基于RARα/HDAC双靶点抗癌药物的设计、合成与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.立题背景
     长期以来,白血病一直是威胁人类生命健康的恶性血液疾病,并且随着工业化进程的发展、环境的恶化,诱发白血病的外因逐渐增多,使得白血病的发病率特别是儿童白血病的发病率呈上升趋势。
     随着分子生物学、细胞生物学的发展,白血病的发病机制研究不断深入,染色体易位、原癌基因及抑癌基因的变异是白血病发病的主要原因,信号通路等的改变对白血病的进程有直接的影响,但由于不同类型的白血病发病机制的差异,造成白血病治疗的复杂性及多变性。
     维甲酸类化合物是4000余个天然及合成化合物的总称,其中多种化合物已成为肿瘤治疗的一线用药,如全反式维甲酸(ATRA)通过诱导细胞分化作用而成为复发或难治性急性早幼粒细胞白血病(APL)治疗的首选及一线用药;他米巴罗汀(Tamibarotene, AM80),是特异性RARα激动剂,临床主要用于治疗各种类型的APL,由日本Nippon Shinyaku公司开发,2005年6月在日本首次上市(商品名Amnolake)。
     组蛋白去乙酰化酶(HDAC)通过参与调控基因的转录而与白血病及其它恶性肿瘤发生、发展密切相关,是肿瘤治疗中一类较新的作用靶点:通过核受体,HDAC可被募集至肿瘤细胞中,使肿瘤细胞中HDAC呈高表达,其后果包括:细胞中基因的正常转录因此受到抑制,最终导致肿瘤的发生;其次,白血病及其它恶性肿瘤中往往存在细胞的异常增殖及分化受阻,这与影响细胞生长及分化的相关蛋白的静默相关,而这些蛋白的静默是启动子区域DNA的异常甲基化,以及包含组蛋白去乙酰化在内的染色体结构发生改变的结果。这种HDAC与恶性肿瘤发生、发展间的相关性是寻找及研究组蛋白去乙酰化酶抑制剂(HDACIs)的理论基础。组蛋白去乙酰化酶抑制剂(HDACIs)按结构特点共分6大类,目前已有部分组蛋白去乙酰化酶抑制剂被批准上市,还有10多个处于临床试验阶段。组蛋白去乙酰化酶抑制剂能够缓解特定致癌基因产物引起的转录抑制,已证实在白血病及其它恶性肿瘤的治疗中具有确切的疗效,其对白血病的治疗机制主要包括:诱导细胞分化,特别是对ATRA产生耐药的病人尤其显著:HDACIs通过抑制HDAC活性,消除特定靶细胞组蛋白去乙酰化,使得白血病细胞恢复对ATRA的敏感性;其它作用机制还包括诱导白血病细胞的凋亡及抑制增殖;细胞周期阻滞等等。组蛋白去乙酰化酶抑制剂的优点在于,靶向性较好,相应地毒副作用较小缺点是生物利用度低、代谢快。目前已有多个HDACIs进入临床试验阶段,SAHA是FDA批准的第一个上市的HDACIs。
     2.目标化合物的设计
     对已有的HDACIs结构进行分析发现,HDACIs的结构一般由三部分组成:疏水性基团、连接基团及锌离子螯合基团。基于已知HDAC抑制剂(如SAHA)的三维结构及其与酶的结合模型,根据药物设计的拼合原理,同时借鉴前药及多靶点药物理论,本文以RARa选择性激动剂他米巴罗汀(AM80)为疏水性基团,以异羟肟酸、羧基等作为锌离子螯合基团,通过酯键或酰胺键(连接基团)将二者融合,设计合成了一系列结构全新的HDAC抑制剂。目标化合物进入到体内后,通过抑制HDAC的活性,从而抑制白血病细胞的增殖、促进其分化和诱导其凋亡,同时,其在体内酯酶或酰胺酶催化下可代谢释放出AM80, AM80作用于RARa受体而诱导白血病细胞的分化和抑制其增殖而发挥白血病治疗作用,实现与前体药物的协同调节作用。
     3.目标化合物的合成
     本研究以2,5-二甲基-2,5-己二醇为起始原料,经过卤代、付-克烷基化、硝化、催化氢化、酰化、缩合反应,然后经酯水解反应得到关键中间体他米巴罗汀(AM80)。最后他米巴罗汀与邻苯二胺,盐酸羟胺,羟基乙酸,甘氨酸等进行近一步的缩合得到目标化合物。目标化合物和具有全新结构的中间体化合物采用1H-NMR、ESI-MS谱进行了结构确证。
     4.目标化合物生物活性评价
     对所合成化合物进行了体外的初步活性评价。体外抑酶试验中,采用HDAC(HDAC试剂盒、Hela细胞提取物和HDAC-8)、氨肽酶-N和明胶酶三种酶分别进行活性筛选。验结果表明所有的目标化合物对HDAC有选择性抑制作用,其中化合物10b和12b对HDAC的抑酶活性与阳性对照SAHA相当。体外细胞实验通过MTT法测定了化合物10b和12b对人卵巢透明细胞癌ES-2,人结肠癌细胞株HCT116,人乳腺癌细胞株MDA-MB-231,人慢性粒细胞白血病细胞株K562,人急性早幼粒白血病细胞株HL-60和NB4以及人前列腺癌细胞株PC-3的增殖抑制活性。结果表明化合物10b和12b对ES-2细胞、PC-3细胞、K562细胞及HL-60细胞的抑制活性均优于阳性对照SAHA,对HCT116细胞、MDA-MB-231细胞及NB4细胞的抑制活性均略弱于阳性对照SAHA。10b对HL-60及NB4细胞的抑制活性明显优于对照组AM80,12b对NB4细胞的抑制活性亦明显优于AM80。
     5.药动学研究
     选取具有较好抑酶活性和增殖抑制活性的目标化合物12b和10b,以已批准上市的RARa受体选择性激动剂AM80为阳性对照药,采用口服和静脉注射两种给药途径研究了目标化合物在Wistar大鼠体内的药物动力学特性。结果显示,静注给药后,10b在血浆中以独立分子存在,5min至11h可持续释放出AM80,并且10b作为AM80的前体药物,与AM80单独给药相比,各药动学参数均有较大改变,如使AM80的MRT从4.44h延长到18.09h,t1/2从2.22h延长到3.88h,Tmax也从0.08h延长到4h,这些结果显示10b静注可以很好地和其前体药物发挥协同治疗作用。与静注给药相比,10b和12b口服给药均显示较低的生物利用度,血浆中仅检测到少量的前体药物及AM80。
     6.总结与展望
     本研究以他米巴罗汀为基本结构骨架设计合成了19个目标化合物,并对其进行了体外初步活性评价。其中,化合物10b和12b在体外表现出较好的抑酶活性及对多株肿瘤细胞很强的增殖抑制活性。体内药动学研究结果表明目标化合物可代谢释放出AM80,与其前体药物HDAC抑制剂形成协同治疗、调节作用,使其具有多靶点效应。这些化合物是很有研究前景的先导化合物,对于开发新一代HDAC抑制剂类抗肿瘤药物具有重要意义。
1. Research background
     Leukemia, the malignant disease of hematopoietic system, has long been a threat to human life and health. With the development of the process of industrialization and environmental degradation, the incidence of leukemia, especially childhood leukemia incidence rate is rising.
     The pathogenesis of leukemia includes chromosomal translocations and hematopoiesis-related oncogenes or antioncogenes mutations. Signaling pathways affect the processs of leukemia. But due to the differences in pathogenesis of different types of leukemia, the cure methods become complexity and variability.
     Retinoids, the general term of more than4,000natural and synthetic compounds, include a variety of compounds which have enter the clinic and the first-line therapeutic agents of tumor treatment, such as all-trans retinoic acid (ATRA) and Tamibarotene(Am80). Am80is a selective RARa agonist developed by Japanese company Nippon Shinyaku in June2005(trade name:Amnolake).
     Histone deacetylase (HDAC), involved in the regulation of gene transcription with leukemia and other malignancies, is becoming the new target of cancer therapy: the discovery of the recruitment of HDAC enzyme by nuclear receptors in cancer provide a rationale for inhibition of HDAC activity to release transcriptional repression. Histone deacetylase inhibitors (HDACIs) is divided into six categories. HDACIs are amenable to the design of multi-targeted small molecules because their inherent chemical flexibility and synergy with various anticancer agents. HDACIs can release transcriptional repression caused by the specific oncogene product, and the leukemia treatment mechanisms include:causing cell arrest, differentiation and/or apoptosis of tumor cells, particularly those patients who were highly resistant to ATRA. The advantages of the histone deacetylase inhibitor is better targeted, accordingly toxicity smaller, the disadvantage is the low bioavailability and fast metabolism. Several HDACIs are now undergoing clinical trials and SAHA is the first FAD-approved pan-HDACi to enter the clinic.
     2. Rational drug design of target compounds
     Currently identified HDACIs shared the following structural character:Cap group, linker and ZBG (zinc binding group). Based on the3D structures of known HDACIs and binding modes of these compounds in complex with HDACs, according to the Principles of Hybridization and Prodrug, we designed and synthesized a series of novel HDAC inhibitors. The retinoic acid receptor RARα agonist Tamibarotene (AM80) was selected as a hydrophobic fragment of the new compounds; glycolic acid, glycine,6-aminocaproicacid and other connection chains of varying lengths as linkers; different hydroximic acid and carboxyl structure as Zn2+binding group. We hope that these new compounds play the role of combined treatment:at first the compounds could maintain the utility structure of HDACIs and have the activity of it, then the Am80can be disposed to play the activity of the Am80in vivo.
     3. Synthesis of designed target compounds
     The important intermediate AM80was synthesized using2,5-Dimethyl-2,5-hexanediol as starting material through a reaction sequence including halogenation reaction, Friedel-Crafts alkylation, nitration, catalytic hydrogenation, acalytion, condensation and hydrolysis. The condensation of Am80with o-phenylenediamine, hydroxylamine hydrochloride, hydroxy acetic acid and glycin led to all the target compounds. The structures of target compounds and important intermediate were identified by'H-NMR, ESI-MS spectra
     4. Biological evaluation of the synthesized target compounds
     Preliminary activity assay was carried out in vitro. Three kinds of enzymes were selected, which are HDAC, APN and Gelatinase. The results showed that most target compounds exhibited highly selective inhibition against HDAC as compared with APN and MMP-2. The compounds10b and12b were as potent as the positive control SAHA against HDAC. Compounds10b and12b were also assayed for their anti-proliferation activity towards ES-2, HCT116, MDA-MB-231, K562, HL-60, NB4and PC-3cell lines. MTT method was employed. The result showed that10b and12b exhibited higher antiproliferation activity against ES-2, PC-3, K562and HL-60cell lines than positive drug SAHA, and as compared with the AM80,10b have stronger antiproliferative activity against HL-60cell line and12b have stonger antiproliferative activity against NB4cell line.
     5. Pharmacokinetic study
     This study was performed to describe the compounds (10b,12b) concentration-time courses administrated either orally or intravenously to rats, to select an optimized administration scheme.12b and10b which have interesting bioactivity were administered (oral and i.v.) to rats to investigate whether it is actually metabolized to tamibarotene(AM80). The results show that after i.v. administration,10b kept the utility at first then disposed AM80after5minutes. Comparison of tamibarotene concentration profile after i.v. administration of10b, the MRT prolonged from4.44h to18.09h, t1/2from2.22h to3.88h, Tmax from0.08h to4h. These results indicate10b is possibly useful as a prodrug of AM80. Compared with iv administration,10b and12b all had low bioavailability after oral administration.
     6. Conclusion and prospect
     A series of novel HDAC inhibitors based on the scaffold of AM80were designed and synthesized. Preliminary enzyme activity assay and anti-proliferation assays of seven cell lines showed10b and12b possess potential inhibitory activity. Pharmacokinetic study showed that10b and12b, especially10b disposed AM80after i.v. administration and play the role of synergistic effects. These compounds are promising lead compounds for developing new generation of HDAC inhibitors as antitumor agents.
引文
[1]Greaves MF. Biological models for leukaemia and lymphoma[J].I ARC Sci Publ, 2004,157:351-372.
    [2]Jay L Grisolano,Iulie O Neal,Jennifer Caim,et al. An activated receptor tyrosine kinase,TEL/PDGFβR,cooperates with AML1/ETO to induce acute myeloid leukemia in mice[J]. Medical Sciences,2003,100(16):9506-9511.
    [3]T iensiwakul P. Cloning and sequencing of ETV6/RUNX1(TEL/AML1) variant in acute lymphoblastic leukemia[J]. Cancer Genet Cytogenet,2004:149(1):85-88.
    [4]Melean TW, Ringold S, Neuberg D. et al. TEL-AML1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood,1999:88 4252-4258.
    [5]Chen T, Bunting M, Karim FD, et al. Isolation and characterization of five Drosophila genes that encode an ets-related DNA binding domain[J]. Dev Biol., 1992,151(1):176-91.
    [6]Lo Coco F, Pisegna S, Diverio D. The AML1 gene:a transcription factor involved in the pathogenesis of myeloid and lymphoid leukemias[J]. Haematologica. 1997,82(3):364-70.
    [7]Ielent A, Greaves M, Enver T. Role of the TEL-AML 1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastc leukemia[J] Oncoge ne, 2004,23(24):4275-4283.
    [8]Gun ji H, Waga K, Nakamura F, e t al. TEL/AML1 show s dominant-negat ive eff ect s over TEL as w ell as AML1[J]. Biochem Bi ophys R es Com mun,2004, 322(2):623-630.
    [9]Berman E. Recent advances in the treatment of acute leukemia[J] Curr Opin Hematol.1997,4(4):256-60.
    [10]Spicuglia S, Vincent-Fabert C, Benoukraf T, et al. Characterisation of genome-wide PLZF/RARA target genes[J]. PLoS One.2011;6(9):e24176.
    [11]Chen Y, Gu L, Zhou C,et al. Relapsed APL patient with variant NPM-RARalpha fusion responded to arsenic trioxide-based therapy and achieved long-term survival[J]. Int J Hematol.2010,91(4):708-10.
    [12]Sukhai MA, Thomas M, Xuan Y,et al. Evidence of functional interaction between NuMA-RARalpha and RXRalpha in an in vivo model of acute promyelocytic leukemia[J]. Oncogene.2008,27(34):4666-77.
    [13]Downing JR. The AML1-ETO chimaceric transcription factor in acute myeloid leukaemia:biology and clinical significance[J]. Br J haematol,1999,106:296-308.
    [14]Amann JM, Nip J, Strom DK, et al.ETO,a target of t(8;21) in acute leukemia,makes distinct contacts with multiple histone deacetylases and bind mSin3A through its oligomerization domain[J]. Mol. Cell Biol,2001,21:6470-6483.
    [15]Lutterbach B,Westendorf JJ,Linggi B,et al.ETO,a tartet of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors[J]. Mol Cell Biol,1998,18:7176-7184.
    [16]Hildebrand D, Tiefenbach J, Heinzel T, et al.Maurer, Multiple regions of ETO cooperate in transcriptional repression[J]. JBiol Chem,2001,27:9889-9895.
    [17]Nathan D, Laura MG, Shari M. The ETO(MTG8) gene family[J]. Gene,2003, 303:1-10.
    [18]Lutt Enbach B,Hiebert SW.Role of the transcription factor AML-1 in acute leukemia and hematopoietie differentiation. Gene,2000,245:223-235.
    [19]Koken MH,Reid A,Quignon F, et al.Leukemia-associated retinoic acid receptor alpha fusion partner,PML and PLZF,heterodimerize and colocalize to nuclear bodies. Proc Natl Acad Sci USA,1997,94:10255-10260.
    [20]Klampfer L,Zhang J,Zelenelz AO.et al.The AML1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci USA,1996,93:14059-14064.
    [21]Faderl S, Talpaz M, Estrov Z, et al. Chronic myelogenous leukemia:biology and therapy [J]. Ann Intern Med,1999,131(3):207-219.
    [22]Senechal K, Halpern J, Sawyers CL. The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene[J]. J Biol Chem,1996,271(38):23255-23261.
    [23]Raitano AB, Halpern JR, Hambuch TM, et al. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation[J]. Proc Natl Acad Sci U S A, 1995,92 (25):11746-11750.
    [24]Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia [J]. Blood,2000,96(10):3343-3356.
    [25]Zhao S, Konopleva M, Cabreira-Hansen M, et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias[J]. Leukemia,2004,18(2):267-275.
    [26]Keeshan K, Cotter TG, McKenna SL. High Bcr-Abl expression prevents the translocation of Bax and Bad to the mitochondrion[J]. Leukemia,2002,16(9): 1725-1734.
    [27]Gesbert F, Griffin JD. Bcr/Abl activates transcription of the Bcl-X gene through STAT5 [J].Blood,2000,96(6):2269-2276.
    [28]Kuribara R, Honda H, Matsui H, et al. Roles of Bim in apoptosis of normal and Bcr-Abl-expressing hematopoietic progenitors[J]. Mol Cell Biol,2004,24(14):6172-6183.
    [29]Li WX. Canonical and non-canonical JAK-STAT signaling[J]. Trends Cell Biol, 2008,18(11):545-551.
    [30]Constantinescu SN, Girardot M, Pecquet C. Mining for JAK-STAT mutations in cancer. Trends Biochem Sci.2008 Mar;33(3):122-31.
    [31]Ferrajoli A, Faderl S, Ravandi F,et al. The JAK-STAT pathway:a therapeutic target in hematological malignancies. Curr Cancer Drug Targets.2006 Dec;6(8):671-9.
    [32]Mustafa B, Maria RB,Heinz B,et al. Signal transducer and activator of transcription proteins in leukemias[J]. Blood,2003,101(8):2940-2954.
    [33]Davidw, Sternberg D, Gary G, et al. Signal Transducer and Activator of Transcription Factors in leukemogenesis[J] Journal of Clinical Oncology, 2004,22(2):361-371.
    [34]Lewis RS, Ward AC. Stat5 as a diagnostic marker for leukemia[J]. Expert Rev Mol Diagn.2008;8(1):73-82.
    [35]Luis TC, Ichii M, Brugman MH,et al. Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia. 2011 Dec 15.doi:10.1038/leu.2011.387.
    [36]Staal FJ, Luis TC. Wnt signaling in hematopoiesis:crucial factors for self-renewal, proliferation, and cell fate decisions[J]. J Cell Biochem.2010,109(5):844-9.
    [37]Dihlmann S, von Knebel Doeberitz M. Wnt/β-catenin-pathway as a molecular target for future anti-cancer therapeutics[J] Int J Cancer.,2005,113(4):515-24.
    [38]Ge X,Wang X. Role of Wnt canonical pathway in hemalological malignancies.J Hematol Oncol,2010,3:33.
    [39]Roboz GJ,Guzman M. Acute myeloid leukemia stem cells:seek and destory[J]. Expert Rev Hematol,2009,2(6):663-672.
    [40]Wang Y,Krivtsov AV, Sinha AU, et al. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML [J]. Science,2010,327(5973): 1650-1653.
    [41]Majeti R,Becker MW,Tian Q, et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells[J]. Proc Natl Acad Sci USA,2009, 106(9):3396-3401.
    [42]Serinsoz E,Neusch M,Busche G,et al. Aberrant expression of B-catenin discriminates acute myeloid leukaemia from acute lymphoblastic leukaemia[J]. Br J Haematol,2004,126(3:):313-319.
    [43]Griffiths EA,Gore SD,Hooker C,et al. Acute myeloid leukemia is characterized by Wnt pathway inhibitor promoter hypermethylation[J]. LeukLymphoma,2010, 51(9):1711-1719.
    [44]Valencia A, Roman-Gomea J, Cervera J, et al. Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia[J]. Leukemia,2009,23 (9):1658-1666.
    [45]Martin V,Agirre X,Jim nez-Velasco A, et al. Methylation status of Wnt signaling pathway genes affects the clinical outcome of Philadelphia-positive acute lymphoblastic leukemia[J]. Cancer Sci,2008,99(9):1865-1868.
    [46]Barata JT, Silva A, Brandao JG, et al. Activiation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use and growth of T cell acute lymphoblastic leukemia cells[J]. J Exp Med,2004,200(5)659-669.
    [47]Vivanco I,Suwyers CL.The phophatidylinositol 3-kinase AKT pathway in human cancer[J].Nat Rev Cancer,2002,2(7):489-501.
    [48]Ly C, Arechiga AF, Melo JV, et al. Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin[J]. Cancer Res.2003;63(18):5716-22.
    [49]Choi BH, Kim CG, Lim Y,et al. Curcumin down regulates the multridrug-resistance mdrlb gene by inhibiting the PI3K/Akt/NF Kappa B pathway[J]. Cancer Lett,2008.259(1):111-118.
    [50]Tazzari PL, Cappelline A, Ricci F,et al. Multidrug resistance-associated proten 1 wxpression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts[J].Leukemla,2007,21(3):427-438.
    [51]Scholl C, Gilliland DG, Frohling S. Deregulation of signaling pathways in acute myeloid leukemia[J]. Semin Oncol,2008,35(4):336-345.
    [52]Pearson G, Robinson F, Beers GT,et al. Mitogen-activated protein(MAP) kinase pathways:regulation and physiological functions[J]. En docr Rev,2001,22(2):153-183.
    [53]Virag V, Zsuzsanna K, Paloczi k, et al. Notch signaling in the regulation of hematopoiesis[J]. Orv Hetil,2005,146(7):309-316.
    [54]Laurie AM,Bigas A. Notch as a mediator of cell fate determination in hematopoiesis:Evidence and Speculation[J].Blood,1999,93(8):2431-2448.
    [55]Lobin A,Jang M,Miele L.Toward the rational design of cell fate modifiers:notch signaling as a target for novel biopharmaceuticals[J]. Curr Pharm Biotech,2000, 1:83-106.
    [56]Maillard J,Fang T,Pear WS. Regulation of lymphoid deventiation and function by the Notch pathway[J].Annu Rev Immunol,2005,23:945-974.
    [57]Scadden DT. T-cell differention:Notch another step[J]. Blood,2003,102(7):2316.
    [58]Munger K. Disruption of oncogene/tumor suppressor networks during human carcinogenesis [J]. Cancer Invest,2002,20(1):71-81.
    [59]Amati B,Brooks,MW,Levy N,et al.Oncogenic activity of the c-myc protein requires dimerization with Max [J].Cell,1993,72(2):233-245.
    [60]Gopal V,Hulette B,Li Yaqin,et al.C-myc and C-myb expression in acute myelogenous leukemia [J].Leuk Res,1992,16(10):1003-1011.
    [61]Spencer CA,Groudine M.Control of c-myc regulation in normal and neoplastic cells [J].Adv Cancer Res,1991,56:1-48.
    [62]Blick M,Westin E,Gutterman J,et al.Oncogene expression in human leukemia [J].Blood,1984,64:1234-1239.
    [63]Mc Clain KL.Expression of oncogenes in human leukemias [J].Cancer Res,1984,44:5382-5389.
    [64]Freytag SO. Definition of the activities and properties of c-myc required to inhibit cell differentiation[J]. Cell Growth Differ,1990,1:339.
    [65]Maher J, Baker D, Dibb N, et al. Mutant ras promotes haemopoietic cell proliferation or differentiation in a cell-specific manner[J]. Leukemia,1996, 10(1):83-90.
    [66]Byrne JL, Marshall CJ. The molecular pathophysiology of myeloid leukaemias: Rasrevisited[J]. Br J Haematol,1998,100(2):256-264.
    [67]A ndre C, Hampe A, Lachaume P, Martin E, Wang XP, Manus V, Hu WX, Galibert F (January 1997). "Sequence analysis of two genomic regions containing the KIT and the FMS receptor tyrosine kinase genes". Genomics 39 (2):16-26..
    [68]Marquette A,Bagot M,Bensussan A, et al.Recent discoveries in the genetics of melanoma and their therapeutic implications [J].Arch Immunol Ther Exp(Warsz),2007,55(6):363-372.
    [69]Roskoski R. Structure and regulation of Kit protein tyrosine kinase-the stem cell factor receptor[J]. Biochem Biophys Res Commun, 2005,338(3):1307-1315.
    [70]Miettinen M, Lasota J. Kit(CD117):a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation [J].Appl Immunoh istochem Mol Morphol 2005,13(3):205-220.
    [71]Hong L, Munugalavadla V, Kapur R. et al. c-Kit mediated overlapping and unique functional and biochemical outcomes via diverse signaling pathways[J].Mol Cell Biol 2004,24(3):1401-1410.
    [72]Voytyuk O, Lennartsson J, Mogi A, et al.Srcfamily kinases are involved in the differential signaling from two splice forms of c-Kit[J].J Biol Chem,2003,278(11): 9159-9166.
    [73]Qiu XQ, Wang H, Cai B, et al. Small antibody mimetics comprising two complement arity-determining regions and a framework region for tumor targeting. [J].Nat Bio technol 2007,25(8):921-929.
    [74]Yuzawa S, Opatowsky Y, Zhang Z, et a 1. Structural basis for activation of the receptor tyrosine kinase Kit by stem cell factor [J].Cell 2007,130(2):323-334.
    [75]Knudson AG Jr. Mutation and cancer:statistical study of retinoblastoma[J].Proc NatlAcad Sci USA,1971,68(4):820.
    [76]Dryja T,Cavenee W, Epstein J,et al. Chromosome 13 homozygosity inosteogenic sarcoma without retinoblastoma [J].Am J Hum Genet,1984,36(2):28S
    [77]Hong FD, Huang HJ, To H, et al. Structure of the human retinoblastoma gene[J].Proc Natl Acad Sci USA,1989,86(14):5502.
    [78]Paggi MG, de Fabritiis P, Bonetto F, et al. The retinoblastoma gene product in acute myeloid leukemia:a possible involvement in promyelocytic leukemia[J]. Cancer Res,1995,55(20):4552-4556.
    [79]Peller S, Rotter V. TP53 in hematological cancer:low incidence of mutations with significant clinical relevance[J]. Hum Mutat,2003,21(3):277-284.
    [80]Sporn MB, Roberts AB. What is a retinoid? Ciba Found.Symp.1985,113,1-5.
    [81]Ross SA, McCaffery PJ., Drager UC.,et al., Retinoids in embryonal development. [J]. Physiol. Rev.,2000,80(3):1021-54.
    [82]Wald G,The molecular basis of visual excitation[J]. Nature,1968,219(5156):800-7.
    [83]Mangelsdorf DJ, Umesono K,, Evams RM. The Retinoids,The Retinoid Receptors. Orlando FL:Academic Press,1994:319.
    [84]Keidel S, Lemotte P, Apfel C,et al.Different agonist-and antagonist-induced conformational changes in retinoic acid receptors analyzed by protease mapping. Mol Cell Biol,1994,14(1):287-298.
    [85]Giguere V, Ong ES,Segui P, et al. Identification of a receptor for the morphogen retinoic acid[J]. Nature,1987,330(6149):624-629.
    [86]Petkovich M, Brand NJ, Krust A, et al. A human retinoic acid receptor which belongs to the family of nuclear receptors [J]. Nature,1987,330(6147):444-450.
    [87]Brand N, Petkovich M, Krust A,et al. Identification of a second human retinoic acid receptor [J]. Nature,1988,332(6167):850-853.
    [88]Zelent A, Krust A, Petkovich M, et al. Cloning of murine alpha and beta retinoic acid receptors and a novel receptor gamma predominantly expressed in skin [J]. Nature,1989,339(6227):714-717.
    [89]Krust A, Kastner P, Petkovich M,et al. A third human retinoic acid receptor, hRAR-gamma[J]. Proc Natl Acad Sci U S A.1989,86(14):5310-5314.
    [90]Mangelsdorf DJ, Ong ES, Dyck JA,et al. Nuclear receptor that identifies a novel retinoic acid response pathway[J]. Nature,1990,(345):224-229.
    [91]Kastner P, Krust A, Mendelsohn C, et al. Murine isoforms of retinoic acid receptor gamma with specific patterns of expression[J]. Proc Natl Acad Sci U S A.1990,87(7):2700-2704.
    [92]Mangelsdorf DJ, Borgmeyer U, Heyman RA, et al. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid[J]. Genes Dev.,1992,(6):329-344.
    [93]Germain P, Chambon P, Eichele G, et al. International Union of Pharmacology. LX. Retinoic acid receptors[J]. Pharmacol Rev,2006,58(4):712-725.
    [94]Germain P, Chambon P, Eichele G, et al. International Union of Pharmacology. LXIII.Retinoid X receptors[J]. Pharmacol Rev,2006,58(4):760-772.
    [95]Christov K. The novel RARbeta isoform (beta5) is a potential target of Retinoids in breast cancer[J]. Curr Cancer Drug Targets,2009,9(2):142-147.
    [96]Bastien J, Rochette-Egly C. Nuclear Retinoid receptors and the transcription of Retinoid-target genes[J]. Gene,2004,328:1-16.
    [97]Fontana JA, Rishi AK. Classical and novel Retinoids:their targets in cancer therapy[J]. Leukemia,2002,16(4):463-472
    [98]Allenby QBocquel MT,Saunders M, et al. Retinoic acid receptors and retinoid X receptors:interactions with endogenous retinoic acids[J]. Proc. Natl. Acad.Sci. U.S.A.1993 (90) 1:30-4.
    [99]Isserman I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators[J].Nature,1990,347(6294):645-650.
    [100]Spanjaard RA, Ikeda M, Lee PJ, et al. Specific activation of retinoic acid receptors (RARs) and retinoid X receptors reveals:a unique role for RAR gammain induction of differentiation and apoptosis of S91 melanoma cells J Biol Chem,1997, 272(30):18990-18999.
    [101]Hu, X. Lazar, M.A. Transcriptional repression by nuclear receptors[J]. Trends Endocrinol. Metab.2000, 11(1),6-10.
    [102]Germain P, Iyer J,Zechel C,et al, Co-regulator recruitment and the mechanism of retinoic acid receptor synergy[J].Nature,2002,415(6868):187-192.
    [103]Altucci,L. Gronemeyer,H. The promise of retinoids to fight against cancer[J]. Nature Rev. Cancer,2001,1(3),181-193.
    [104]Renaud JP,Rochel N,Ruff M et al.Crystal structure of the RAR-γ ligand binding domain bound to all-trans retinoic acid. Nature,1995,378 (6558):681-9.
    [105]Klaholz B.P., Mitschler A,Belema M,et al. Enantiomer discrimination illustrated by high-resolution crystal structures of the human nuclear receptor hRARy. Proc. Natl. Acad. Sci. U.S.A.,200097(12),6322-7.
    [106]Klaholz, B., Mitschler A, Moras D.,Structural basis for isotype selectivity of the human retinoic acid nuclear receptor[J]. J Mol Biol.2000,302(1):155-70.
    [107]Bourguet,W, Vivat,V,Wurtz JM,et al. Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains[J]. Mol. Cell,2000,5(2):289-298.
    [108]Kikuchi,K.,Hibi,S.,Yoshimura H.,et al. Syntheses and structure-activity relationships of 5,6,7,8-tetrahydro-5,5,8,8-tetra-methyl-2-quinoxaline derivatives with retinoic acid receptor a agonist activity[J]. J.Med.Chem,2000,43 (3):409-19.
    [109]Teng,M., Duong TT,Klein ES, et al. Identification of a retinoic acid receptor asubtype specific agonist[J]. J. Med.Chem.1996,39(16),3035-8
    [110]Kagechika, H., Kawachi, E.,Hashimoto, Y.,et al. Retinobenzoic acids.1. Structure-activity relationships of aromatic amides with retinoidal activity[J]. J. Med. Chem.,1988,31(11),2182-2192
    [111]Zusi,F.C. et al. Preparation of 5-substituted 1,1,3,3-tetramethyl-2-ketoindanes as retinoid-like compounds. World Patent Application,1998,47,861.
    [112]Gehin, M.,Vivat V,Wurtz JM,et al. Structural basis for engineering of retinoic acid receptor isotype-selective agonists and antagonists[J]. Chem. Biol.,1999,6 (8) 519-29.
    [113]Ostrowski, J., Roalsvig T,Hammer L, et al. Serine 232 and methionine 272 define the ligand binding pocket in retinoic acid receptor subtypes[J]. J. Biol. Chem., 1998,273 (6):3490-5.
    [114]Teng, M., Duong TT,Johnson AT,et al. Identification of highly potent retinoic acid receptor a-selective antagonists [J]. J. Med. Chem.1997,40 (16):2445-51.
    [115]Li, Y. Hashimoto, Y.,Agadir, A.,et al. Identification of a novel class of retinoic acid receptor β-selective retinoid antagonists and their inhibitory effects on AP-1 activity and retinoic acid-induced apoptosis in human breast cancer cells[J]. J. Biol. Chem.,1999,274(22),15360-6.
    [116]Egea PF, Mitschler A, Rochel N, et al. Crystal structure of the human RXRalpha ligand-binding domain bound to its natural ligand:9-cis retinoic acid[J]. EMBO J, 2000,19(11):2592-2601.
    [117]de Urquiza AM, Liu S, Sjoberg M,et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science,2000,290 (5499):2140-4.
    [118]Egea PF, Mitschler A, Rochel N, et al. Crystal structure of the human RXRalpha ligand-binding domain bound to its natural ligand:9-cis retinoic acid[J]. EMBO J, 2000,19(11):2592-2601.
    [119]Boehm, MF, Zhang L,Badea BA, et al. Synthesis and structure-activity relationships of novel retinoid X receptor-selective retinoids[J]. J. Med. Chem,1994, 37 (18):2930-41
    [120]Farmer, L.J. et al.Synthesis and structure-activity relationships of potent retinoid X receptor ligands[J]. Bioorg. Med. Chem. Lett.1997,7(1):2393-8
    [121]Farmer, L.J. et al. Synthesis and structure-activity relationships of potent conformationally restricted retinoid X receptor ligands[J].Bioorg. Med. Chem. Lett., 1997,7,2747-52
    [122]Koch SSC, Dardashti LJ, Hebert JJ, et al.Identification of the first retinoid X receptor homodimer antagonist[J] J. Med. Chem.1996,39(17):3229-34.
    [123]Cesario RM, Klausing K, Razzaghi H, et al. The Rexinoid LG100754 is a novel RXR:PPAR agonist and decreases glucose levels in vivo. Mol. Endocrinol.2001, 15(8),1360-9.
    [124]Thacher SM, Vasudevan J, Chandraratna R. A. therapeutic applications for ligands of retinoid receptors[J]. Curr. Pharm.Des.2000,6(l):25-58.
    [125]Takahashi B, Ohta K, Kawachi E,et al. Novel retinoid X receptor antagonists: specific inhibition of retinoid synergism in RXR-RARheterodimer actions[J]. J. Med. Chem.2002,45(16):3327-30.
    [126]Lala, DS, Mukherjee R, Schulman IG, et al. Activation of specific RXR heterodimers by an antagonist of RXR homodimers[J]. Nature,1996,383 (6599): 450-3
    [127]Takahashi B, Ohta K,Kawachi E, et al. Novel retinoid X receptor antagonists:specific inhibition of retinoid synergism in RXR-RAR heterodimer actions[J].J. Med. Chem,2002.45 (16):3327-30.
    [128]Kagechika H, Shudo K. Synthetic Retinoids:recent developments concerning structure and clinical utility[J]. J Med Chem,2005,48(19):5875-5883.
    [129]Balmer JE, Blomhoff R.Gene expression regulation by retinoic acid. J. Lipid Res. 2002,43(11):1773-1808.
    [130]Muto Y, Moriwaki H. Antitumor activities of vitamin A and its derivatives[J]. J. Natl. Cancer Inst.1984,73(6),1389-1393.
    [131]Napoli JL., Biochemical pathways of retinoid transport, metabolism, and signal transduction[J]. Clin. Immunol. Immunopathol.,1996,80 (3Pt2):S52-62.
    [132]Gudas LJ, Sporn MB, Roberts AB. Cellular biology and biochemistry of retinoids. In:Sporn MB, Roberts AB, Goodman DS, eds. The Retinoids:Biology, Chemistry, and Medicine, Second Edition. New York, NY:Raven Press Ltd.,1994:443-520.
    [133]Shealy YF. Synthesis and evaluation of some new retinoids for cancer chemoprevention[J]. Prev Med,1989,18:624
    [134]Barnard JH, Collings JC, Whiting A, et al. Synthetic Retinoids:structure-activity relationships[J]. Chemistry,2009,15(43):11430-11442.
    [135]Lens M, Medenica L. Systemic Retinoids in chemoprevention of non-melanoma skin cancer[J]. Expert Opin Pharmacother,2008,9(8):1363-1374.
    [136]Altucci L, Leibowitz MD, Ogilvie KM, et al. RAR and RXR modulation in cancer and metabolic disease[J]. Nat Rev Drug Discov,2007,6(10):793-810.
    [137]Tazarotene, Menter A. Pharmacokinetics and safety of tazarotene[J]. J Am Acad Dermatol,2000,43(2 Pt 3):S31-35.
    [138]Gniadecki R, Assaf C, Bagot M, et al. The optimal use of bexarotene in cutaneous T-cell lymphoma[J].Br. J. Dermatol.,2007,157(3):433-40.
    [139]Dragnev KH, Petty WJ, Shah SJ,et al A proof-of-principle clinical trial of bexarotene in patients with non-small cell lung cancer[J]Clin. Cancer Res.,2007, 13(6):1794-800.
    [140]Wolbach SB, Howe PR. Tissue changes following deprivation of fat-soluble vitamin A[J]. J Exp Med,1925,42 (6):753-777.
    [141]Moon RC, Mehta RG, Rao KVN. Retinoids and cancer in experimental animals. In:Sporn MB, Roberts AB, Goodman DS, eds. The Retinoids:Biology, Chemistry, and Medicine,Second Edition. New York, NY:Raven Press Ltd.,1994:573-595.
    [142]Nason-Burchenal K, Dmitrovsky E. The retinoids:cancer therapy and prevention mechanisms. In:Nau H, Blaner W,eds. Retinoids. The Biochemical and Molecular Basis of Vitamin A and Retinoid Action (Handbook of Experimental Pharmacology), Vol.139. Berlin:Springer,1999:301-322.
    [143]Hong WK, Itri LM. Retinoids and human cancer. In:Sporn MB, Roberts AB, Goodman DS, eds. The Retinoids:Biology,Chemistry, and Medicine, Second Edition. New York, NY:Raven Press Ltd.,1994:597-630.
    [144]Anzano, MA, Byers SW, Smith JM, et al. Prevention of breast cancer in the rat with 9-cis retinoic acid as a single agent and in combination with tamoxifen[J]. Cancer Res.1994,54 (17),4614-17.
    [145]Rook AH, Jaworsky C, Nguyen T, et al.Beneficial effect of low-dose systemic retinoid in combination with topical tretinoin for the treatment and prophylaxis of premalignant and malig nant skin lesions in renal transplant recipients[J]. Transplantation,1995;59 (5):714-9.
    [146]Edwards L, Jaffe P. The effects of topical tretinoin on dysplastic nevi[J]. Arch Dermatol 1990,126 (4):494-9.
    [147]Halpern AC, Schuchter LM, Elder DE, et al. Effects of topical tretinoin on dysplastic nevi[J]. J Clin Oncol 1994; 12 (5):1028-35.
    [148]Hong WK, Endicott J, Itri LM, et al.13-cis-retinoic acid in the treatment of oral leukoplakia[J]. N Engl J Med,1986;315 (24):1501-5.
    [149]Epstein JB, Gorsky M. Topical application of vitamin A to oral leukoplakia:a clinical case series. Cancer 1999;86 (6):921-7.
    [150]Chiesa F, Tradati N, Marazza M, et al. Fenretinide (4-HPR) in chemoprevention of oral leukoplakia[J]. J Cell Biochem,1993;17(Suppl):255-61.
    [151]Costa A, Formelli F, Chiesa F, et al. Prospects of chemoprevention of human cancers with the synthetic retinoid fenretinide[J]. Cancer Res 1994;54 (7 Suppl):2032s-7s.
    [152]Hong WK, Itri LM. Retinoids and human cancer. In:Sporn MB, Roberts AB, Goodman DS, editors. The retinoids. New York:Raven Press,1994:597-658.
    [153]Hong WK, Lippman SM, Itri LM, et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck[J]. N Engl J Med 1990; 323 (12):795-801.
    [154]Zandwijk N, Dalesio O, Pastorino U, et al. EUROSCAN, a randomized trial of vitamin A and N-acetylcysteine in patients with head and neck cancer or lung Cancer[J]. J Natl Cancer Inst 2000;92(12):977-86.
    [155]Garattini E,, Gianni M, Terao M. Cytodifferentiation by retinoids, a novel therapeutic option in oncology:rational combinations with other therapeutic agents. Vitam Horm.,2007;75:301-54.
    [156]Siddikuzzaman,Guruvayoorappan C,Berlin Grace.All trans retinoic acid and cancer[J].VMImmunopharmacol Immunotoxicol.,2011,33(2):241-9.
    [157]Brown D, Kogan S, Lagasse E, et al. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia[J]. Proc. Natl. Acad. Sci.USA,1997,94(6), 2551-6.
    [158]Quignon F, Chen Z, de The H.Retinoic acid and arsenic:towards oncogene-targeted treatments of acute promyelocytic leukaemia[J]. Biochim. Biophys. Acta,1997,1333 (3),M53-M61.
    [159]Lallemand-Breitenbach V,Guillemin MC, Janin A,et al. Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia[j].J. Exp. Med.,1999,189(7),1043-1052.
    [160]Yoshida H, Kitamura K, Tanaka K, et al Accelerated degradation of PML-retinoic acid receptor alpha (PML-RARA) oncoprotein by all-trans-retinoic acid in acute promyelocytic leukemia:possible role of the proteasome pathway[J]. Cancer Res.,1996,56(13),2945-2948.
    [161]Raelson JV, Nervi C, Rosenauer A, et al. The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells[J]. Blood,1996,88(8),2826-2832.
    [162]Nervi C, Ferrara FF, Fanelli M, et al. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARalpha fusion protein[J].Blood,1998,92(7),2244-51.
    [163]Zhu J, Gianni M,Kopf E, et al. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins[J]. Proc Natl Acad Sci U S A,1999,96(26):14807-14812.
    [164]Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes[J].Gene,2004,328,1-16.
    [165]Liu M., Iavarone A., Freedman LP. Transcriptional activation of the human p21(WAF1/CIP1) gene by retinoic acid receptor. Correlation with retinoid induction of U937 cell differentiation[J]. J.Biol.Chem.,1996,271 (49):31723-8
    [166]Bao GC, Wang JG, Jong A. Increased p21 expression and complex formation with cyclin E/CDK2 in Retinoid-induced pre-B lymphoma cell apoptosis[J]. FEBS Lett,2006,580(15):3687-3693.
    [167]Pfahl M, Piedrafita FJ. Retinoid targets for apoptosis induction[J]. Oncogene, 2003,22(56):9058-9062.
    [168]Tiwari M, Kumar A, Sinha RA, et al. Mechanism of 4-HPR-induced apoptosis in glioma cells:evidences suggesting role of mitochondrial-mediated pathway and endoplasmic reticulum stress[J]. Carcinogenesis,2006,27(10):2047-2058.
    [169]Gonda K, Tsuchiya H, Sakabe T, et al. Synthetic Retinoid CD437 induces mitochondria-mediated apoptosis in hepatocellular carcinoma cells[J]. Biochem Biophys Res Commun,2008,370(4):629-633.
    [170]Gallagher RE. Retinoic acid resistance in acute promyelocytic leukemia[J]. Leukemia,2002,16(10):1940-1958.
    [171]Candoni A, Damiani D, Michelutti A, et al. Clinical characteristics, prognostic factors and multidrug-resistance related protein expression in 36 adult patients with acute promyelocytic leukemia[J]. Eur J Haematol.,2003,71(1):1-8.
    [172]Quere R, Baudet A, Cassinat B, et al. Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity[J]. Blood,2007,109(10):4450-4460.
    [173]Steinbach D, Legrand O. ABC transporters and drug resistance in leukemia:was P-gp nothing but the first head of the Hydra?[J]. Leukemia,2007,21(6):1172-1176.
    [174]Michieli M, Damiani D, Ermacora A, et al. P-glycoprotein (PGP), lung resistance-related protein (LRP) and multidrug resistance-associated protein (MRP) expression in acute promyelocytic leukaemia[J]. Br J Haematol,2000, 108(4):703-709.
    [175]Spotswood H T, Turner B M. An increasingly complex code[J]. J Clin Invest, 2002,110(5):577-582.
    [176]Turner B M. Cellular memory and the histone code [J]. Cell,2002,111(3):285-291.
    [177]Cress WD, Seto E.Histone deacetylases,transcriptional control and cancer,J Cell Physiol.,2000,184(1):1-16
    [178]Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases. EMBO reports 2003;4(10):944-7.
    [179]Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 2008; 7(10): 854-68.
    [180]Olaf Witt,Hedwig E. Deubzer,Till Milde,Ina Oehme HDAC family:What are the cancer relevant targets, Cancer Letters,277(2009)8-21
    [181]Ropero S, Fraga MF, Ballestar E,et al. R. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition,Nat. Genet.38 (2006) 566-569.
    [182]Park JM, Lee GY, Choi JE, et al, No association between polymorphisms in the histone deacetylase genes and the risk of lung cancer, Cancer Epidemiol. Biomarkers Prev.14(2005) 1841-1843.
    [183]Cebrian A, Pharoah PD, Ahmed S, et al, Genetic variants in epigenetic genes and breast cancer risk, Carcinogenesis 27 (2006) 1661-1669.
    [184]Ozdag H, Teschendorff AE, Ahmed AA, et al, Differential expression of selected histone modifier genes in human solid cancers, BMC Genomics 7 (2006) 90.
    [185]Park BL, Kim YJ, Cheong HS,et al. HDAC 10 promoter polymorphism associated with development of HCC among chronic HBV patients, Biochem. Biophys. Res. Commun.363 (2007) 776-781.
    [186]Witt O, Deubzer HE, Milde T, et al. HDAC family:What are the cancer relevant targets? Cancer Lett.2009,8;277(1):8-21.
    [187]MonneretC. Histone deacetylase inhibitors[J].Eur J Med Chem.,2005,40,1-13.
    [188]Yoshida M, Kijima M, Akita M, et al. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A[J]. J. Biol. Chem.1990,265:17174-17179.
    [189]Paris M, Porcelloni M, Binaschi M, et al. Histone Deacetylase Inhibitors:From Bench to Clinic[J]. J. Med. Chem.2008,51(6):1505-1529.
    [190]Kiamer H,Gottlicher M,Heinzel T. Histone deacetylase as a therapeutic target Trends Endocrinol[J]. Metab.2001,12(7):294-300
    [191]Budillon A,Bmzzese F,et al.Multriple-target drugs inhibits of heat shock protein 90 and of histone deacetylase[J]. Curr Drug Targets,2005,6(3):337-351.
    [192]Nervi C,Borello U,Fazi F,et al. Inhibition of histone deacetylase activity by trichostatin A modulates gene expression during mouse embryogenesis without apparent toxicity[J]. Cancer Res,2001,61(4):1247-1249
    [193]Gozzini A,Rovirla E,Sbarba PD,et al.Butyrates as a single drug induce histone acetylation and granulocytiemaluration possible selectivity on core binding factor acute myebid leukemia blasts[J]. Cancer Res,2003,63(24):8955-8961
    [194]Lorinez MC,Schubeler D,GrouDIne M. Methylation-mediated proviral silencing is associated with MeCP2 recruitment and localized histone H3 deacetylation[J].Mol Cell Biol,2001,21(23):7913-7922
    [195]Wittich S,Scherf H,Xie C,et al. Sturcture-activity relationships on phenylalanine-containing inhibitors of histone deacetylase:in vitro enzyme inhibition,induction of differentiation and inhibition of proliferation in Friend leukemia cells[J]. J Med Chem,2002,45(15):3296-3309
    [196]Tagh iyev AF, Guseva NV, S turmMT, et al. TrichostatinA (TSA) sensitizes the human prostatic cancer cell line DU145 to death receptor ligands treatment[J].Cancer Biol Ther,2005,4(4):382-390.
    [197]New bold A, Lindem ann RK, Cluse LA, et al. Characterisation of the novel apoptotic and therapeutic activities of the histone deacetylase inhibitor romidepsin[J].Mol Cancer Ther,2008,7(5):1066-1079.
    [198]Fulda S. Modulation of TRAIL-induced apoptosis by HDAC inhibitors[J]. Curr Cancer Drug Targets,2008,8(2):132-140.
    [199]Nebbioso A, Clarke N, Voltz E,et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemiacells[J]. Nat Med,2005,11(1): 77-84.
    [200]Choi YH. Apoptosis of U937 human leukemic cells by sodium butyrate is associated with inhibition of telomerase activity[J]. Int J Onco,2006, 29(5):1207-1213.
    [201]Marks PA. Thioredoxin in cancer-role of histone deacetylase inhibitors[J].Sem in Cancer Biol.2006,16(6):436-443.
    [202]Archer SY,Meng S, Shei A, et al.p21(WAF1)is required for butyrate mediated growth inhibition of human colon cancer cells[J].Proc Natl Acad Sci USA.1998, 95(12):6791-6796
    [203]Ouweh K,Ruijter A,Bree C,et al.Histonedeacetylase inhibitor BL1521 induces a G1-phase arrest in neuroblastom a cells through altered expression of cell cycle proteins[J]. FEBS Lett.2005,579(6):1523-1528.
    [204]Rosato RR,Maqqio SC,Almenara JA,et al.The histone deacetylase inhibitor LAQ824 induces human leukemia cell death through a process involving XIAP down regulation, oxidative injury, and the acid sphingomy elinase-dependent generation of ceramide[J].Mol Pharm acol 2006,69(1):216-225.
    [205]Kim S, Kang JK, Kim YK, et al. Histone deacetylase inhibitor apicid ininduces cyclin E expression through Spl sites [J]. Biochem Biophys Res Commun,2006, 342(4):1168-1173.
    [206]Kitamura K, Hoshi S, Koike M, et al. Histone deacetylase inhibitor but not arsenic trioxide differentiates acute promyelocytic leukaemia cells with t(11;17) in combination with all-trans retinoic acid[J]. Br J Haematol,2000,108(4):696-702.
    [207]Warrell RP Jr, He LZ, Richon V, et al. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase[J]. J Natl Cancer Inst,1998,90(21):1621-1625.
    [208]Bellos F, Mahlknecht U. Valproic acid and all-trans retinoic acid:meta-analysis of a palliative treatment regimen in AML and MDS patients[J]. Onkologie,2008, 31(11):629-633.
    [209]He LZ, Tolentino T, Grayson P, et al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia[J]. J Clin Invest,2001,108(9):1321-1330.
    [210]Wang XF, Qian DZ, Ren M, et al. Epigenetic modulation of retinoic acid receptor beta2 by the histone deacetylase inhibitor MS-275 in human renal cell carcinoma[J]. Clin Cancer Res,2005, 11(9):3535-3542.
    [211]Savickiene J, Treigyte G, Borutinskaite V, et al. The histone deacetylase inhibitor FK228 distinctly sensitizes the human leukemia cells to retinoic acid-induced differentiation[J]. Ann N Y Acad Sci,2006,1091:368-384.
    [212]Espinoza-Fonseca LM. The benefits of the multi-target approach in drug design and discovery[J]. Bioorg Med Chem,2006,14(4):896-897.
    [213]Nudelman A, Rephaeli A. Novel mutual prodrug of retinoic and butyric acids withenhanced anticancer activity[J]. J Med Chem,2000,43(15):2962-2966.
    [214]Mann KK, Rephaeli A, Colosimo AL, et al. A retinoid/butyric acid prodrug overcomesretinoic acid resistance in leukemias by induction of apoptosis[J]. Mol Cancer Res,2003,1(12):903-912.
    [215]Xia Z, Wiebe LI, Miller GG, et al. Synthesis and biological evaluation of butanoate,retinoate, and bis(2,2,2-trichloroethyl)phosphate derivatives of 5-fluoro-2'-deoxyuridine and 2',5-difluoro-2'-deoxyuridine as potential dual action anticancer prodrugs[J]. Arch Pharm(Weinheim),1999,332(8):286-294.
    [216]Zimmermann GR, Lehar J, Keith CT. Multi-target therapeutics:when the whole is greater than the sum of the parts[J]. Drug Discov Today,2007,12(1-2):34-42.
    [217]Hopkins AL. Network pharmacology:the next paradigm in drug discovery[J]. Nat Chem Biol,2008,4(11):682-690.
    [218]Silva AT, Chung MC, Castro LF, et al. Advances in prodrug design[J]. Mini Rev MedChem,2005,5(10):893-914.
    [219]仇缀百.药物设计学[M].北京:高等教育出版社,2001:88.91.
    [220]Yoshida M, Kijima M, Akita M, et al. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A[J]. J. Biol. Chem.1990,265:17174-17179.
    [221]Paris M, Porcelloni M, Binaschi M, et al. Histone Deacetylase Inhibitors:From Bench to Clinic[J]. J. Med. Chem.2008,51(6):1505-1529.
    [222]Barnard JH, Collings JC, Whiting A, et al. Synthetic Retinoids:structure-activity relationships[J]. Chemistry,2009,15(43):11430-11442.
    [223]Balmer JE, Blomhoff R.Gene expression regulation by retinoic acid[J]. J. Lipid Res.2002,43(11):1773-1808.
    [224]Muto Y, Moriwaki H. Antitumor activities of vitamin A and its derivatives[J]. J. Natl. Cancer Inst.1984,73(6),1389-1393.
    [225]Tazarotene, Menter A. Pharmacokinetics and safety of tazarotene[J], J Am Acad Dermatol,2000,43(2 Pt 3):S31-35.
    [226]Davies SL, Castaner J, Capdevila LG. Tamibarotene[J]. Drugs Fut,2005, 30(7):688-693.
    [227]Takeuchi M. Clinical experience with a new synthetic retinoid, tamibarotene (Am-80) for relapsed or refractory acute promyelocytic leukemia[J]. Gan To Kagaku Ryoho,2006,33(3):397-401.
    [228]Kagechika H, Kawachi E, Hashimoto Y, Shudo K, Himi T:Retinobenzoic acids. 1. Structure-activity relationships of aromatic amides with retinoidal activity. Journal of medicinal chemistry 1988,31(11):2182-2192.
    [229]边海勇,徐文方:他米巴罗汀的合成.中国医药工业杂志2009,40(1):9-11.
    [230]Zhang F, Jin J, Zhong X, Li S, Niu J, Li R, Ma J:Pd immobilized on amine-functionalized magnetite nanoparticles:a novel and highly active catalyst for hydrogenation and Heck reactions. Green Chem 2011,13(5):1238-1243.
    [231]Gedye RN, Smith FE, Westaway KC:The rapid synthesis of organic compounds in microwave ovens. Can J Chem 1988,66(1):17-26.
    [232]Reddy AS, Kumar MS, Reddy GR:A convenient method for the preparation of hydroxamic acids. Tetrahedron Lett 2000,41(33):6285-6288.
    [233]Patel VF, Kim JL, Geuns-Meyer SD, Chaffee SC, Cee VJ, Hodous BL, Bellon S, Harmange JC, Olivieri PR, Thaman MC:Aryl nitrogen-containing bicyclic compounds and methods of use. In.:Google Patents; 2005.
    [234]Macrae MX, Blake S, Mayer M, Yang J:Nanoscale ionic diodes with tunable and switchable rectifying behavior. Journal of the American Chemical Society 2010, 132(6):1766-1767.
    [235]Nudelman A, Bechor Y, Falb E, Fischer B, Wexler BA:Acetyl Chloride-Methanol as a Convenient Reagent for:A) Quantitative Formation of Amine Hydrochlorides B) Carboxylate Ester Formation C) Mild Removal of Nt-Boc-Protective Group. Synth Commun 1998,28(3):471-474.
    [236]Barros TG, Williamson JS, Antunes O, Muri EMF:Hydroxamic Acids Designed as Inhibitors of Urease. Letters in Drug Design &# 38; Discovery 2009,6(3):186-192.
    [237]Natchus MG, Bookland RG, De B, Almstead NG, Pikul S, Janusz MJ, Heitmeyer SA, Hookfin EB, Hsieh LC, Dowty ME:Development of new hydroxamate matrix metalloproteinase inhibitors derived from functionalized 4-aminoprolines. Journal of medicinal chemistry 2000,43(26):4948-4963.
    [238]HLAVACEK J, Bennettova B, Barth T, Tykva R:Synthesis, radiolabeling and biological activity of peptide oostatic hormone and its analogues. The Journal of peptide research 1997,50(3):153-158.
    [239]Wegener, D.; Wirsching, F.; Riester, D.; Schwienhorst, A. Chem. Biol.2003,10, 61-68.
    [240]Raniera B, Arlette C, Jean-Mare G, et al. A novel Nα-acetyl alanine amino-peptidase N from allomyces arbuscala. Biochemistry,2002,84:309-319.
    [241]Teruki S, Kenji T, Kayoko H, et al. Aminopeptidase inhibitors Bestatin and actinoin inhibit cell proliferation of myeloma cells predominantly by intracellular interactivity. Cancer Letter,2002,182:113-119.
    [242]林茂芳,何静松,钱文斌,麦文渊.氨肽酶抑制剂-Bestatin诱导人白血病细胞凋亡的研究.中国抗生素杂志,2001,26(3):218-221.
    [243]Baragi VM, Shaw BJ, Renkiewicz RR, et al. A versatile assay for gelatinases using succinylated gelatin. Matrix Biol.,2000,19:267-273.
    [244]Drag M, Grembecka J, Pawelczak M, et al. α-Aminoalkylphosphonates as a tool in experimental optimisation of P1 side chain shape of potential inhibitors in S1 pocket of leucineand neutral aminopeptidases. Eur. J. Med. Chem.,2005,40(8):764-771.
    [245]FlexXTM is distributed by Tripos Inc.,1699 South Hanley Rd., St. Louis, Missouri, USA (http://www.tripos.com).
    [246]Rarey M., Kramer B., Lengauer T. et al. A Fast Flexible Docking Method using an Incremental Construction Algorithm[J]. J. Mol Biol.,1996,261:470-489.
    [247]石涛,石滨,陈一辰.高效液相色谱法测定他米巴罗汀胶囊的含量[J].中国生化药物杂志,2011,32(4):304-306.
    [248]Katan Patel, Sylvie M. Guichard, Duncan I. Jodrell. Simultaneous determination of decitabine and vorinostat (Suberoylanalide hydroxamic acid, SAHA) by liquid chromatography tandem mass spectrometry for clinical studies [J]. Journal of Chromatography B,2008,863:19-25.
    [249]岳喜庆,刘爽.牛初乳免疫球蛋白体外稳定性研究[J].食品科技,2011,36(7):52-54.
    [250]李玥.二苯乙烯苷的体外稳定性研究[J].福建医药杂志,2011,33(3):58-60.
    [251]王鹏,江云鸥,张志勇.穿琥宁体外稳定性研究[J].中国药房,2010,21(39):3664-3666.
    [252]于波涛,张志荣,刘文胜,等.穿心莲内酯体外稳定性研究[J].中成药,2002,24:331-333.
    [253]吕承,吴伟.灯盏乙素的体外降解动力学[J].复旦学报(医学版),2006,33(4):522-525.
    [254]赖树清,须媚.急性早幼粒细胞性白血病治疗药-他米巴罗汀(tamibarotene)[J].新药速递,2007,28(4):252-253.
    [255]Mahesh N. Samtani, William J. Jusko. Stability of dexamethasone sodium phosphate in rat plasma [J]. International Journal of Pharmaceutics 2005,301:262-266.
    [256]Jan van Dijk, Frans Boomsma. Stability of semicarbazide-sensitive amine oxidase in human blood and plasma [J]. Clinica Chimica Acta,1998,270:189-194.
    [257]Petra Kovankova, Zlata Mrkvickova, Jin Klimes. Investigation of the stability of aromatic hydrazones in plasma and related biological material [J]. Journal of Pharmaceutical and Biomedical Analysis,2008,47:360-370.
    [258]刘文胜,罗维早,张志荣.N1-山梨酰-5-氟脲嘧啶前体药物的体外降解动力学研究[J].华西药学杂志,2000,15(6):413-415.
    [259]刘文胜,罗维早,张志荣.N1-羧酰-5-氟脲嘧啶系列前体药物的体外降解动力学研究[J].中国医药工业杂志,2002,33(9):434-438.
    [260]赵秀丽,陈大为,李可欣,等.布洛芬丁香酚酯前体药物的合成及其水解动力学[J].沈阳药科大学学报,2006,23(2):70-73.
    [261]林燕芳,许建华,黄秀旺.姜黄素前体药物FM0806的初步稳定性及其水解动力学[J].公共卫生与临床医学,2009,5(2):94-96.
    [262]雷杰杰,田文艳,孙红卫,等.齐多夫定棕榈酸酯及其脂质体在小鼠和大鼠血浆中的稳定性[J].沈阳药科大学学报,2007,24(1):14-15.
    [263]陈怀侠,杜鹏,韩凤梅,等.阿托品肝匀浆代谢物的液相色谱-串联质谱法检测[J].湖北大学学报(自然科学版),2007,29(1):85-87.
    [264]陈聪颖,周金娥,严国锋,等.槐苷在大鼠肝匀浆中的代谢[J].上海第二医科大学学报,2005,25(3):232-234.
    [265]李文兰,杨玉楠,季宇彬,等.邻苯二甲酸丁基苄酯在鼠肝匀浆中的生物降解及代谢产物鉴定[J].环境科学学报,2004,24(3):499-503.
    [266]唐跃年,张菀陵,刘璐,等.普罗帕酮和利多卡因在大白鼠肝匀浆中合用时的代谢[J].中国药理学报,1994,15(6)536-539.
    [267]陈怀侠,陈勇.山莨菪碱大鼠肝匀浆代谢物的液相色谱-串联质谱法分析[J].湖北大学学报(自然科学版),2006,28(3):296-298.
    [268]陈怀侠,杜鹏,韩凤梅,等.液相色谱-串联质谱法分析樟柳碱大鼠肝匀浆代谢产物[J].分析化学研究简报,2006,34(12):1729-1732.
    [269]Jim Iley, Eduarda Mendes, Rui Moreira, et al. Cleavage of tertiary amidomethyl ester prodrugs of carboxylic acids by rat liver homogenates [J]. European Journal of Pharmaceutical Sciences,1999,9:201-205.
    [270]MA Le, REN Wei-chao, DONG Jing,et al.Pharmacokinetics of salvianolic acid B after intravenous administration in rats[J].Chin J Clin Pharmacol Ther,2007, 12(11):1231-1235.
    [271]Megumi SUGITANI,Rieko ABE,Nobutomo IKARASHI, et al. Disposition of a New Tamibarotene Prodrug in Mice [J]. Biol. Pharm. Bull,2009,32(12):1997-2001.
    [272]许颖,柯学,平其能HPLC法测定大鼠静脉注射汉黄芩素的血药浓度及其药动学研究[J].药学与临床研究,2007,15(1):35-38.
    [273]孟繁华,郭继芬,仲伯华等。液相色谱-串联质谱法测定阿德福韦及其前体化合物在大鼠血浆中的浓度[J].国际药学研究杂志,2009,36(3):215-218.
    [274]Kuendgen A,Stupp C. Aivado M, et al. Treatment of myelodys plastic syndromes With valproic acid alone or in combination with all trans retinoie acid[J].Blood,2004, 104:1266-1269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700