凌沛学,林洪,等.透明质酸的热降解研究[J].中国医药工业杂志. 2006, 37(1): 15-16.
    [7]柯春林,曾晓雄.透明质酸氧化降解的研究进展[J].化学与生物工程. 2009, 26(4): 16-19.
    [8] Sattar A, Rooney P, Kumar S, et al. Application of angiogenic oligosaccharides of hyaluronan increases blood vessel numbers in rat skin[J]. Journal of Investigative Dermatology. 1994, 103(4): 576-579.
    [9] Chajara A, Raoudi M, Delpech B, et al. Inhibition of arterial cells proliferation in vivo in injured arteries by hyaluronan fragments[J]. Atherosclerosis. 2003, 171(1): 15-19.
    [10]于广利.系列硫酸寡糖的制备及其结构与序列分析[D]: [博士学位论文].青岛:中国海洋大学, 2004.
    [11]丁俊.肝素新作用的研究进展[J].临床合理用药. 2010, 3(12): 136-137.
    [12]伍云松,黄文利.肝素在内科临床应用研究进展[J].临床荟萃. 2002, 17(9): 554-556.
    [13]张万忠,王云山,马润宇,等.肝素降解和低分子量肝素的制备[J].中国生化药物杂志. 2001, 22(1): 48-51.
    [14]于广利,赵峡,张天民.硫酸软骨素的结构特点及其质量控制[J].食品与药品. 2010(5): 153-157.
    [15] Asimakopoulou A P, Theocharis A D, Tzanakakis G N, et al. The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents[J]. In Vivo. 2008, 22(3): 385-389.
    [16] Vakhrusheva T, Panasenko O. Chondroitin 6-sulfate and dextran sulfate promote hypochlorite-induced peroxidation of phosphatidylcholine liposomes[J]. Chemistry and Physics of Lipids. 2006, 140(1-2): 18-27.
    [17] Chou M M, Vergnolle N, Mcdougall J J, et al. Effects of chondroitin and glucosamine sulfate in a dietary bar formulation on inflammation, interleukin-1 beta, matrix metalloprotease-9, and cartilage damage in arthritis[J]. Experimental Biology and Medicine. 2005, 230(4): 255-262.
    [18] Sakai S, Akiyama H, Sato Y, et al. Chondroitin sulfate intake inhibits the IgE-mediated allergic response by down-regulating Th2 responses in mice[J]. Glycobiology. 2006, 16(11): 19872-19880.
    [19] Lee J Y, Lee S H, Kim H J, et al. The preventive inhibition of chondroitin sulfate against the CCl4-induced oxidative stress of subcellular level[J]. Archives of Pharmacal Research. 2004, 27(3): 340-345.
    [20]马永华,陈士恩,臧荣鑫.硫酸软骨素的研究概况[J].中国畜牧兽医. 2007, 34(12): 138-140.
    [21]林洪,姬胜利.硫酸软骨素的药理作用及应用研究进展[J].食品与药品. 2006, 8(12A): 4-7.
    [22]刘武.硫酸软骨素药理作用研究进展[J].中国药业. 2008, 17(8): 64-66.
    [23] Han L K, Sumiyoshi M, Takeda T, et al. Inhibitory effects of chondroitin sulfate prepared from salmon nasal cartilage on fat storage in mice fed a high-fat diet[J]. International Journal of Obesity. 2000, 24(9): 1131-1138.
    [24] Kaplan M, Aviram M. Macrophage plasma membrane chondroitin sulfate proteoglycan binds oxidized low-density lipoprotein[J]. Atherosclerosis. 2000, 149(1): 5-17.
    [25] Schiraldi C, Cimini D, De Rosa M. Production of chondroitin sulfate and chondroitin[J]. Applied Microbiology and Biotechnology. 2010, 87: 1209-1220.
    [26] Mccarty M F, Russell A L, Seed M P. Sulfated glycosaminoglycans and glucosamine may synergize in promoting synovial hyaluronic acid synthesis[J]. Medical Hypotheses. 2000, 54(5): 798-802.
    [27] Bali J P, Cousse H, Neuzil E. Biochemical basis of the pharmacologic action of chondroitin sulfates on the osteoarticular system[J]. Seminars in Arthritis and Rheumatism. 2001, 31(1):58-68.
    [28] Michel B A, Brühlmann P, Stucki G, et al. Chondroprotection Through Chondroitin 4&6 Sulphate (Condrosulf ?): The Zurich Study[C]. 2002.
    [29] Michel B A, Stucki G, Frey D, et al. Chondroitins 4 and 6 sulfate in osteoarthritis of the knee: a randomized, controlled trial[J]. Arthritis & Rheumatism. 2005, 52(3): 779-786.
    [30] Adebowale A, Du J, Liang Z, et al. The bioavailability and pharmacokinetics of glucosamine hydrochloride and low molecular weight chondroitin sulfate after single and multiple doses to beagle dogs[J]. Biopharmaceutics & Drug Disposition. 2002, 23(6): 217-225.
    [31] Du J, White N, Eddington N D. The bioavailability and pharmacokinetics of glucosamine hydrochloride and chondroitin sulfate after oral and intravenous single dose administration in the horse[J]. Biopharmaceutics & Drug Disposition. 2004, 25(3): 109-116.
    [32] Volpi N. Oral bioavailability of chondroitin sulfate (Condrosulf?) and its constituents in healthy male volunteers[J]. Osteoarthritis and Cartilage. 2002, 10(10): 768-777.
    [33] Zou X H, Foong W C, Cao T, et al. Chondroitin sulfate in palatal wound healing[J].Journal of Dental Research. 2004, 83(11): 880-885.
    [34] Fraser P E, Darabie A A, Mclaurin J. A. Amyloid-βinteractions with chondroitin sulfate-derived monosaccharides and disaccharides[J]. Journal of Biological Chemistry. 2001, 276(9): 6412-6419.
    [35] Rolls A, Avidan H, Cahalon L, et al. A disaccharide derived from chondroitin sulphate proteoglycan promotes central nervous system repair in rats and mice[J]. European Journal of Neuroscience. 2004, 20(8): 1973-1983.
    [36] Smetsers T F C M, van de Westerlo E M A, Ten Dam G B, et al. Human single-chain antibodies reactive with native chondroitin sulfate detect chondroitin sulfate alterations in melanoma and psoriasis[J]. Journal of Investigative Dermatology. 2004, 122(3): 707-716.
    [37] Borsig L, Wang L, Cavalcante M, et al. Selectin blocking activity of a fucosylated chondroitin sulfate glycosaminoglycan from sea cucumber[J]. Journal of Biological Chemistry. 2007, 282(20): 14984-14991.
    [38] Pothacharoen P, Siriaunkgul S, Ong-Chai S, et al. Raised serum chondroitin sulfate epitope level in ovarian epithelial cancer[J]. Journal of Biochemistry. 2006, 140(4): 517-524.
    [39] Yamada S, Sugahara K. Potential therapeutic application of chondroitin sulfate/dermatan sulfate[J]. Current Drug Discovery Technologies. 2008, 5(4): 289-301.
    [40] Alkhalil A, Achur R N, Valiyaveettil M, et al. Structural requirements for the adherence of plasmodium falciparum-infected erythrocytes to chondroitin sulfate proteoglycans of human placenta[J]. Journal of Biological Chemistry. 2000, 275(51): 40357-40364.
    [41]张天民,凌沛学.硫酸软骨素的过去、现在和将来[J].食品与药品. 2010, 12(1): 1-3.
    [42]贠健民,吴国锋.耗牛胸小骨中硫酸软骨素的提取研究[J].甘肃农业大学学报. 2008, 43(5): 155-159.
    [43]罗曼,蒋立科.硫酸软骨素快速提取法研究[J].动物学杂志. 2000, 35(5): 37-39.
    [44]高华,刘坤,于兹东,等.硫酸软骨素生产新工艺研究[J].青岛大学学报:工程技术版. 2003, 18(4): 55-58.
    [45]张小军,张虹.鮟鱇鱼硫酸软骨素的提取及性质研究[J].食品工业科技. 2010, 31(12): 258-260.
    [46]赵驻军,张国磊,孙丰梅,等.羊喉骨中硫酸软骨素提取工艺研究[J].河北农业大学学报. 2008, 31(4): 98-101.
    [47]张雯,陈孝亭,黄卫红,等.微波萃取法提取复方硫酸软骨素片中硫酸软骨素C的研究[J].中国生化药物杂志. 2009, 30(3): 181-183.
    [48]蒲志军,马林.超声波法制备硫酸软骨素生产工艺的研究[J].四川师范大学学报:自然科学版. 2000, 23(6): 640-642.
    [49] Nakano T, Ikawa N, Ozimek L. An economical method to extract chondroitin sulphate-peptide from bovine nasal cartilage[J]. Canadian Agricultural Engineering. 2000, 42(4): 205-208.
    [50] Elson L A, Morgan W T J. A colorimetric method for the determination of glucosamine and chondrosamine[J]. Biochemical Journal. 1933, 27(6): 1824-1828.
    [51]高华,刘坤.间苯三酚分光光度法测定硫酸软骨素的研究[J].中国生化药物杂志.2000, 21(5): 247-248.
    [52] Zsadon B, Horváth-otta K, Tüd?sd F, et al. Determination of chondroitin-4-sulfate through its uronic acid content[J]. Starch - St?rke. 1977, 29(4): 139-142.
    [53] Kamata K, Takahashi M, Terajima K, et al. Spectrophotometric determination of sodium chondroitin sulfate in eye drops after derivatization with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole[J]. Analyst. 1995, 120(11): 2755-2758.
    [54] Pospíchal R, Nesměrák K, Rychlovsky P, et al. Determination of chondroitin sulfate by thiazine dyes using flow injection analysis with spectrophotometric detection[J]. Analytical Letters. 2007, 40(6): 1167-1175.
    [55] Murata Y, Miyamoto E, Seo S, et al. Colorimetric determination of hyaluronate and chondroitin sulfate by the 2-nitrophenylhydrazine coupling method[J]. Arch Pract Pharm. 1991, 51(4): 246-249.
    [56]茅力,吕志宏,陈景衡,等.间接原子吸收法测定鲨鱼软骨粉中硫酸软骨素[J].中华预防医学杂志. 1998, 32(3): 183-184.
    [57]李艳平,吴拥军,常佩亮,等.化学发光法快速测定硫酸软骨素注射液的含量[J].华西药学杂志. 2007, 22(3): 331-332.
    [58]杨海霞,刘燕,刘彩霞,等.硫酸软骨素检测方法研究进展[J].中国生化药物杂志. 2009, 30(1): 58-60.
    [59]茅力.离子色谱法测定硫酸软骨素的含量[J].中国药科大学学报. 1998, 29(5): 358-361.
    [60]姬胜利,崔慧斐,迟延青,等.一种多硫酸化硫酸软骨素及其制备方法[P].中国专利, 200510045393.9.
    [61]张和,戚善龙.脱乙酰硫酸软骨素制备技术[P].中国专利, 200610040789.9.
    [62]吕彩霞,姚子华.纳米羟基磷灰石/壳聚糖-硫酸软骨素复合材料的制备及其性能研究[J].复合材料学报. 2007, 24(1): 110-115.
    [63]王康建,曾睿,叶易春,等.胶原-壳聚糖-硫酸软骨素三元膜材料的制备与性能研究[J].皮革科学与工程. 2009, 19(2): 26-30.
    [64] Liu W, Wang H Y, Pang X B, et al. Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum[J]. International Journal of Biological Macromolecules. 2010, 46(4): 451-457.
    [65] Ofman D, Slim G C, Watt D K, et al. Free radical induced oxidative depolymerisation of chondroitin sulphate and dermatan sulphate[J]. Carbohydrate Polymers. 1997, 33(1): 47-56.
    [66]蔡苏兰,阎浩林,何汉洲.微生物硫酸软骨素裂解酶的研究进展[J].沈阳药科大学学报. 2004, 21(1): 76-80.
    [67]徐帆宏.一种低分子量硫酸软骨素的制备方法[P].中国专利,200410053526.2.
    [68] Deepa S S, Yamada S, Fukui S, et al. Structural determination of novel sulfated octasaccharides isolated from chondroitin sulfate of shark cartilage and their application for characterizing monoclonal antibody epitopes[J]. Glycobiology. 2007, 17(6): 631-645.
    [69] Deepa S S, Kalayanamitra K, Ito Y, et al. Novel sulfated Octa- and Decasaccharidesfrom squid cartilage Chondroitin Sulfate E: sequencing and application for determination of the epitope structure of the monoclonal antibody MO-225[J]. Biochemistry. 2007, 46(9): 2453-2465.
    [70] Miller M J C, Costello C E, Malmstr?m A, et al. A tandem mass spectrometric approach to determination of chondroitin/dermatan sulfate oligosaccharide glycoforms[J]. Glycobiology. 2006, 16(6): 502-513.
    [71] Pek Y S, Spector M, Yannas I V, et al. Degradation of a collagen-chondroitin-6-sulfate matrix by collagenase and by chondroitinase[J]. Biomaterials. 2004, 25(3): 473-482.
    [72] Chai W, Kogelberg H, Lawson A M. Generation and structural characterization of a range of unmodified chondroitin sulfate oligosaccharide fragments[J]. Analytical Biochemistry. 1996, 237(1): 88-102.
    [73]杨晓兵,由守谊,齐东绮.一种低分子量硫酸软骨素的制备方法[P].中国专利,200610146273.2.
    [74] Hassan M S, Mileva M M, Dweck H S, et al. Nitric oxide products degrade Chondroitin sulfates[J]. Nitric Oxide. 1998, 2(5): 360-365.
    [75]汤毅.低分子量硫酸软骨素的制备方法[P].中国专利,03114375.X.
    [76]汤毅.一种制备中、低分子量硫酸软骨素的方法及产物[P].中国专利,200310119303.7.
    [77]孙涛,陶慧娜,周冬香,等.不同降解方式对k-卡拉胶低聚糖抗氧化活性的影响[J].食品与发酵工业. 2009, 35(7): 24-27.
    [78] Tamura J, Nakada Y, Taniguchi K, et al. Synthesis of chondroitin sulfate E octasaccharide in a repeating region involving an acetamide auxiliary[J]. Carbohydrate Research. 2008, 343(1): 39-47.
    [79] Kinoshita A, Sugahara K. Microanalysis of glycosaminoglycan-derived oligosaccharides labeled with a fluorophore 2-aminobenzamide by high-performance liquid chromatography: Application to disaccharide composition analysis and exosequencing of oligosaccharides[J]. Analytical Biochemistry. 1999, 269(2): 367-378.
    [80] Krekoski C A, Neubauer D, Zuo J, et al. Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan[J]. Journal of Neuroscience. 2001, 21(16): 6206-6213.
    [81] Liu M M, Qin W, Xie H P. Changes in N-methyl-D-aspartate receptor 2A subunit expression caused by binocular form deprivation and chondroitin sulfate proteoglycan degradation[J]. Neural Regeneration Research. 2011, 6(6): 462-466.
    [82] Tatemoto H, Muto N, Yim S D, et al. Anti-hyaluronidase oligosaccharide derived from chondroitin sulfate a effectively reduces polyspermy during in vitro fertilization of porcine oocytes [J].Biology of Reproduction. 2005, 72(4): 127-134.
    [83] Ebert S, Schoeberl T, Walczak Y, et al. Chondroitin sulfate disaccharide stimulates microglia to adopt a novel regulatory phenotype[J]. Journal of Leukocyte Biology. 2008, 84(3): 736-740.
    [84] Mcalindon T E, Lavalley M P, Gulin J P, et al. Glucosamine and chondroitin for treatment of osteoarthritis[J]. JAMA: the Journal of the American Medical Association. 2000,283(11): 1469-1475.
    [85] Cuzzocrea S, Riley D P, Caputi A P, et al. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury[J]. Pharmacological Reviews. 2001, 53(1): 135-159.
    [86] Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. the International Journal of Biochemistry & Cell Biology. 2007, 39(1): 44-84.
    [87] Campo G M, Avenoso A, Campo S, et al. Chondroitin-4-sulphate inhibits NF-kB translocation and caspase activation in collagen-induced arthritis in mice[J]. Osteoarthritis and Cartilage. 2008, 16(12): 1474-1483.
    [88] Egea J, García A G, Verges J, et al. Antioxidant, antiinflammatory and neuroprotective actions of chondroitin sulfate and proteoglycans[J]. Osteoarthritis and Cartilage. 2010, 18: S24-S27.
    [89] Trabucchi E, Pallotta S, Morini M, et al. Low molecular weight hyaluronic acid prevents oxygen free radical damage to granulation tissue during wound healing[J]. International Journal of Tissue Reactions. 2002, 24(2): 65-71.
    [90] Trommer H, Wartewig S, Bottcher R, et al. The effects of hyaluronan and its fragments on lipid models exposed to UV irradiation[J]. International Journal of Pharmaceutics. 2003, 254(2): 223-234.
    [91] Zhao H, Tanaka T, Mitlitski V, et al. Protective effect of hyaluronate on oxidative DNA damage in WI-38 and A549 cells[J]. International Journal of Oncology. 2008, 32(6): 1159-1167.
    [92]邱芳萍,张玲,于健.硫酸钡比浊法对鹿茸多糖中硫酸基含量的测定[J].长春工业大学学报(自然科学版). 2005, 26(4): 268-270.
    [93] Platzer M, Ozegowski J H, Neubert R H H. Quantification of hyaluronan in pharmaceutical formulations using high performance capillary electrophoresis and the modified uronic acid carbazole reaction[J]. Journal of Pharmaceutical and Biomedical Analysis. 1999, 21: 491-496.
    [94]张真庆.褐藻胶酶解寡糖的制备、分离和结构鉴定[D]: [硕士学位论文].青岛:中国海洋大学, 2003.
    [95]孙静,李健军,黄琳娟,等.荧光辅助糖电泳用于果胶水解产物中寡糖的分析研究[J].化学学报. 2009, 67(9): 951-956.
    [96]范秀萍,吴红棉,王娅楠,等. 4种贝类糖胺聚糖体外清除自由基活性的比较[J].食品科技:提取物与应用. 2008, (2): 165-167.
    [97] Sarikurkcu C, Tepe B, Semiz D K, et al. Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey[J]. Food and Chemical Toxicology. 2010, 48(5): 1230-1233.
    [98] Larrauri J A, Ruperez P, Calixto F S. Antioxidant activity of wine pomace[J]. American Journal of Enology and Viticulture. 1996, 47(4): 369-372.
    [99] BezákováZ, HermannováM, D?ímalováE, et al. Effect of microwave irradiation on the molecular and structural properties of hyaluronan[J]. Carbohydrate Polymers. 2008, 73(4):640-646.
    [100] Campo G M, Avenoso A, Campo S, et al. The antioxidant and antifibrogenic effects of the glycosaminoglycans hyaluronic acid and chondroitin-4-sulphate in a subchronic rat model of carbon tetrachloride-induced liver fibrogenesis[J]. Chemico-biological Interactions. 2004, 148(3): 125-138.
    [101] Alkrad J A, Mrestani Y, Stroehl D, et al. Characterization of enzymatically digested hyaluronic acid using NMR, Raman, IR, and UV-Vis spectroscopies[J]. Journal of Pharmaceutical and Biomedical Analysis. 2003, 31(3): 545-550.
    [102] Xie Z, Huang J, Xu X, et al. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate[J]. Food Chemistry. 2008, 111(2): 370-376.
    [103] Dreher D, Junod A F. Role of oxygen free radicals in cancer development[J]. European Journal of Cancer. 1996, 32(1): 30-38.
    [104] Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion[J]. Journal of Agricultural and Food Chemistry. 1992, 40(6): 945-948.
    [105] Duh P D. Antioxidant activity of burdock (Arctium lappa Linne): its scavenging effect on free-radical and active oxygen[J]. Journal of the American Oil Chemists' Society. 1998, 75(4): 455-461.
    [106] Decker E A, Akoh C C, Min D B. Antioxidant mechanisms[J]. Food Lipids: Chemistry, Nutrition, and Biotechnology. 2002, (2): 517-542.
    [107] Vaya J, Aviram M. Nutritional antioxidants mechanisms of action, analyses of activities and medical applications[J]. Current Medicinal Chemistry-Immunology, Endocrine & Metabolic Agents. 2001, 1(1): 99-117.
    [108] Kim J K, Srinivasan P, Kim J H, et al. Structural and antioxidant properties of gamma irradiated hyaluronic acid[J]. Food Chemistry. 2008, 109(4): 763-770.
    [109] Stern R. Devising a pathway for hyaluronan catabolism: are we there yet?[J]. Glycobiology. 2003, 13(12): 105R-115R.
    [110] Nishino T, Aizu Y, Nagumo T. The influence of sulfate content and molecular weight of a fucan sulfate from the brown seaweed Ecklonia kurome on its antithrombin activity[J]. Thrombosis Research. 1991, 64(6): 723-731.
    [111] Pomin V H, Pereira M S, Valente A P, et al. Selective cleavage and anticoagulant activity of a sulfated fucan: stereospecific removal of a 2-sulfate ester from the polysaccharide by mild acid hydrolysis, preparation of oligosaccharides, and heparin cofactor II–dependent anticoagulant activity[J]. Glycobiology. 2005, 15(4): 369-381.
    [112] Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs[J]. General Pharmacology. 1997, 29(4): 497-511.
    [113] Volpi N, Maccari F. Microdetermination of chondroitin sulfate in normal human plasma by fluorophore-assisted carbohydrate electrophoresis (FACE)[J]. Clinica Chimica Acta. 2005, 356(1-2): 125-133.
    [114] Calabro A, Midura R, Wang A, et al. Fluorophore-assisted carbohydrate electrophoresis (FACE) of glycosaminoglycans[J]. Osteoarthritis and Cartilage. 2001, 9: S16-S22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700