陡倾层状岩质边坡的大型振动台物理模拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震荷载作用下岩质边坡的内部动力响应规律及其变形破坏过程是研究的难点和热点。“5·12”汶川地震重灾区内地质灾害调研表明,陡倾顺层和反倾边坡均存在较大规模的崩滑体。于此本文在对重灾区大量地震次生灾害调查的基础上,选取陡倾顺层、反倾的软岩和硬岩四个地质模型,建立1:100的模型比例,采用6m×6m三向六度大型地震模拟振动台研究了这四类斜坡在地质荷载下的变形破坏特征和动力响应规律。论文重点研究了加速度放大系数PGA时程变化曲线、峰值位移放大系数PGD时程变化曲线、动土压力变化规律等地震动力响应参数,并提出了计算地震永久位移和模型阻尼比的方法,研究得出的主要认识有:(1)硬岩反倾典型的破坏面呈“折线形”,该破坏面垂直层面,沿着“节理面”发育延伸;顺层边坡中出现的拉剪裂缝主要是沿层面和节理面展开的,顺层模型边坡出现典型的上部下陷,中下部“鼓胀”变形的特征;(2)软岩反倾边坡在地震动力作用下模型上部(大约1/2~2/3高度以上)向临空面弯曲变形—拉裂;软岩顺层边坡在振动作用下的变形破坏模式主要为沿层面出现的“一滑到底”的现象;(3)加速度在越接近坡体顶部其加速度放大系数越大,加速度放大效应竖直方向的动力反应随着振动幅值的加大而愈加强烈。总的来说模型抵抗竖向荷载(Z向)的能力比抵抗侧向变形(X向)的能力要强,水平加载对模型的破坏较竖直要大;(4)地震引起的边坡高程方面的放大效应主要是受竖直地震加速度的影响,水平地震力比竖向地震力对边坡坡肩(顶)的加速度放大效应作用强烈;(5)在水平地震动力作用下0.3g~0.6g振幅范围内坡肩加速度放大系数比模型其他部位的加速度放大系数要大的多;(6)模型的位移峰值放大效应最大处为坡肩位置,其最大峰值位移值达坡脚处峰值位移的2~5倍,位移放大效应同样也有高程效应;(7)不论是竖直向还是水平向振动,模型在0.3g~0.6g之间的动土压力峰值最大,竖向振动作用较水平向振动作用引起的动土压力大。
Rock slope's dynamic response rules and the process of deformation and failure under seismic loading are difficult and hot to research. Geological hazards research in the WenChuan earthquake's heavy disasterarea shows that, there are many large-scale sliding masses in bedding side slope by heaving and obsequent slope.On the basis of secondary earthquake geological disasters survey in the heavy disasterarea,use 4 geological models(bedding side slope by heaving and obsequent slope with hard and weak rock), 1:100 scale model and the large-scale shaking table with 6m×6m,3-direction,6-freedom degrees to research the four types landslide's dynamic response rules and the process of deformation and failure under seismic loading.Paper focus research the seismic dynamic response parameters such as the timely varying curves of PGA (acceleration amplification factor)and the PGD(peak displacement magnification factor)and the variation of dynamic earth pressure.And proposed the calculation method of the permanent displacement and the damping ratio of the model.The main conclusions are:(1) Hard-rock pour the destruction of the typical angled "fold line", this failure face along the vertical level, face "growth" joints outspread; Bedding slope appeared in major is tenso-shear cracks along the level and joints bedding face to launch, and the upper slope appear typical model "abscesses" in the mid-lower caved in, the deformation of the characteristic; (2) Soft rock slope in the seismic dynamic role pour model upper (about 1 1/2 to 2/3 height above) deforming toward surface bending deformation, cracking; Soft YanShun layer under the action of the slope in vibration of deformation and failure mode is mainly for the "appeared along the level one slip to the end" phenomenon;(3) Acceleration in closer slope top its acceleration amplification coefficient, the greater the acceleration amplification effect vertical direction the dynamic response of the vibration amplitude of the increase as more intense. Overall model vertical load resistance ability to (Z) than resist lateral deformation (X) ability to model horizontal loading, on top of the destruction of bigger than vertical;(4) By the quake of slope elevation is mainly amplification effect by the influence of vertical seismic acceleration, horizontal earthquake force than vertical seismic force for geogrid shoulder (top) acceleration amplification effect strong;(5) Seismic dynamic role in level under 0.3g ~ 0.6g amplitude range slope shoulder acceleration amplification coefficient ratio model other parts of the acceleration amplification coefficient bigger;(6) Models of displacement peak amplification effect most take for slope position, its biggest shoulder peak displacement value can reach peak displacement of the slope feet 2 ~ 5 times, displacement amplification effect also have elevation effects (7) Whether to vertical or horizontal vibration, model in between 0.3 g ~ 0.6 g of peak pressure anticipating the biggest, vertical vibration effect was caused to the vibration level pressure anticipating role.
引文
[1]新浪网.http://news.sina.com.cn/c/2010-03-09/031519819432.shtml.
    [2]徐光兴,姚令侃,高召宁,等.边坡动力特性与动力响应的大型振动台模型试验研究.岩石力学与工程地质学报[J]:2008,27(3):624-627.
    [3]薄景山,徐国栋,景立平.土边坡地震反应及其动力稳定性分析[J].地震工程与工程振动,2001,21(2):116-120.
    [4]刘力平,雷尊宇,周富春.地震边坡稳定分析方法综述[J].重庆交通学院学报,2001,20(3):83-88.
    [5]张悼元,王士天,王兰天.工程地质分析原理(第二版).北京:地质出版社,1993
    [6]张咸恭,王思敬,张悼元,等.中国工程地质学[M].北京:科学出版社.2000.
    [7]王思敬,肖远,杜永廉,等.反倾向层状结构岩质边坡分类及稳定性评判准则[R].“八.五”国家重点利技攻关项,1995.
    [8]任光明,夏敏,李国,等.陡倾顺层岩质斜坡倾倒变形破坏特征研究[J].岩石力学与工程学报,2009.28(增1):3193-3199.
    [9]祁生文,伍法权,孙进忠.边坡动力响应规律研究.中国科学E辑技术科学.2003,33(增刊):28-40.
    [10]徐光兴,姚令侃,李朝红,等.边坡地震动力响应规律及地震动参数影响研究[J].岩土工程学报.2008,30(6):918-922.
    [11]姜彤,马莎,许兵,等.边坡在地震作用下的加卸载响应规律研究.岩石力学与工程学报[J].2004,33(22):
    [12]郝建斌,门玉明,彭建兵.反倾层状岩体边坡变形破坏振动试验研究.山西建筑[J].2005,31(19):86-87
    [13]程东幸,刘大安,丁恩保,等.反倾岩质边坡变形特征的三维数值模拟研究-以龙滩水电站工程边坡为例进行三维变形特征分析[J].工程地质学报,2005,13(02):223-226
    [14]秋仁东,石玉成,付长华.高边坡在水平动荷载作用下的动力响应规律研究[J].世界地震工程,2007,23(2):132-137.
    [15]Specifications for seisnic design of hydraulic structures(SL203-97)[S].水工建筑物抗震设训规范(SL203-97)[S].
    [16]许向宁.高地震烈度区山体变形破裂机制地质分析与地质力学模拟研究[D].成都理工大学博士学位论文,2006.04:61-158.
    [17]梁庆国,韩文峰,马润勇,等.强地震动作用下层状岩体破坏的物理模拟研究[J].岩土力学,2005,26(8):1308-1310.
    [18]张敏政.地震模拟实验中相似律应用的若干问题[J].地震工程与工程振动,1997(12)2:53-55.
    [19]徐光兴,姚令侃,高召宁,等.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程地质学报[J]:2008,27(3):624-627.
    [20]尹祥础,尹灿.线性系统的失稳与前兆—响应比理论及其应用[J].中国科学(B辑),1991,(5):512-518.
    [21]许强,黄润秋.用加卸载响应比理论探讨斜坡失稳前兆[J].中国地质灾害与防治学报,1995,6(2):25-31.
    [22]李静.滑坡稳定性研究现状综述及思考[J].西部探矿工程,2006(8).
    [23]吕西林,陈跃庆,陈波,等.结构一地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):20-29.
    [24]冯涛,白志勇,郭勇涛.薄层倾斜岩体边坡结构相似模型的建立浇筑及试验方法[J].工程结构,200323(6):49
    [25]蔡国军,黄润秋,严明,等.反倾向边坡开挖变形破坏响应的物理模拟实验[J].岩石力学与工程学报,2008,27(4):812-814.
    [26]卢增木,左保成.反倾岩石边坡变形破坏实验及有限元分析[J].矿业研究与开发.2006,26(1):23-25.
    [27]左保成,陈从新,刘晓巍,等.反倾岩石边坡破坏机制模拟试验研究[J].岩石力学与工程学报,2005,24(19):3507-3510.
    [27]汤新强,陈天池,曾永平.结构模型试验与模型设计[J].工程结构,2008,28(2):122-23.
    [28]李德寅,王邦媚,林亚超.结构模型实验[M].北京:科学出版社,1996.
    [29]刘晶波,刘祥庆,王宗纲,等.土一结构系统动力离心模型试验相似关系设计.第十届全国岩石力学与工程学术大会论文集,139~144
    [30]李晓红,卢义玉,康勇,等.岩石力学试验模拟技术[M].科学技术出版社,2007.
    [31]黄润秋."5.12"汶川大地震地质灾害的基本特征及其对灾后重建影响的建议[J].中国地质教育,2008(2):10~14.
    [32]黄润秋,李为乐."5.12"汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12):2587~2590.
    [33]王涛,马寅生,龙长兴,等.四川汶川地震断裂活动和次生地质灾害浅析[J].地质通报,2008,27(11):1921.
    [34]祁生文,许强,刘春玲,等.汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律[J].工程地质学报,2009,17(1):44~48.
    [35]张永双,雷伟志,石菊松,等.四川5.12地震次生地质灾害的基本特征初析[J].地质力学学报,2008,14(2):112~113.
    [36]刘汉超,陈明东,黎克武,等.库区环境地质评价研究[M].成都:成都科技大学出版社,1993:16~27.
    [37]廖红建,赵树德.岩土工程测试[M].机械工业出版社,2007.
    [38]陈新民,沈建,魏平,等.下蜀土边坡地震稳定性的大型振动台试验研究模型试验设计[J].防灾减灾工程学报,2010,30(5):498-500.
    [39]Kramer S L,Lindwall N W.Dimensionality and di rectionality effects in Newmark sliding block analyses [J].Journal of Geotechnical and Geoenvironmental Engineering, 2004,130(3):303-315.
    [40]Rathje E M,Bray J D. An examination of simplified earthquake-induced displacement procedures for earth structures[J]. Canadian Geotechnical Journal,1999, 36(1):72-87.
    [41]Lin M L,Wang K L.Seismic slope behavior malarge-scale shaking table model test[J].Engineering Geology,2006,(86):118-133.
    [42]Newmarlk N M.Effects of Earthqualce on Dams and Embank- ments[J].Ceotechnique, 1965-15(2):139-160.
    [43]伍小平.孙利民.胡世德.等.振动台试验用层状剪切变形土箱的研制[J].同济人学学报.2002, 30(7):781-785.
    [44]Chen W Y.Physical Model Studies of Seismic Slope Respouseand Performance (PhD Dissertation)[J].Berkeley,Calf.:U.C.Berkeley,2004.
    [45]Elgamal A,Fraser M,McMartin F. On-line L,ducntional Shake Table,Experiments[J],Journal of Professional Issues in Engineering Education and Practice,2005-131(1):41-49.
    [46]国家技术监督局、中华人民共和国建设部.工程岩体分级标准(GB50218- 94)[S].北京:中国计划出版社,1995.
    [47]黄润秋,许强.中国典型灾害性滑坡[M].北京:科学出版社,2008.
    [48]PARSONS T,CHEN J,KIRBY E.Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin[J].Nature.2008,454:509~510
    [49]Keefer,D.K.Statistical Analysis of an Earthquake induced Landslide Distribution the 1989 Lom a Prieta,California eveat[J],Engineering Geology,2000,58:231~249
    [50]蒋良潍,姚令侃,吴伟.边坡振动台模型实验动位移的加速度时程积分探讨[J].防灾减灾工程学报.2009,29(3):262-264.
    [51]张晋.采用MATLAB进行振动台试验数据的处理[J].工业建筑,2002,32( 2):28 -30, 65.
    [52]Hung-Chie Chiu. Stablle Baseline Correction of Digital Strong-M otion Data[J].Bulletin of Lhe Seisrnological. So-ciety of America,1997,87(4):932- 944.
    [53]David M Boore, Christopher D SLephens,William B Joyner.Comments on Baseline Correction of Digital Strong-Motion Data Examples from the 1999 Hector Mine Califor-nia Earthquake[J].Bulletin of the Seismological Society of America,2002,92(4):1543-1560.
    [54]王国权,周锡元.921台湾集集地震近断层强震记录的基线校正[J].地震地质,2004,26(1):2-11.
    [55]程伟,程文波,李灿平.基于MATLAB的实时数据采集与分析研究[J].电子测量技术,2008,31(8):92-93.
    [56]张园,邢彦梅,何巧.基于MATLAB数据采集系统的设计与实现[J].电声科技,2010,34(9):37-38.
    [57]李吉涛,杨庆山.地震基线漂移的处理方法[J].北京交通大学学报,2010,34(1):97-99.
    [58]郑水明,周宝峰,等.温瑞智等强震动加速度记录基线校正问题探讨[J].大地测量与地球动力学,2010,30(1):48-50.
    [59]陈勇,陈鱼昆,俞言祥.用集集主震记录研究近断层强震记录的基线校正方法[J].地震工程与工程振动,2007,27(4):2-7.
    [60]王国权,周锡元.921台湾集集地震近断层强震记录的基线校正[J].地震地质,2004,26(1):2-11.
    [61]曹加良.用Matlab软件内部函数校正强震记录的探讨[J].华南地震,2009,29(2):89-91.
    [62]邓学晶,孔宪京,杜永峰,等.基Newmark滑块系统能量分析的地震永久位移计算方法[J].兰州理工大学学报,2010,36(5):105-107.
    [63]朱泽奇,盛谦,冷先伦,等.大型地下洞室群关键块体地震响应分析[J].岩石力学,2010,31(增2):255-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700